大学物理2-1质点系的内力和外力 质心 质心运动定理
- 格式:ppt
- 大小:637.00 KB
- 文档页数:6
Ch2 运动的守恒量和守恒定律§2-1质点系的内力外力质心质心运动定理§2-1 质心质心运动定理动量守恒定律1、质点系的内力和外力质心质心的位置例:任意三角形的每个顶点有一质量m 的小球,求/r m r M =∑G Gz yOΔm ir微元分割!例3-7 求腰长为a等腰直角三角形均匀薄板的质心位置。
3、质心运动定理质心运动定理G G G G G d v1 G m 1 a1 = m 1 = F1 外 + f 12 + f 13 + " + f 1 n , dt G G G G G d v2 G m 2a2 = m 2 = F2 外 + f 21 + f 23 + " + f 2 n , dt G G G G G d vn G = Fn外 + f n 1 + f n 2 + " + f n ( n − 1) , m nan = m n dt G G G G 由于内力 f12 + f 21 = 0," , f in + f ni = 0, ...由牛顿第二定律:""∴G ∑ m i ai =G ∑ F i外11/18中国矿业大学(北京)质心运动定理G ∑ m i ai =G ac =G ∑ F i外 G ∑ m i aiG ac =G ∑ Fi外∑m∑m=G ∑ Fi外 Mi∑G G Fi外 = M a ci质心运 动定理不管物体质量如何分布,也不管外力作用在物体 什么位置上,质心的运动就象是物体的质量全都集 中于此,而且所有外力也都集中作用其上的一个质 点的运动一样。
12/18 中国矿业大学(北京)补充例题1例1 质量为m1 和m2的两个小孩,在光滑水平冰面上用 绳彼此拉对方。
开始时静止,相距为l。
问他们将在何 处相遇?m2m1Ox20x10x13/18中国矿业大学(北京)补充例题1解:可直接由质心运动定律求出。
初始静止时,小孩系统的质 心位置: m 1 x 10 + m 2 x 20 1 xc = m1 + m 2m2C xcx10m1∑G G G Fi外 = M a c ⇒ a c = 0O x20x质心位置,在过程中应该始终保持静止。
2.2 课后习题详解一、复习思考题§2-1 质点系的内力和外力质心质心运动定理2-1-1 一物体能否有质心而无重心?试说明之.答:一物体可能有质心而无重心.(1)质心是表征物体系统质量分布的一个几何点,任何物体都有其质量分布,因此物体都有质心.(2)重心是地球对物体重力的作用点.在失重环境中,物体不受重力作用,重心就没有意义.2-1-2 人体的质心是否固定在体内?能否从体内移到体外?答:(1)质心是从平均意义上来表示物体的质量分布中心.它的位置由物体的质量分布来决定.所以,当物体质量改变时,质心的位置可以不固定.(2)质心可以由体内移到体外.人体在直立时,质心在体内,如果人体弯曲,就可把质心从体内移到体外.2-1-3 有人说:“质心是质量集中之处,因此在质心处必定要有质量”.这话对吗?答:(1)说法不对.(2)质心是描述物体系统质量分布的一个几何点,并非质量集中之处,质心所在处不一定有质量分布.如:质量均匀分布的空心球,其质心在球心,但质量却均匀分布于球面上.§2-2 动量定理动量守恒定律2-2-1 能否利用装在小船上的风扇扇动空气使小船前进?答:这是可以的.(1)假定风扇固定在小船上.当风扇不断地向船尾扇动空气时,风扇同时也受到了空气的反作用力.(2)该反作用力是向着船头的、并通过风扇作用于船身.根据动量定理,该力持续作用时会使船向前运动的动量获得增量.(3)当该作用力大于船向前运动时所受的阻力时,小船就可向前运动了.2-2-2 在地面的上空停着一气球,气球下面吊着软梯,梯上站着一个人.当这人沿软梯往上爬时,气球是否运动?答:选择人、气球和软梯组成的系统为研究对象.(1)当人相对软梯静止时,系统所受合力等于零.系统的动量在垂直方向上等于零并守恒,系统的质心将保持原有的静止状态不变.(2)当人沿软梯往上爬时,人与软梯间的相互作用力是内力,系统所受合外力仍为零,总动量恒定不变.系统的质心位置仍保持不变.根据动量守恒定律可知,当人沿软梯往上爬时,气球和软梯将向下运动.2-2-3 对于变质量系统,能否应用?为什么?答:(1)变质量系统的问题属于质点系的动力学问题,牛顿第二定律依然适用,但式中mν应理解为质点系的总动量.(2)这类问题的代表是发射中的火箭、下落中的雨滴等问题,其研究对象一般是主体的运动规律,对于运动过程中所吸附或排出的那一部分质量,在变化前后与运动主体有不同的运动速度,所以用来处理主体的运动是不正确的.(3)一般从质点系的动量定理的角度入手,由系统的动量定理可得式中m 为运动主体的质量,为附加物在吸附或排出后相对于运动主体的速度.上式变形得:该式是指主体的动量变化率等于主体所受的外力与单位时间内附加物变化的动量的矢量和.2-2-4 物体m 被放在斜面m'上,如把m 与m'看成一个系统,问在下列何种情形下,系统的水平方向分动量是守恒的?(1)m 与m'间无摩擦,而m'与地面间有摩擦;(2)m 与m'间有摩擦,而m'与地面间无摩擦;(3)两处都没有摩擦;(4)两处都有摩擦.图2-1-1答:如图2-1-1所示,物体与斜面视为一个系统,对系统进行受力分析:物体与斜面受到重力作用,地面对斜面有支持力,地面与斜面之间存在摩擦力.其中物体与斜面间的摩擦力和支持力均是系统的内力.当系统在水平方向的合外力为零时,系统的水平方向分动量守恒.讨论如下:(1)m'与地面间有摩擦时,系统在水平方向的合外力不为零,故水平方向的分动量不守恒.(2)m'与地面间无摩擦时,系统的水平方向的分动量守恒.(3)与(2)结论一致,系统的水平方向的分动量守恒.(4)与(1)结论一致,系统的水平方向的分动量不守恒.2-2-5 用锤压钉,很难把钉压入木块,如用锤击钉,钉就很容易进入木块,这是为什么?答:钉子打入木块,主要是钉子与木块之间的摩擦力小于钉子所受的作用力.(1)锤压钉子的压力一般不大,当钉子所受的摩擦力大于锤对钉子的压力时,钉子就无法进入木块,,因此难以把钉压入木块.(2)锤击钉子时,具有一定的动量,打击到钉子后,动量变成零.根据动量定理和牛顿第三定律,由于打击时间很短,钉子受到平均冲力很大,因此很容易克服木块的阻力而进入木块.2-2-6 如图2-1-2所示,用细线把球挂起来,球下系一同样的细线.拉球下细线,逐渐加大力量,哪段细线先断?为什么?如用较大力量突然拉球下细线,哪段细线先断?为什么?图2-1-2答:任何细线只能承受一定张力,当给予细线的拉力超过它所能承受的极限张力,线就会断掉.如图示的情况:(1)当逐渐加大力量拉球下线时:在任一时刻,线中的张力与拉力达到平衡,而球上面线中的张力等于拉力和球的重力.因此,在渐渐增大拉力的过程中,球上面的线中的张力首先超过其极限张力会先断.(2)当用较大的力量突然拉球下线时:由动量定理可知,作用在线上的拉力就是冲力,由于力的作用时间较短,冲力还未传到球上面的线前,球下面的线就已经断了.2-2-7 有两只船与堤岸的距离相同,为什么从小船跳上岸比较难,而从大船跳上岸却比较容易?答:(1)选择人和船作为一个系统,并将人和船视为质点,忽略水的阻力.人以水平速度跳出时,系统在水平方向的动量分量守恒,即(2)由上式可知,大船没有小船后退厉害,人与小船的作用时间比较短了,在作用力相等时,所得的冲量就比较小了.因此人用同样大的力自小船上前跳的速度比自大船上前跳时的小,所以从小船跳上岸比从大船要困难.§2-3 功 动能 动能定理2-3-1 物体可否只具有机械能而无动量?一物体可否只有动量而无机械能?试举例说明.答:一个物体的动能和动量与相对于某参考系的速度有关;而物体的势能则与势能零点的选取有关.机械能是动能和势能的代数和.(1)一物体可能只具有机械能而无动量.如:①静止在离地面h 处的物体,它的动能和动量均为零.不将势能零点选在离地面高h 处时,物体就具有势能.因此,物体具有机械能而无动量.②弹簧振子在水平面内振动,在位移最大处,速度等于零,动能和动量也等于零.如将弹簧的原长处作为弹性势能的零点,那么此时弹簧振子具有弹性势能,其机械能不为零而动量为零.(2)一物体也可能只有动量而无机械能.如:物体离地面h 处自由下落至地面时,物体速度不为零,那么物体具有动量和动能.如将重力势能的零点选定在物体下落处,则到达地面时具有重力势能-mgh .由于开。
《大学物理Ⅰ》教学大纲课程名称:大学物理Ⅰ课程编号:课程类别:专业基础课/必修课学时/学分:60学时/3学分开设学期:第二学期开设单位:物理与机电工程学院适用专业:电气工程及其自动化说明一、课程性质与说明1.课程性质专业基础课/必修课2.课程说明物理学的研究对象具有极大的普遍性,它的基本理论渗透在自然科学的一切领域,广泛地应用于生产技术的各个部门,它是自然科学和工程技术的基础,也是许多高新技术发展的源泉和先导。
因此,《大学物理》课程是理工科各专业学生的一门重要必修基础课。
以物理学为基础的大学物理课程主要包括:力学、振动和波动、热学、电磁学、光学、狭义相对论基础、量子物理基础等基础知识,以及它们在现代科学技术中的应用等。
通过大学物理课程的教学,应为学生进一步学习打下坚实的物理基础。
在教学过程中,要注意培养学生树立科学的自然观和辨证唯物主义世界观,培养学生科学思维和分析解决问题的能力,以及学生的探索精神与创新意识。
二、教学目标1. 学习和理解物理学观察、分析和解决问题的思想方法,培养、提高学生的科学素质,激发对科学的求知欲望及创新精神。
2. 系统地掌握必要的物理学基础知识及其基本规律,能运用经典物理学的理论对力、热、电、磁、光等学科的基本问题作初步的解释、分析和处理。
3. 对物理学的基本概念、基本理论、基本方法能够有比较全面和系统的认识和正确的理解,将微积分知识具体地、灵活地应用于物理问题之中,培养学生分析、解决实际问题的能力,并为后继课程的学习作必要的知识准备。
4. 了解各种理想物理模型,并能够根据物理概念、问题的性质和需要,抓住主要因素,略去次要因素,对所研究的对象进行合理的简化。
5. 了解近代物理学的有关基础知识。
三、学时分配表建议本课程以课堂讲授为主,采用启发式教学法。
教学中可充分利用录像、演示实验及多媒体等手段。
为加强学生对所学内容的理解,掌握解题方法、技巧,教师应推荐相应的参考书,课后留作业,按时辅导答疑。
第五章质心刚体质心运动定理ca m F v v =合外质点系的质心加速度由合外力确定,与内力无关。
牛顿定律的独特性质:如果它在某一小尺度范围内是正确的,那么在大尺度范围内也将是正确的。
特殊的质点系——刚体m1l5.1.2 质点系动力学量的分解质心参考系:随质心一起运动的平动参考系,简称质心系。
在质心系中质心静止==c c v r v v常矢量质心系中的运动图象各质点从质心四面散开,或向质心八方汇聚。
质心成为一个运动中心,运动时时刻刻是“各向同性的”。
质点系的动量质点系的动量等于质心的动量c p p v v =质点系相对质心的动量总是为零0=′=′∑ii i v m p vv 质点系中各质点m i 相对质心的运动),(i i v r ′′v v m iO Ci r ′v ir v Cr v 在任一参考系中质点系的动量、动能和角动量与质心运动的关系核反应中的资用能质点系的角动量i c i i c i v v v r r r ′+=′+=v v v v v v ,∑×=iii i v m r L v v v ∑∑∑∑′×′+×⎟⎠⎞⎜⎝⎛′+⎟⎠⎞⎜⎝⎛′×+⎟⎠⎞⎜⎝⎛×=i i i i c i i i i i i c c i i c v m r v r m v m r v m r L v v v v v v v v v ∑′×′=′×=′+=ii i i c c c c v m r L v m r L L L L vv v v v v v v v , ,质点系的角动量可分解成质心角动量与质点系相对质心的角动量之和同一参考点质心为参考点m iOCi r ′v ir v Cr v 其中5.1.3 质心参考系质心系一般是非惯性系,引入平移惯性力ci a m v −在质心系中质点系的动能定理和角动量定理质心系中质点系的动量恒为零,质点系的动量定理不必考虑。