实数的运算与大小比较复习
- 格式:pptx
- 大小:83.89 KB
- 文档页数:27
3.1.2 比较大小1. 实数的运算性质与大小顺序之间的关系。
设、为任意两个实数,如果是整数,那么;如果等于零,那么;如果是负数,那么,反过来也成立,即注:①上面的“”表示“等价于”,即可以互相推出;②上面的“”左边的式子反应了实数的运算性质,右边的式子反应的是数的大小,而这结合起来即是实数的运算性质与大小顺序之间的关系。
③这一关系是不等式的理论基础,是比较两个实数大小的依据,也是不等式性质的证明、证明不等式和解不等式的主要依据。
2. 实数比较大小的方法。
(1)作差比较:“作差法”的一般步骤是: ①作差;②变形;③判断符号;④得出结论. 用“作差法”比较两个实数大小的关键是判断差的正负,常采用配方、因式分解、有理化等方法.常用的结论有等.(2) 作商比较:“作商法”的一般步骤是:①作商;②变形;③判断商值与1的大小关系;④得出结论.用“作商法”比较两个实数大小的关键是判断商值与1的大小关系,常采用约分、分解等变形方法。
注:利用作商法比较两个实数的大小时,作为比较大小的两个数必须同号切不为零;关键是正确变形和判断商的值与1的大小。
在数(式)的结构中含有幂、根式或绝对值时,常采用作商法。
3. 不等式的性质及证明。
性质1:(对称性);证:∵ ∴由正数的相反数是负数性质2:(传递性),证:∵, ∴,∵两个正数的和仍是正数 ∴即 ∴由对称性、性质2可以表示为:如果且那么性质3:(加法单调性),证:∵ ∴从而可得移项法则:推论①:(相加法则) a b b a -b a >b a -b a =b a -b a <⎪⎩⎪⎨⎧<⇔<-=⇔=->⇔>-.0;0;0b a b a b a b a b a b a ⇔⇔2200x x ≥-≤≥≤,,|x|0,-|x|0b a >⇔a b <b a >0>-b a 0)(<--b a 0<-a b a b <b a >c b >⇒c a >b a >c b >0>-b a 0>-c b +-)(b a 0)(>-c b 0>-c a c a >b c <a b <a c <b a >R c ∈⇔c b c a +>+0)()(>-=+-+b a c b c a c b c a +>+b c a b c b b a c b a ->⇒-+>-++⇒>+)()(d b c a d c b a +>+⇒>>,证: 推论②:(相减法则)如果且,那么 证:∵ ∴ 或证:上式>0 ……… 性质4:(乘法单调性),;,证: ∵ ∴根据同号相乘得正,异号相乘得负,得:时即:时即:推论①:(相乘法则)且 证: 推论②:(乘方法则)推论③:(相除法则)且,那么证:∵ ∴ 性质5:(开方法则)如果,那么证:(反证法)假设则:若这都与矛盾 ∴d b c a d b c b d c c b c a b a +>+⇒⎭⎬⎫+>+⇒>+>+⇒>b a >d c <d b c a ->-d c <d c ->-d b c a d c b a ->-⇒⎩⎨⎧->->)()()()(d c b a d b c a ---=---d c ba <> ⇒⎭⎬⎫<-∴>-∴00d c b a b a >0>c ⇒bc ac >b a >0<c ⇒bc ac <c b a bc ac )(-=-b a >0>-b a 0>c 0)(>-c b a bc ac >0<c 0)(<-c b a bc ac <0>>b a 0>>d c ⇒bd ac >bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,0>>b a ⇒n n b a >)1(>∈n N n 且0>>b a d c <<0d b c a >0>>c d ⇒⎪⎭⎪⎬⎫>>>>0011b a d c d b c a >0>>b a n n b a >)1(>∈n N n 且n n b a ≤ba b a b a b a n n n n =⇒=<⇒<b a >n n b a >例1:有三个条件:(1)ac 2>bc 2;(2)>;(3)a 2>b 2,其中能分别成为a>b 的充分条件的个数有( )A .0B .1C .2D .3【解析】(1)由ac 2>bc 2可知c 2>0,即a >b ,故ac 2>bc 2是a >b 的充分条件,(2)c <0时,a <b ,(3)a <0时,a <b ,故(2)、(3)不是a >b 的充分必要条件,故答案选B 。
实数的大小比较及运算实数是数学中的一个重要概念,它包括有理数和无理数两大类。
在数学运算中,实数的大小比较及运算是最基础的部分之一,对于学生来说,掌握实数的大小比较及运算是非常重要的。
本文将从实数的大小比较和基本运算两个方面进行详细介绍。
一、实数的大小比较1. 正数和负数的比较正数是大于零的实数,负数是小于零的实数。
在实数中,正数大于负数。
例如,1比-1要大,2比-2要大。
当然,绝对值较大的负数,比绝对值较小的正数要小。
比如,-5比3要小。
2. 零和正数、负数的比较零是实数中最小的数,比任何正数都要小,但是大于任何负数。
如0比1要小,0比-1要大。
3. 实数的比较运算规则(1)同号相乘为正,异号相乘为负。
(2)同号相加为正,异号相加为负。
(3)绝对值较大的数,在同号运算时,结果的绝对值较大;在异号运算时,结果的绝对值较小。
二、实数的基本运算1. 实数的加法实数的加法满足交换律、结合律和分配律等基本性质。
例如,a+b=b+a,(a+b)+c=a+(b+c),a(b+c)=ab+ac。
2. 实数的减法实数的减法可以转化为加法运算,即a-b=a+(-b)。
减法满足减法的交换律:a-b≠b-a。
3. 实数的乘法实数的乘法满足交换律、结合律和分配律等基本性质。
例如,ab=ba,a(bc)=(ab)c,a(b+c)=ab+ac。
4. 实数的除法实数的除法定义为a÷b=a×(1/b),其中b≠0。
除法满足除法的性质:a÷b≠b÷a。
5. 实数的乘方与开方实数的乘方定义为a的n次方是指n个a相乘,即an=a×a×…×a。
实数的开方是乘方的逆运算,即对于实数a,若b是满足b^n=a的实数,则b叫做a的n次方根。
通过以上详细介绍,相信大家对实数的大小比较及运算有了更深入的了解。
掌握实数的大小比较及运算是数学学习的基础,也是解决实际问题的重要方法。
在日常学习中多加练习,相信你会掌握实数的大小比较及运算,取得更好的学习成绩。
实数的运算及大小比较一、中考题回顾1.(2016·河北中考)点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论:甲:b -a <0; 乙:a +b >0; 丙:|a |<|b |; 丁:ba >0. 其中正确的是( )A .甲乙B .丙丁C .甲丙D .乙丁2.(2017·河北中考)对于实数p ,q ,我们用符号最小{p ,q }表示p ,q 两数中较小的数,如最小{1,2}=1.因此,最小{-2 ,-3 }= ; 若最小{(x -1)2,x 2}=1,则x = . 3.(2017·河北中考)下列运算结果为正数的是( ) A .(-3)2 B .-3÷2 C .0×(-2 017) D .2-34.(2016·河北中考)计算:-(-1)=( ) A .±1 B .-2 C .-1 D .15.(2015·河北中考)计算:3-2×(-1)=( ) A .5 B .1 C .-1 D .66.(2017·河北中考)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( ) A .4+4-4 =6 B .4+40+40=6 C .4+34+4 =6 D .4-1÷4 +4=67.(2013·河北中考)下列运算中,正确的是( ) A .9 =±3 B .3-8 =2C .(-2)0=0 D .2-1=128.(2016·河北中考)8的立方根为 .9.(2019·河北中考)有个填写运算符号的游戏:在“1 2 6 9”中的每个 内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2-6-9;(2)若1÷2×6 9=-6,请推算 内的符号;(3)在“126-9”的内填入符号后,使计算所得数最小,直接写出这个最小数.10.(2018·河北中考)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和;发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.11.(2017·河北中考)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示.设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p 又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.12.(河北中考)利用运算律有时能进行简便计算.请你参考黑板中老师的讲解,用运算律简便计算: (1)999×(-15);(2)999×11845 +999×⎝ ⎛⎭⎪⎫-15 -999×1835 .二、考点解析 实数的运算【例1】(1)4的平方根是 ; (2)3-27 的绝对值是 ; (3)|-9|的平方根是 . 【例2】(2020·石家庄市模拟)计算: 181+3-27 +(-2)2 +(-1)2 020. 1.(2020·衡阳中考)下列各式中正确的是( ) A .-|-2|=2 B .4 =±2 C .39 =3 D .30=12.(2020·邢台市模拟)若4是数a 的平方根.则a = .3.(2020·河北中考样题)若正数m 的平方根为x +1和x -3,则m = . 4.计算:|2 -1|+2sin 45°-8 +tan 260°.实数的大小比较【例3】(2020·遵化市模拟)下列实数中最大的是()A.32B.|-5|C.15D.π5.(2020·石家庄市模拟)在-3,-1,1,3四个数中,比2大的数是() A.-3 B.-1C.1 D.3,6.(2020·邢台市一模)若a表示正整数,且15.1<a<332,则a的值是()A.3 B.4 C.15 D.167.(2020·枣庄中考)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0C.a+b>0 D.1-a>1与数轴有关的运算【例4】(2020·唐山市一模)如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数是0;②b+d=0;③e=-2;④a+b+c+d+e=0.正确的有()A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确8.(2020·邯郸丛台区一模)如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a,c满足|a+3|+(c-5)2=0.(1)a=________,b=________,c=________;(2)若将数轴折叠,使得点A与点C重合,则点B与数________表示的点重合;(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t s 过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=________,BC=________;(用含t的代数式表示)(4)请问:3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.实数的运算及大小比较一、中考题回顾1.(2016·河北中考)点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b -a <0; 乙:a +b >0; 丙:|a |<|b |; 丁:ba >0. 其中正确的是(C)A .甲乙B .丙丁C .甲丙D .乙丁2.(2017·河北中考)对于实数p ,q ,我们用符号最小{p ,q }表示p ,q 两数中较小的数,如最小{1,2}=1.因此,最小{-2 ,-3 }=-3 ; 若最小{(x -1)2,x 2}=1,则x =-1或2. 3.(2017·河北中考)下列运算结果为正数的是(A ) A .(-3)2 B .-3÷2 C .0×(-2 017) D .2-34.(2016·河北中考)计算:-(-1)=(D ) A .±1 B .-2 C .-1 D .1 5.(2015·河北中考)计算:3-2×(-1)=(A ) A .5 B .1 C .-1 D .66.(2017·河北中考)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是(D ) A .4+4-4 =6 B .4+40+40=6 C .4+34+4 =6 D .4-1÷4 +4=67.(2013·河北中考)下列运算中,正确的是(D ) A .9 =±3 B .3-8 =2C .(-2)0=0D .2-1=12 8.(2016·河北中考)8的立方根为2.9.(2019·河北中考)有个填写运算符号的游戏:在“1 2 6 9”中的每个 内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2-6-9;(2)若1÷2×6 9=-6,请推算 内的符号;(3)在“1 2 6-9”的 内填入符号后,使计算所得数最小,直接写出这个最小数.解:(1)原式=3-6-9=-12;(2)∵1÷2×6=3,∴39=-6.∴内的符号是“-”;(3)-20.10.(2018·河北中考)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和;发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.解:尝试(1)-5-2+1+9=3;(2)由题意,得-5-2+1+9=-2+1+9+x.解得x=-5;应用与(2)同理,得第6个到第8个台阶上的数依次是-2,1,9,可见台阶上的数从下到上按-5,-2,1,9四个数依次循环排列.∵31=7×4+3,∴前31个台阶上数的和为7×3+(-5-2+1)=15;发现4k-1.11.(2017·河北中考)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示.设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p 又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.解:(1)若以B为原点,则点A,C分别对应-2,1,∴p=-2+0+1=-1;若以C为原点,则点A,B分别对应-3,-1,∴p=-3-1+0=-4;(2)若原点O在图中数轴上点C的右边,且CO=28,则点A,B,C分别对应-31,-29,-28,∴p=-31-29-28=-88.12.(河北中考)利用运算律有时能进行简便计算.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×11845 +999×⎝ ⎛⎭⎪⎫-15 -999×1835 .解:(1)原式=(1 000-1)×(-15)=-15 000+15=-14 985;(2)原式=999×⎣⎢⎡⎦⎥⎤11845+⎝ ⎛⎭⎪⎫-15-1835=999×100=99 900.二、考点解析实数的运算【例1】(1)4的平方根是±2; (2)3-27 的绝对值是3;(3)|-9|的平方根是±3.【例2】(2020·石家庄市模拟)计算: 181 +3-27 +(-2)2 +(-1)2 020.1.(2020·衡阳中考)下列各式中正确的是(D )A .-|-2|=2B .4 =±2C .39 =3D .30=12.(2020·邢台市模拟)若4是数a 的平方根.则a =16.3.(2020·河北中考样题)若正数m 的平方根为x +1和x -3,则m =4.4.计算:|2 -1|+2sin 45°-8 +tan 260°.解:原式=2-1+2×22-22+(3)2=2-1+2-22+3=2.实数的大小比较【例3】(2020·遵化市模拟)下列实数中最大的是(B)A.32B.|-5|C.15D.π5.(2020·石家庄市模拟)在-3,-1,1,3四个数中,比2大的数是(D) A.-3 B.-1C.1 D.3,6.(2020·邢台市一模)若a表示正整数,且15.1<a<332,则a的值是(B)A.3 B.4 C.15 D.167.(2020·枣庄中考)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是(D)A.|a|<1 B.ab>0C.a+b>0 D.1-a>1与数轴有关的运算【例4】(2020·唐山市一模)如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数是0;②b+d=0;③e=-2;④a+b+c+d+e=0.正确的有(D)A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确8.(2020·邯郸丛台区一模)如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a,c满足|a+3|+(c-5)2=0.(1)a=________,b=________,c=________;(2)若将数轴折叠,使得点A与点C重合,则点B与数________表示的点重合;(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t s 过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=________,BC=________;(用含t的代数式表示)(4)请问:3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.解:(1)-3;-1;5;(2)3;[a+c-b=-3+5-(-1)=3.](3)3t+2;t+6;[t s过后,点A表示的数为-t-3,点B表示的数为2t-1,点C表示的数为3t+5,∴AB=(2t-1)-(-t-3)=3t+2,BC=(3t+5)-(2t-1)=t+6.](4)不变.∵AB=3t+2,BC=t+6,∴3BC-AB=3(t+6)-(3t+2)=3t+18-3t-2=16.∴3BC-AB的值为定值16.。
第2课 实数的运算及大小比较一、课标要求1、理解有理数的运算律,能运用运算律简化运算2、能运用有理数的运算解决简单的问题二、知识要点1、实数的运算①有理数的运算法则②运算律③实数的运算顺序2、实数的大小比较3、比较实数大小的常用方法三、考点(型)精讲考点一:实数的运算例1、(2011,苏州)12()2⨯-的结果是 A .-4 B .-1 C .14- D .32分析:利用有理数运算法则,直接得出结果数。
例2、(2011连云港,17,6)计算:(1)2×(-5)+23-3÷12. 分析:根据有理数运算法则运算得出结果。
考点二:实数的大小比较例3、当1a 0<<时,比较21a a a、和的大小 分析:实数的大小比较方法有:(1)整数大于0,负数小于0;(2)利用数轴;(3)差值比较法;(4)商值比较法;(5)倒数法;(6)取特殊值法;(7)计算器比较法等。
考点三:实数与数轴例4、(杨浦区初三数学基础测试卷,2,4)已知实数a 、b 在数轴上的位置如图所示,则下列等式成立的是 ( ) (A)a b a b +=+; (B)a b a b +=-; (C)11b b +=+; (D)11a a +=+ 考点4、探索实数中的规律例5、观察式子:),7151(21751),5131(21531),311(21311-=⨯-=⨯-=⨯……. 由此计算:+⨯+⨯+⨯751531311…=⨯+201120091_____________.四、真题演练一、选择题1. (2011 广东省茂名市) 对于实数a 、b ,给出以下三个判断:( )①若b a =,则 b a =.O a②若b a <,则 b a <.③若b a-=,则 22)(b a =-.其中正确的判断的个数是 A .3 B .2 C .1 D .02. (2011 河南省) 下列各式计算正确的是( )A .()101132-⎛⎫--=- ⎪⎝⎭ B 235=C .224246a a a += D .()326a a = 3. (2011 湖北省襄阳市) x y ,为实数,且110x y +-=,则2011x y ⎛⎫ ⎪⎝⎭的值是( )A .0 B.1 C .1- D.2011- 4. (2011 云南省玉溪市) 下列说法正确的是( )A .a 2·a 3 = a 6B .222532a a a -=C .01a =D .1(2)2-=-二、填空题5. (2011 辽宁省沈阳市) 计算225(1)-=___________.6. (2011 内蒙古鄂尔多斯市) 若x 、y 为实数,且2(2)30x y -+=,则x y =_____________. 7. (2011 山西省) 11826sin 45--=_______.8. (2011 贵州省遵义市) x 、y 320x y +-=,则x y += .三、计算题9. (2010 江苏省宿迁市) 计算:01)2π(3)31(5---+--.10. (2010 江苏省苏州市) 计算:0124.3⎛⎫- ⎪⎝⎭11. (2011 江苏省镇江市) 计算:31sin 4582-+°;12. (2011 浙江省绍兴市) 计算:8-02)(-π+︒45cos 2+14-;13. (2011 浙江省温州市) 计算:20(2)(2011)12-+--;.14. (2011 浙江省金华市) 计算:()0185cos45π----1+42.15. (2011江苏扬州)(1)30)2(4)2011(23-÷+---“真题演练”答案1、C2、D3、C4、B5.46.97.128.-19. 原式==5-3-1=110. 原式=2+2-1=311. 原式=22222+=2.12. 原式2121224+⨯+ 3=32.413. 原式=20(2)(2011)124123523-+-+-=-14. 原式=1-12×22-1+4×22=1-2-1+22= 2 15. 原式=)8(4123-÷+-=21123--=0。
第六章实数知识点总结摘要:一、实数的定义与分类1.实数的定义2.实数的分类二、实数的性质与运算1.实数的性质2.实数的运算三、实数与数轴1.数轴的概念2.实数与数轴的关系四、实数的比较与大小1.实数的大小比较2.实数的大小关系五、实数的应用1.实数在数学中的应用2.实数在其他学科中的应用正文:实数是数学中的一个重要概念,它包括有理数和无理数。
实数的定义是指数轴上的点,可以表示为有序对(a,b),其中a 表示点的横坐标,b 表示点的纵坐标。
根据横坐标a 的值,实数可以分为负数、零和正数。
实数的性质包括:1.实数具有连续性,即任意两个实数之间总存在一个实数;2.实数具有完备性,即每个实数都可以用无限接近的有理数表示;3.实数具有可数性,即实数集中的每个元素都可以与自然数集建立一一对应关系。
实数的运算包括加法、减法、乘法、除法、乘方和开方。
这些运算遵循交换律、结合律和分配律等基本运算法则。
实数的运算不仅限于实数,还可以扩展到复数。
实数与数轴有密切的关系。
数轴是一个直线,规定了原点、正方向和单位长度。
实数可以表示为数轴上的点,根据横坐标a 的值,实数可以分为负数、零和正数。
数轴上的点与实数之间的对应关系是一一映射。
实数的大小比较和大小关系是数学中常见的问题。
实数的大小比较遵循“大于一切小于它的数,小于一切大于它的数”的原则。
实数的大小关系可以通过数轴来直观表示。
实数在数学中有广泛的应用,如微积分、实分析等。
实数在其他学科中也有应用,如物理、化学、生物等。
实数的概念、性质和运算等基础知识是解决实际问题的关键。
总之,实数是数学中的一个基本概念,它具有重要的理论意义和实际应用价值。
第2讲实数的运算及大小比较考点1平方根、算术平方根、立方根名称定义性质平方根如果x2=a(a≥0),那么这个数x就叫做a的平方根.记作±a.正数的平方根有两个,它们互为①;③没有平方根;0的平方根是② .算术平方根如果x2=a(x>0),那么这个正数x就叫做a的算术平方根.记作a.0的算术平方根是④ .立方根若x3=a,则x叫做a的立方根,记作3a.正数有一个⑤立方根;0的立方根是0;负数有一个⑥立方根.考点2实数的大小比较代数比较规则正数⑦,负数⑧,正数大于一切负数;两个正数,绝对值大的较大;两个负数,绝对值大的反而⑨ .几何比较规则在数轴上表示的两个数,左边的数总是⑩右边的数.考点3实数的运算内容运算法则加法法则、减法法则、乘法法则、除法法则、乘方与开方等.特别地,a0=⑪ (其中a≠0),a-p=⑫ (其中p为正整数,a≠0).运算律交换律、结合律、分配律.运算性质有理数一切运算性质和运算律都适应于实数运算.运算顺序先算乘方、开方,再算⑬,最后算⑭,有括号的要先算⑮的,若没有括号,在同一级运算中,要从左到右进行运算.1.比较实数的大小可直接利用法则进行比较,还可以采用作差法、倒数法及估算法,也可借助数轴进行比较.2.实数混合运算时,根据每个算式的结构特征,选择适当的方法,灵活运用运算律,就会收到事半功倍的效果.命题点1 平方根、算术平方根、立方根例1 (2014·东营) 81的平方根是( )A.±3B.3C.±9D.9方法归纳:解此类题需要先将原数化简,再根据平方根与算术平方根的概念、关系及符号的表示,并在此基础上正确运算.1.(2014·陕西)4的算术平方根是( )A.-2B.2C.-12D.122.(2013·资阳)16的平方根是( )A.4B.±4C.8D.±83.(2014·威海)若a3=-8,则a的绝对值是( )A.2B.-2C.12D.-124.(2013·宁波)实数-8的立方根是 .5.(2014·河南)计算:327-|-2|= . 命题点2 实数的大小比较例2 (2014·南昌模拟)51212.(填“>”“<”或“=”)方法归纳:比较实数的大小除了基本的“正数负数”原则和方法外,还可采用作差法,倒数法,估算法,也可借助数轴进行比较.1.(2014·菏泽)比-1大的数是( )A.-3B.-109C.0D.-12.(2014·益阳)四个实数-2,0,-2,1中,最大的实数是( )A.-2B.0C.-2D.13.(2015·苏州模拟)如图所示,是数a,b在数轴上的位置,下列判断正确的是( )A.a<0B.a>1C.b<-1D.b>-14.(2014·重庆A卷)2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是-4 ℃、5 ℃、6 ℃、-8 ℃,当时这四个城市中,气温最低的是( )A.北京B.上海C.重庆D.宁夏命题点3 实数的运算例3 (2014·泸州)计算:12-4sin60°+(π+2)0+(12)-2.【思路点拨】先将代数式中的各部分化简,再进行有理数的加减. 【解答】方法归纳:解答本题的关键是掌握零指数幂a0=1(a≠0)、负整数指数幂a-n=1na(a≠0,n是正整数)、算术平方根和乘方的意义.正确运用整数指数幂的运算法则进行计算,不要出现(12)-2= - (12)2这样的错误.1.(2014·荆门)若( )×(-2)=1,则括号内填一个实数应该是( )A.12B.2C.-2D.-122.(2014·菏泽)下列计算中,正确的是( ) A.a 3·a 2=a6B.(π-3.14)0=1 C.(13)-1=-3 D.9=±3 3.(2014·十堰)计算4+(π-2)0-(12)-1= . 4.(2014·重庆A 卷)计算4+(-3)2-2 0140×|-4|+(16)-1.5.(2014·长沙)计算:(-1)2 014+38-(13)-1+2sin45°.1.(2014·江西)下列四个数中,最小的数是( ) A.-12B.0C.-2D.2 2.(2014·枣庄)2的算术平方根是( )A.±2B.2C.±4D.4 3.(2014·潍坊)()321-的立方根是( )A.-1B.0C.1D.±1 4.(2014·德州)下列计算正确的是( )A.(-3)2=-9B.327=3C.-(-2)0=1 D.|-3|= -35.(2014·绍兴)比较-3,1,-2的大小,正确的是( )A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-26.(2014·重庆B 卷)某地连续四天每天的平均气温分别是:1℃,-1℃,0℃,2℃,则平均气温中最低的是(A ) A.-1℃ B.0℃ C.1℃ D.2℃7.(2014·宁波)杨梅开始采摘了!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是( )A.19.7千克B.19.9千克C.20.1千克D.20.3千克 8.(2013·宜昌)实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A.a+b =0B.b <aC.ab >0D.|b|<|a|9.(2014·徐州)点A 、B 、C 在同一条数轴上,其中A 、B 表示的数分别为-3、1.若BC=2,则AC 等于( )A.3B.2C.3或5D.2或610.(2014·梅州)4的平方根是 .11.(2014·陕西)计算(-13)-2= .12.(2014·滨州)计算:-3×2+(-2)2-5= .13.(2014·资阳)计算:38+(2-1)0= .14.(2013·西双版纳)若a=-78,b=-58,则a、b的大小关系是a b(填“>”“<”或“=”).15.(2013·杭州)把7的平方根和立方根按从小到大的顺序排列为 .16.(2014·梅州)计算:(π-1)0+|2-2|-(13)-1+8.17.(2014·南充)计算:(2014-1)0-(3-2)+3tan30°+(13)-1.18.(2014·内江)计算:2tan60°-|3-2|-27+(13)-1.19.(2015·南充模拟)如图一只蚂蚁从A点沿数轴向右直爬2个单位到达点B,点A表示-2,设点B所表示的数为m.(1)求m的值;(2)求|m-1|+(m+2 014)0的值.20.如图所示,数轴上表示2,5的对应点分别为C、B,点C是AB的中点,则点A表示的数是( )555521.(2013·泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,….解答下列问题:3+32+33+34+…+32 013的末尾数字是( )A.0B.1C.3D.722.(2013·常德)小明在做数学题时,发现下面有趣的结果:3-2=18+7-6-5=415+14+13-12-11-10=924+23+22+21-20-19-18-17=16……根据以上规律可知第100行左起第一个数是 .23.(2013·黄石)在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:十进位制0 1 2 3 4 5 6 …二进制0 1 10 11 100 101 110 …请将二进位制10101010(二)写成十进位制数为 .参考答案考点解读①相反数②负数③0 ④0 ⑤正的⑥负的⑦大于⑧小于⑨小⑩小于⑪1 ⑫1pa⑬乘除⑭加减⑮括号内各个击破例1A题组训练 1.B 2.B 3.A 4.-2 5.1例2 >题组训练 1.C 2.D 3.C 4.D例3 原式=23-4×3+1+(2-1)-2=23-23+1+22=1+4=5.题组训练 1.D 2.B 3.14.原式=2+9-1×4+6=13.5.原式=1+2-3+2×22=1.整合集训1.C2.B3.C4.B5.A6.A7.C8.D9.D10.±211.912.-713.314.<15.7377 16.原式22217.原式3+2+3×3333+3=6.18.原式=+3=1.19.(1)∵蚂蚁从点A向右爬2个单位到达点B,∴点B所表示的数比点A所表示的数大2.∵点A表示B所表示的数为m,∴(2)原式020.C 21.C22.10 200提示:第n行第一个数为:(n+1)2-1.23.170提示:10101010(二)=1×27+0×26+1×25+0×24+1×23+0×22+1×2=128+32+8+2=170.。
初一数学知识讲解:实数的运算与大小比较_知识点总结【课前复习】 1.某天的最高气温为6°C,最低气温为-2°C,同这天的最高气温比最低气温高__________°C.3. 实数运算先算(),再算(),最后算();如果有括号,先算()里面的,同一级运算按照从()到()的顺序依次进行.4. 实数大小的比较⑴ 数轴上两个点表示的数,()的点表示的数总比()的点表示的数大. ⑴ 正数()0,负数()0,正数()负数;两个负数比较大小,绝对值大的()绝对值小的.5. -2,3,-4,-5,6这五个数中,任取两个数相乘,得的积最大的是() A.10 B.20 C.-30 D.18?6. 有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子(是正整数)来表示.有规律排列的一列数:,… (1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数??7.有一种"二十四点"的游戏,其游戏规则是:任取1至13之间的自然数四个,将这个四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于2 4.例如:对1,2,3,4,可作运算:(1+2+3)×4=24.(注意上述运算与4 ×(2+3+1)应视作相同方法的运算.现"超级英雄"栏目中有下列问题:四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算,使其结果等于24,(1)_______________________,(2)_______________________,(3)_______________________.另有四个数3,-5,7,-13,可通过运算式(4)_____________________ ,使其结果等于24.。
中考数学复习考点知识讲解与提升强化训练第02讲 实数的运算及大小比较1.实数的大小比较(1)数轴比较法:数轴上的两个数,右_边的数总大于_左__边的数; (2)代数比较法:正数>0>负数;两个负数,绝对值大的反而_小__; (3)差值比较法:①a -b >0⇔a >b ;②a -b =0⇔a =b ; ③a -b <0⇔a <b ;(4)求商比较法:若b >0,则①ab >1⇔a >b ; ②a b =1⇔a =b ;③a b <1⇔a <b ;(5)倒数比较法:若1a >1b 且a 与b 同号时,a <b ; (6)平方比较法:对于任意正实数a ,b 有a 2>b ⇔a > b. 3.非负数(1)常见非负数:|a|,a 2,a (a≥0);(2)若几个非负数的和为0,则这几个非负数同时为0. 4.实数的运算(1)零指数幂:a 0=1(a≠0); (2)负整数指数幂:a -p=1a p (a≠0);(3)去绝对值符号:|a -b|=⎩⎨⎧a -b (a>b )0 (a =b );b -a (a<b )(4)-1的奇偶次幂:(-1)n=⎩⎨⎧ 1 ,n 为偶数-1,n 为奇数;注意:正数的任何次幂都是正数,负数的奇次幂为负数,负数的偶次幂为正数. (5)实数的运算顺序是先算乘方和开方,再算_乘除,最后算_加减_,如果有括号,先算小括号,再算中括号,最后算大括号,同级运算应_从左到右_依次计算.考点1: 实数的大小比较【例题1】(2018•咸宁)写出一个比2大比3小的无理数(用含根号的式子表示) . 【答案】【解析】:∵4<5<9,∴2<<3,即为比2大比3小的无理数.故答案为.归纳:两个实数比较大小,先将两个数化简成易于比较的同类数,再进行比较. 考点2: 实数的运算【例题2】(2018·石家庄十八县大联考)嘉琪在做家庭作业时,不小心将墨汁弄倒,恰好覆盖了题目的一部分:计算:(-7)0+|1-3|+(33)-1-□+(-1)2 018. 经询问,王老师告诉题目的正确答案是1. (1)求被覆盖的这个数是多少?(2)若这个数恰好等于2tan(α-15)°,其中α为三角形一内角,求α的值. 【解析】:(1)原式=1+3-1+3-□+1=1, ∴□=1+3-1+3+1-1=2 3. (2)∵α为三角形一内角, ∴0<α<180.∴-15°<(α-15)°<165°.∵2tan(α-15)°=23,∴(α-15)°=60°.∴α=75.归纳:考查实数的运算,先分别计算出每一项的值,再根据实数混合运算的顺序进行计算,即先乘除,再加减,同级运算,按从左向右进行计算.一、选择题:1. (山东滨州1,3分)21-等于()A.1 B.﹣1 C.2 D.﹣2【答案】B.【解答】解:112-=-,故选择B .2. (江苏省扬州市,1,3分)与-2的乘积为1的数是( )A.2 B.-2 C.12D.12【答案】D【解答】解:与-2乘积为1的数就是-2的倒数,等于12,故选择D .3. (江苏省淮安市,6,371+的值( ).A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【答案】C.【解答】解:∵4<7<9 479即27<3 ∴2+17+1<3+1 ∴37+1<4,故选择C.4. (2018•福建)在实数|﹣3|,﹣2,0,π中,最小的数是( ) A .|﹣3| B .﹣2 C .0D .π【答案】B【解答】解:在实数|﹣3|,﹣2,0,π中, |﹣3|=3,则﹣2<0<|﹣3|<π, 故最小的数是:﹣2. 故选:B .5. (江苏泰州,6,3分)实数a 、b 满足044122=++++b ab a a ,则a b 的值为 A .2 B .21 C .−2 D .−21 【答案】B【解答】解:由题意:2(2)0a b ++=,所以1020a a b +=⎧⎨+=⎩,解之得12a b =-⎧⎨=⎩,所以1122a b -==,故选择B . 二、填空题:6. ( 河南省,9,3分)计算:._________8)2(30=-- 【答案】-1【解答】解:(-2)0 -38=1-2 = -1,故答案为-1 .7. (2019•浙江嘉兴•4分)数轴上有两个实数a ,b ,且a >0,b <0,a+b <0,则四个数a ,b ,﹣a ,﹣b 的大小关系为 (用“<”号连接). 【答案】b <﹣a <a <﹣b【解析】解:∵a >0,b <0,a+b <0, ∴|b|>a ,∴﹣b >a ,b <﹣a ,∴四个数a ,b ,﹣a ,﹣b 的大小关系为b <﹣a <a <﹣b . 故答案为:b <﹣a <a <﹣b8. ( 湖北省十堰市,12,3分)计算:|38-4|-(21)-2=______________【答案】-2【解答】解:(21)-2=|2-4|-211()2=|-2|-4=-2 . 9. (山东滨州18,4分)下列式子:22131=+⨯ 28197=+⨯ 22612725=+⨯ 28018179=+⨯ ……可猜想第个式子为 . 【答案】201620162016(32)3131-⨯+=-【解答】解:观察每个式子的第二个数依次是3,9,27,81这些数分别是13,23,33,43,因此第个式子的第2个数是20163,每个式子的第一个数总是比第2个数小2,因此第个式子的第1个数是201632-,每个式子的最后一个数总比第2个数小1,因此第个式子的最后一个数是201631-,所以第个式子是201620162016(32)3131-⨯+=-. 故答案为:201620162016(32)3131-⨯+=- 三、解答题:10. (2019•云南•6分)计算:1021453--+---)()(π.【分析】原式利用乘方,零指数幂、算术平方根、负整数指数幂法则计算即可求出值.【解析】解:原式=9+1-2-1=7.11. (广东茂名,16,7分)计算:(-1)+8-2--(π-3.14)0.【提示】本题考查了实数的运算,解题的关键是掌握乘方的意义、二次根式的化简、绝对值的意义、零整数指数幂的值和同类二次根式的合并法则.先分别计算(-1)、8、2-、(π-3.14)0的值,然后再进行实数、二次根式加减运算. 【解答】解:原式=1+22-2-1=22-2= 2 . 12. (江苏省扬州市,19(1),4分)计算:21()126cos303;【提示】本题考查了实数的混合运算,解题的关键是正确化简负整数指数幂、锐角三角函数值、二次根式等运算.本题先逐个化简负整数指数幂、锐角三角函数值、二次根式,再按照运算顺序计算. 【解答】解:原式=9﹣23+6×32=9﹣23+33=9+3; 13. (江苏省宿迁市,17,6分)计算:4)12(330sin 201--++︒-【提示】根据特殊角的三角函数值,负指数、零指数幂的运算及算术平方根分别计算即可.【解答】解:原式=2×111-223++=31.14. (2019•甘肃武威•6分)计算:(﹣2)2﹣|﹣2|﹣2cos45°+(3﹣π)0【分析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可. 【解答】解:(﹣2)2﹣|﹣2|﹣2cos45°+(3﹣π)0, =4﹣(2﹣)﹣2×+1,=4﹣2+﹣+1, =3.。