F (2)若AB+CD=2 3 +2,求AB.
D
A
E
B
目录
01 直角三角形性质与判定 02 勾股定理
典型例题
【例4】“赵爽弦图”奇妙地利用面积关系证明了勾股定理,是我 国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直 角三角形和一个小正方形拼成的一个大正方形.设直角三角形较
长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,
D.②③
2.如图,Rt△ABC中,∠B=90º,AB=4,BC=3,AC的垂直平分线DE分别
交AB,AC于D,E两点,则CD的长为_2_85__.
A
E D
B
C
当堂训练
3.如图,有两棵树高10米,另一棵高4米,两树相距8米. 一只小鸟从一棵树的树梢飞到另一棵树的树梢,小鸟 至飞少行飞的行距(离不)B可能是( A ) A.8米 B.10米 C.12米 D.14米
判定
定义法:有一个角是90º的三角形是直角三角形. 有一条边上的中线是这边的一半的三角形是直角三角形.
2.等面积法求斜边上的高:如图,S=0.5ab=0.5ch,
其中a,b为两个直角边,c为斜边,h为斜边上的高.
a
b
h
c
当堂训练
1.如图,在Rt△ABC中,∠ACB=90º,CD为AB边上的高,CE为AB边上
连接BE,ED,BD.若∠BAD=58º,则∠EBD的度数为_3_2__度.
6.在直角三角形ABC中,∠ACB=90º,D、E是边AB上两点,且CE所在
直线垂直平分线段AD,CD平分∠BCE,BC= 2 3,则AB=_4__.
D
A
E
C
A E D