结构动力学2
- 格式:ppt
- 大小:3.08 MB
- 文档页数:2
例题E2-1 如图E2-1所示,一个单层建筑理想化为刚性大梁支承在无重的柱子上。
为了计算此结构的动力特性,对这个体系进行了自由振动试验。
试验中用液压千斤顶在体系的顶部(也即刚性大梁处)使其产生侧向位移,然后突然释放使结构产生振动。
在千斤顶工作时观察到,为了使大梁产生0.20in[0.508cm]位移需要施加20 kips[9 072 kgf]。
在产生初位移后突然释放,第一个往复摆动的最大位移仅为0.16 in[0. 406 cm],而位移循环的周期为1.4 s。
从这些数据可以确定以下一些动力特性:(1)大梁的有效重量;(2)无阻尼振动频率;(3)阻尼特性;(4)六周后的振幅。
2- 1图E2-1所示建筑物的重量W为200 kips,从位移为1.2 in(t=0时)处突然释放,使其产生自由振动。
如果t=0. 64 s时往复摆动的最大位移为0.86 in,试求(a)侧移刚度k;(b)阻尼比ξ;(c)阻尼系数c。
2-2 假设图2- la 所示结构的质量和刚度为:m= kips ·s 2/in ,k=40 kips/in 。
如果体系在初始条件in 7.0)0(=υ、in/s 6.5)0(=υ&时产生自由振动,试求t=1.0s 时的位移及速度。
假设:(a) c=0(无阻尼体系); (b) c=2.8 kips ·s/in 。
2-3 假设图2- 1a 所示结构的质量和刚度为:m=5 kips ·s 2/in ,k= 20 kips/in ,且不考虑阻尼。
如果初始条件in 8.1)0(=υ,而t=1.2 s 时的位移仍然为1.8 in ,试求:(a) t=2.4 s 时的位移; (b)自由振动的振幅ρ。
例题E3-1 一种便携式谐振荷载激振器,为在现场测量结构的动力特性提供了一种有效的手段。
用此激振器对结构施以两种不同频率的荷载,并分别测出每种情况下结构反应的幅值与相位。
由此可以确定单自由度体系的质量、刚度和阻尼比。
第二章 分析动力学基础2.1 基本概念 2.1.1 约束• 定义:对非自由系各质点的位置和速度所加的几何或 运动学的限制。
N 个质点的约束方程: → → 为mi 的位置向量及速度 **弹簧支座不是约束。
• 约束的分类:*稳定(不含t → 左图) 与非稳定(含t → 右图)* 完整(不含 → )几何约束(有限约束) 与非完整(含 → )运动约束(微分约束) • 约束条件:zc=a (水平面绝对光滑)一个完整约束 *水平面粗糙,仅滚动无滑动,A 点速度为零 。
两个完整约束*若为刚性圆球,三个约束(A点两个水平方向速度为零,可证明约束微分方程不能积分成有限形式)非完整约束单向(约束方程为不等式):柔索 与双向(约束方程为等式):刚杆 工程力学中研究对象:稳定的、完整的、双 向约束• 质点系约束方程:→ (N :质点数;M 约束数) 2.1.2 自由度与广义坐标 广义坐标定义:能决定体系几何位置的、彼此独立的量广义坐标个数→空间质点系:n=3N-k;平面质点系: n=2N-k0),,,,,,(11=⋅⋅⋅⋅⋅⋅N N r r r r t f 0),,(=i i r r t f i i r r ,0),(=i i rr f 0),,(=i i rr t f Ai r0),(=i r t f i r 0),,(=i i rr t f ϕϕa x a x v C C A =⇒=−=)(0积分 lr ≤l r =0),,(1=⋅⋅⋅N k r r f )~1;~1(0)(M k N i r f i k ===x双连刚杆双质点系的约束方程:广义坐标数:广义坐标:独立参数→角度→ 振型等(见下页) 梁的挠度曲线用三角级数表示: 广义坐标→*自由度定义:在固定时刻,约束许可条件下能自由变更的 独立的坐标数目(对完整约束=广义坐标数)• 自由度数→空间质点系:n=3N-k 平面质点系:n=2N-k (N :质点数;k: 约束数) 非完整约束:(广义坐标数>系统自由度数)2.1.3 功的定义元功:A →B 过程中力作的功:对摩擦传动轮的例,由于力未移动,位移=? • 功的新定义:(传动齿轮)• 功率:2.1.4 有势力和体系的势能有势力:(1)大小和方向只决定于体系质点的位置(2)体系从位置A 移动到位置B ,力作功只决定于位置而与路径无关取体系的任意位置为“零位置O ”,从位置A 移动到零位置O 各力作的功为体系在位置A 时的势能UA(位能)。