对三极管输出特性曲线的理解
- 格式:doc
- 大小:224.50 KB
- 文档页数:3
三极管的共射特性曲线作者:佚名来源:本站整理发布时间:2009-9-23 8:27:51 [收藏] [评论]三极管的共射特性曲线三极管的特性曲线是描述三极管各个电极之间电压与电流关系的曲线,它们是三极管内部载流子运动规律在管子外部的表现。
三极管的特性曲线反映了管子的技术性能,是分析放大电路技术指标的重要依据。
三极管特性曲线可在晶体管图示仪上直观地显示出来,也可从手册上查到某一型号三极管的典型曲线。
三极管共发射极放大电路的特性曲线有输入特性曲线和输出特性曲线,下面以NPN型三极管为例,来讨论三极管共射电路的特性曲线。
1、输入特性曲线输入特性曲线是描述三极管在管压降UCE保持不变的前提下,基极电流iB和发射结压降uBE之间的函数关系,即(5-3)三极管的输入特性曲线如图5-6所示。
由图5-6可见NPN 型三极管共射极输入持性曲线的特点是: BE虽己大于零,但i B几乎仍为零,只有当u BE的值大于开启电压后,i B的值与二极管一样随u BE的增加按指数规律增大。
硅晶体管的开启电压约为0.5V,发射结导通电压V on约为0.6~0.7V;锗晶体管的开启电压约为0.2V,发射结导通电压约为0.2~0.3V。
CE=0V,U CE=0.5V和U CE=1V的情况。
当U CE=0V时,相当于集电极和发射极短路,即集电结和发射结并联,输入特性曲线和PN结的正向特性曲线相类似。
当U CE=1V,集电结已处在反向偏置,管子工作在放大区,集电极收集基区扩散过来的电子,使在相同u BE值的情况下,流向基极的电流i B减小,输入特性随着U CE的增大而右移。
当U CE>1V以后,输入特性几乎与U CE=1V时的特性曲线重合,这是因为Vcc>lV后,集电极已将发射区发射过来的电子几乎全部收集走,对基区电子与空穴的复合影响不大,i B的改变也不明显。
CE必须大于l伏,所以,只要给出U CE=1V时的输入特性就可以了。
用示波器演示三极管输出特性曲线-设计应用一、系统框图及测量原理三极管输出特性曲线描述的是在基极电流IB不变情况下,UCE与lC之间的关系曲线。
由于示波器是一种电压测量仪器,集电极电流只有转化为电压才能由示波器显示。
CH2通道测量采样电阻上的压降作为示波器的Y轴输入(IC),CHl通道测量集电极电压作为X 轴输入(UCE),示波器工作在X-Y模式可测得三极管的特性曲线。
当基极电流IB为某一恒流时(本设计将实现步进电流源为:25、50、75、100、125、150、175、200uA共八个步进值),在集电极施加同步的锯齿波,即可观测到晶体管的输出特性曲线。
图1为系统框图,主要由同步信号、步进电流源电路、锯齿波电路等组成;图2为用示波器扩展为晶体管特性图示仪的原理示意图。
图1系统框图图2晶体管特性图示仪二、系统电路原理图1.同步信号产生电路图3中的ICl(555)及外围器件组成多谐振荡电路。
设RWl 及R10的等效电阻为R10.则ICl的Q输出端高电平时间为t1=0.7R10×C1(因为此时的充电回路是:+5V→RWl→R10→D1→C1→GND)。
其宽度约为几十微秒,Q 输出端低电平时间为t2=0.7R11×C1≈1mS(因为此时的放电回路是:C1→R11→D2→555的7脚内部三极管→GND)。
该多谐振荡电路作为步进电流源电路和锯齿波电路的同步信号。
图3系统电路原理图2.锯齿波电路的设计图3中的T1、T2、T3、ICl及外围器件组成锯齿波电路。
设RW2及R17的等效电阻为R17,流过T1发射极电流i1=0.7V,R17是一恒电流,当T2截止时,这一恒电流对电容C1充电,使得电容两端的电压线性增加。
通过同步信号产生电路输出同步脉冲控制三极管T2的开关状态,当三极管T2截止时。
恒流源对电容C1充电;当T2导通时,电容C1对三极管T2快速放电;从而产生线性锯齿波。
为了提高电路的带载能力。
三极管输出特性曲线
三极管输出特性曲线是指在一定的电压下,三极管的输出电流与输入电压之间的变化关系,即从输入电压到输出电流的变化过程。
一般来说,三极管的输出特性曲线分为三部分:正向增益区、正向饱和区和反向饱和区。
正向增益区是指当输入电压逐渐增加时,输出电流也随之增加,呈现出正向对数增益的特性。
正向饱和区是指当输入电压超出一定的限制时,输出电流不再增加,而是保持不变。
反向饱和区是指当输入电压低于一定的限制时,输出电流会降低,直至反向饱和。
一、概述三极管输出特性曲线的X轴为V ce,要求V ce连续并呈线性变化,用三角波输入来实现这一要求。
利用方波——三角波产生电路,方波通过积分可得到三角波。
同时方波作为触发产生基极电流的时钟信号,通过组合逻辑电路、时序逻辑电路来实现。
三极管输出特性曲线的Y轴为i C,当i B很小时,i C近似等于i E,在发射极加入电阻将集电极电流转换为发射极电位,用V E代替i E。
采用同相比例放大电路,通过CMOS模拟开关4066改变R F的值,改变放大器的增益,得到一组电压值,通过基极电阻和发射极电阻转化为基极电流。
最后通过示波器显示。
二、方案设计与论证三极管的输出特性曲线是指在基极电流i B一定的情况下,集电极电流i C与电压V ce之间所对应的关系曲线。
每取一个i B,i C与u CE就对应一条关系曲线,因此,输出特性曲线是由若干条曲线构成的。
要显示一条输出特性曲线,就必须给基极提供一个固定不变的电流(可转换成电压),再给三极管的集电极和发射极之间提供一个连续可变的扫描电压(即示波器的X输入)。
由于三极管的基极电流非常小,所以集电极电流可近似为发射极电流。
而从发射极电阻得到的发射极电位与发射极电流的变化规律是相同的,因此再将发射极电位送至示波器的Y输入,三极管的一条输出特性曲线就会在示波器上显示出来。
最后,要显示一组输出特性曲线,就要在显示一条曲线的基础上,按照一定的时间间隔给三极管的基极提供增量相同的基极电流(即阶梯信号),而且基极电流与c,e之间的电压变化必须同步,另外,要想连续的显示输出特性曲线,基极电流与c,e之间的扫描电压就必须是周期相同且相位同步的信号。
再有,周期的选取应考虑人视觉的暂留特性,确保输出特性曲线的显示但不闪烁。
三极管的输出特性曲线测试电路组成方框图如图1所示图1 三极管的输出特性曲线测试电路组成方框图三、单元电路的设计与分析1、方波——三角波产生电路设计运算放大器产生方波,方波可作为八进制时序计数器的时钟信号。
三极管的特性曲线
三极管外部各极电压和电流的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。
它不仅能反映三极管的质量与特性,还能用来定量地估算出三极管的某些参数,是分析和设计三极管电路的重要依据。
对于三极管的不同连接方式,有着不同的特性曲线。
应用最广泛的是共发射极电路,其基本测试电路如图Z0118所示,共发射极特性曲线可以用描点法绘出,也可以由晶体管特性图示仪直接显示出来。
一、输入特性曲线
在三极管共射极连接的情况下,当集电极与发射极之间的电压UBE 维持不同的定值时,
UBE和IB之间的一簇关系曲线,称为共射极输入特性曲线,如图Z0119所示。
输入特性曲线的数学表达式为:
IB=f(UBE)| UBE = 常数 GS0120
由图Z0119 可以看出这簇曲线,有下面几个特点:。
晶体三极管特性曲线1、集电极输出特性曲线和二极管一样,晶体管的特性曲线可以提供很多信息。
有许多类型的晶体管特性曲线。
集电极曲线族是最常见的曲线之一。
图10-9就是这种曲线的一个例子。
垂直轴表示集电极电流(IC),以毫安为单位;水平轴表示集电极-发射极偏置电压(UCE),以伏特为单位。
该图叫做集电极曲线族,因为它是同一个三极管在给定不同基极电流的条件下描绘的。
图10-10给出了一种电路可以用来测量一个集电极曲线族的数据的电路。
用三个表来分别测量基极电流IB,集电极电流IC,集电极-发射极电压UCE。
为了画出含有三个变量的曲线,将一个变量值固定为常数而使其它两个量改变。
对一个集电极曲线族来说,常量是基极电流。
如图10-10所示,先调整可变电阻器得到需要的基极电流,然后调整可变电源,每给定为一个UCE值,记录集电极电流的值。
接着,再改变UCE值,并记录IC的值。
在图上描出这些数据点就产生了一条IC-UCE的伏安特性曲线。
改变基极电流,重复前面的操作,就可以产生这一族中的其它曲线。
从图10-9所示的曲线可得到一些结型晶体管的重要参数。
注意到集-发极间电压对集电极电流的影响很小。
注意IB=20μA时的曲线,电压从2V到18V范围内集电极电流有多大变化?电压增加16V,电流大约增加0.3mA。
由此可见,集电极电压对电流的影响很小,仅在集电极电压很小的时候对集电极电流有影响(见图10-9中1V以下部分曲线称三机关报和区)。
由输出特性曲线图,我们定义三极管的动态电阻(也称三极管集电极输出电阻):实际表示输出特性曲线的斜率。
对于上例可见三极管有较大的动态电阻。
你要学会利用图10-9读一些数据。
例如,当IC=10mA,VCE=4V时,求IB=?,这两个数据点在80μA的曲线上相交,所以答案是80μA。
读该图时,使用估值也是必要的。
例如,当UCE=10V,IC=7mA时,基极电流值为多少?这两个值的交点与族内的每条曲线都不相交,大约在40μA和60μA曲线之间,所以估值50μA是比较合理的。
晶体三极管的输入、输出特性曲线三极管的特性曲线是指三极管各极上的电压和电流之间的关系曲线,是三极管内部性能的外部表现。
从使用三极管的角度来说,了解它的特性曲线是重要的。
由于三极管有两个PN结,因此它的特性曲线不像二极管那样简单。
最常用的有输入特性和输出特性曲线两种,在实际应用中,通常利用晶体管特性图示仪直接观察,也可用图1的电路开展测试逐点描绘。
(一)输入特性曲线输入特性是指,当三极管的集电极与发射极之间电压UCE保持为某一固定值时,加在三极管基极与发射极之间的电压UBE与基极电流IB之间的关系。
以3DG130C为例,按图1实验电路测试。
当UCE分别固定在O和1伏两种情况下,调整RPl测得的IB和UBE的值,列于表1。
它的输入特性曲线,如图2所示。
为了说明输入特性,图中画出两种曲线,表示UCE不同的两种情况。
但两条线不会同时存在。
图1晶体三极管输入、输出特性实验电路图2晶体三极管输入特性曲线表1三极管输入特性数据1.当UCE = O伏时,也就是将三极管的集电极与发射极短接,如图3所示,相当于正向接法的两个并联二极管。
图2中曲线A的形状跟二极管的正向伏安特性曲线非常相似,IB和UBE 也是非线性关系。
2.当UCE=I伏时,集电结反偏,产生集电极电流IC, 在一样的UBE条件下,基极电流IB就要减小。
(图2中a点降到b 点),因此曲线B相对曲线A右移一段距离。
可见,UCE 对IB有一定影响。
当UCE>1伏以后,IB与UCE几乎无关,其特性曲线和UCE = I优那条曲线非常接近,通常按UCE = I 伏的输出特性曲线分析。
图3 UCE=O时的等效电路图4 3AX52B的输入特性曲线图4是3AX52B错三极管的输入特性,注意横坐标是一UBE,这是指PNP型错管的基极电位低于发射极电位。
可见,错管和硅管它们的输入特性曲线都是非线性的,都有“死区”, 错管和硅管相比,错管在较小的UBE值下,就可使发射结正偏导通。
三极管的特性曲线三极管外部各极电压和电流的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。
它不仅能反映三极管的质量与特性,还能用来定量地估算出三极管的某些参数,是分析和设计三极管电路的重要依据。
对于三极管的不同连接方式,有着不同的特性曲线。
应用最广泛的是共发射极电路,其基本测试电路如图Z0118所示,共发射极特性曲线可以用描点法绘出,也可以由晶体管特性图示仪直接显示出来。
一、输入特性曲线在三极管共射极连接的情况下,当集电极与发射极之间的电压UBE 维持不同的定值时,UBE和IB之间的一簇关系曲线,称为共射极输入特性曲线,如图Z0119所示。
输入特性曲线的数学表达式为:IB=f(UBE)| UBE = 常数GS0120由图Z0119 可以看出这簇曲线,有下面几个特点:(1)UBE = 0的一条曲线与二极管的正向特性相似。
这是因为UCE = 0时,集电极与发射极短路,相当于两个二极管并联,这样IB与UCE 的关系就成了两个并联二极管的伏安特性。
(2)UCE由零开始逐渐增大时输入特性曲线右移,而且当UCE的数值增至较大时(如UCE>1V),各曲线几乎重合。
这是因为UCE由零逐渐增大时,使集电结宽度逐渐增大,基区宽度相应地减小,使存贮于基区的注入载流子的数量减小,复合减小,因而IB减小。
如保持IB为定值,就必须加大UBE ,故使曲线右移。
当UCE 较大时(如UCE >1V),集电结所加反向电压,已足能把注入基区的非平衡载流子绝大部分都拉向集电极去,以致UCE再增加,IB 也不再明显地减小,这样,就形成了各曲线几乎重合的现象。
(3)和二极管一样,三极管也有一个门限电压Vγ,通常硅管约为0.5~0. 6V,锗管约为0.1~0.2V。
二、输出特性曲线输出特性曲线如图Z0120所示。
测试电路如图Z0117。
输出特性曲线的数学表达式为:由图还可以看出,输出特性曲线可分为三个区域:(1)截止区:指IB=0的那条特性曲线以下的区域。
对三极管输出特性曲线的理解
注:这是学生对问题的理解,如有错漏,请各位高手批评指正,谢谢。
npn型三极管模式图:
(1)两个PN结:发射结、集电结
(2)三个区:发射区、基区、集电区
(3)杂质浓度:发射区>基区>集电区
(4)窄基区:小于数微米
三极管的电路符号:
npn型三极管的共发射极接法:
三极管的工作原理;
注:i=nesv
Vce较小时,集电结正偏,发射结正偏。
Vbe向发射极注入电子,少量电子流回Vbe正极。
大量电子流向集电结。
这时右边的空间电荷区被压缩,电子经过时获得的能小。
一定范围内,当Vce增大时,与Vbe的电压抵消掉一部分,右侧空间电荷区宽度增大,电子经过时获得的动能增大,则v增大,i=nesv增大,如图所示的饱和区。
由于电源Vbe注入的电子有一定的数量,所以当Vce增大到某一数值之后,Ic不会再增加,此时Ic=βIb.另外,管子自身放大倍数小达到极限能力后,无法再继续放大。