Drude模型
- 格式:ppt
- 大小:901.00 KB
- 文档页数:44
Drude模型简介•最简单的金属模型–只考虑到电子的运动学特性•最成功的金属模型之一–为什么这么简单的模型会获得巨大的成功?•在量子力学与原子物理学诞生之前–1897年,J.J. Thomson发现电子–1900年,Drude提出金属的电导和热导理论,Annalen de Physik1, 566 (1900), ibid. 3, 369 (1900).电导率电子气模型虽然金属中至少有两种带电粒子,离子与电子,Drude 假定参与导电作的仅是其中的一种。
传导电子的来源:价电子与芯电子。
Drude模型的基本假设忽略电子与电子之间的相互作用(独立电子近似),忽略电子与离子之间的相互作用(自由电子近似),电子只受到均匀外电场的作用;(Kinetic theory) 电子受到的碰撞是瞬时的,来自电子与杂质原子之间的散射;电子在单位时间内散射的几率是1/τ,τ是电子驰豫时间(relaxation time / life time);电子在各种散射下达到热力学平衡,即,电子在碰撞之后的状态是随机的,由热力学平衡决定其分布。
=frequency) (cyclotron 为回旋频率令mceHc ω1nec仅依赖于载流子密度和电荷电导的实部和虚部?Drude模型的推广•经典力学→量子力学:Sommerfeld模型•自由电子近似→考虑电子-离子的相互作用:能带理论•独立电子近似→电子-电子相互作用:金属的Fermi-Liquid理论•电子气的局域热平衡(local thermal equilibrium)→小尺度、非平衡特性:介观物理(mesoscopic physics)。
D r u d e 模型一. Drude 模型的提出1897年在研究放电管辉光放电实验中的阴极射线时,Thomson 是通过将组成阴极射线的电子当作经典粒子而最先发现了电子的存在。
在发现电子后的最初一段时期内,对原子结构的研究尚处于探索之中,还没有认识到电子等微观粒子运动的独特本质。
因此,在当时还不具备解释金属中的这些传导电子是如何形成以及怎么运动这两个基本问题的理论基础。
1900年D.Drude 受气体分子运动论的启发提出了金属中经典的自由电子理论即Drude 模型,即认为金属中存在有自由电子气体,并用这一理论来解释金属材料的导电、导热等宏观性能。
二. Drude 模型的四个基本假设1.独立电子近似近似认为电子的运动是彼此独立的,就象孤立的单个电子一样,故又称为单电子近似。
2.自由电子近似用经典粒子的碰撞图象来简化电子与离子实之间复杂的相互作用近似认为单个电子在与离子实的相继两次碰撞之间作自由运动,故金属中的传导电子又常称为自由电子3.弛豫时间近似在dt 时间内电子与离子实之间碰撞的几率应为dt/τ。
电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。
每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。
4.经典近似在与离子实的相继两次碰撞之间电子的运动遵循Newton 运动定律碰撞前后电子遵循Boltzmann 统计分布。
三.Drude 模型的成就自由电子气体+波尔兹曼统计?欧姆定律○虽然金属至少有两种带电粒子,离子与电子,Drude 假设参与导电作用的仅是其中一种。
○传导电子的来源:价电子与芯电子。
◎首先,来解释金属的导电现象并导出电导率。
电子:平均速度为经典近似假设:热运动遵循Maxwell 速度分布律,故有 ◎若与离子实相继两次碰撞之间的时间间隔为t ,则有 因此有 表明:在外电场作用下金属中的自由电子将形成与外电场方向相反的宏观定向运动,于是就形成了电流◎由此可得到金属材料电导率的微观表达式四.Drude 模型的不足以电子的平均自由程为例,来说明Drude 电子模型所遇到的根本性困难。
金属自由电子气理论特鲁德电子气模型:特鲁德提出了第一个固体微观理论利用微观概念计算宏观实验观测量自由电子气+波尔兹曼统计→欧姆定律 电子平均自由程+分子运动论→电子的热导率特鲁德(Paul Drude )模型的基本假设11.自由电子近似:传导电子由原子的价电子提供,离子实对电子的作用可以忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。
2.独立电子近似:电子与电子之间的相互作用可以忽略不计。
外电场为零时,忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能带论中证明是错误的。
)特鲁德(Paul Drude )模型的基本假设23.玻尔兹曼统计:自由电子服从玻尔兹曼统计。
4.弛豫时间近似:电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。
每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。
特鲁德模型的成功之处——成功解释了欧姆定律欧姆定律E j ρ=(或j E σ=),其中E 为外加电场强度、ρ为电阻率、j 为电流密度。
202()1I j nev ne S j E eEt m v v E j m ne eE m v m τρτστρ⎧==-⎪⎧=⎪⎪-⎪⎪=+⇒⇒=⎨⎨⎪⎪==⎪⎪⎩=-⎪⎩2.经典模型的另一困难:传导电子的热容根据理想气体模型,一个自由粒子的平均热量为3/2B k T ,故333(),222A B e U U N k T RT C R T ∂====∂33/29v ph e C C C R R =+=+≈(卡/molK.)但金属在高温时实验值只有6(卡/molK.),即3v C R ≈。
4.2 Sommerfeld 的自由电子论1925年:泡利不相容原理 1926年:费米—狄拉克量子统计 1927年:索末菲半经典电子论抛弃了特鲁德模型中的玻尔兹曼统计,认为电子气服从费米—狄拉克量子统计得出了费米能级,费米面等重要概念,并成功地解决了电子比热比经典值小等经典模型所无法解释的问题。
1 简述Drude 模型的基本思想把金属中的电子看做气体,金属由可以自由运动的电子和固定不动的离子实两部分组成,这些可以自由运动的电子使金属导电的成分。
将自由电子看做带电的小硬球,它们的运动遵循牛顿第二定律。
应用独立自由电子气假设:在忽略电子-电子和电子-离子间电磁相互作用(内场)的情况下,它们在金属中运动或并发生碰撞。
2 简述Drude 模型的三个基本假设并解释 独立电子近似:电子与电子无相互作用自由电子近似:除碰撞的瞬间外,电子与离子无相互作用弛豫时间近似:一给定的电子在单位时间内受一次碰撞的几率为1/τ 3在Drude 模型下,固体如何建立热平衡 碰撞前后速度无关联 碰撞后获得的速度方向随机 速率与碰撞后的温度相适应4 Drude 模型中对金属导电率的表达式为:mnq τσ2=5 在自由电子气模型中,由能量均分定理知在特定温度T 下电子的动能为: 1.5K B T6 在Drude 模型当中,按照理想气体理论,自由电子气的密度为n ·cm -3,比Cv= 1.5 nK B7 1853年维德曼和弗兰兹在研究金属性质时发现一个定律,即在给定温度下金属的 导热率 和 电导率 的比值为常数。
8 简述Drude 模型的不足之处?电子对比热的贡献与温度无关,被严重高估(210) 对电子速度 2v 低估(210)误认磁化率与温度成反比,而实际无关 什么决定传到电子的数目?价电子? 导体?绝缘体?半导体?他之所以解释 维德曼-弗兰兹 成功,是因为对比热的高估正好抵消对速度的低估 9 对于自由电子气体,系统的化学势随温度的增大而 降低 。
10 请给出Fermi-Dirac 统计分布中,温度T 下电子的能量分布函数,并进一步解释电子能量分布的特点。
11)(/)('+=-TK E E FD B F eE f在温度T 下,能量为E 的状态被占据的几率。
式中EF 是电子的化学势,是温度的函数。
当温度为零时,电子最高占据状态能量,称为费米能级。
Drude模型一.D rude模型的提出1897年在研究放电管辉光放电实验中的阴极射线时,Thomson是通过将组成阴极射线的电子当作经典粒子而最先发现了电子的存在。
在发现电子后的最初一段时期内,对原子结构的研究尚处于探索之中,还没有认识到电子等微观粒子运动的独特本质。
因此,在当时还不具备解释金属中的这些传导电子是如何形成以及怎么运动这两个基本问题的理论基础。
1900年D.Drude 受气体分子运动论的启发提出了金属中经典的自由电子理论即Drude模型,即认为金属中存在有自由电子气体,并用这一理论来解释金属材料的导电、导热等宏观性能。
二.D rude模型的四个基本假设1.独立电子近似近似认为电子的运动是彼此独立的,就象孤立的单个电子一样,故又称为单电子近似。
2.自由电子近似用经典粒子的碰撞图象来简化电子与离子实之间复杂的相互作用近似认为单个电子在与离子实的相继两次碰撞之间作自由运动,故金属中的传导电子又常称为自由电子3.弛豫时间近似在dt时间内电子与离子实之间碰撞的几率应为dt/τ。
电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。
每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。
4.经典近似在与离子实的相继两次碰撞之间电子的运动遵循Newton 运动定律碰撞前后电子遵循B oltzmann 统计分布。
三.Drude 模型的成就自由电子气体+波尔兹曼统计欧姆定律○虽然金属至少有两种带电粒子,离子与电子,Drude 假设参与导电作用的仅是其中一种。
○传导电子的来源:价电子与芯电子。
◎首先,来解释金属的导电现象并导出电导率。
电子:平均速度为 经典近似假设:热运动遵循Maxwell 速度分布律,故有 ◎若与离子实相继两次碰撞之间的时间间隔为t ,则有因此有 表明:在外电场作用下金属中的自由电子将形成与外电场方向相反的宏观定向运动,于是就形成了电流e E r −−→− e T v v v r r r+=0=T v r m E e v e e e r r -=D e e e e e V E m e t m E e v r r r r =-=⋅-=τe e D E m e V v v r r τ-==e e e D e e E m e n V n e J r r v ⋅=-=τ2)(◎由此可得到金属材料电导率的微观表达式四.Drude 模型的不足以电子的平均自由程为例,来说明Drude 电子模型所遇到的根本性困难。