生物统计学基础-基本概念与数据处理共81页文档
- 格式:ppt
- 大小:6.68 MB
- 文档页数:30
是以概率理论为基础,研究生命科学中随机现象规律性的应用数学科学。
涉及到医学科学研究的设计、资料搜集、归纳、分析与解释的一门应用性基础学科、二、科学研究的基本程序1、提出一个欲待研究的问题:2、科学研究设计:专业设计、统计学设计:究对象,拟定研究因素及其分配,如何执行随机、对照与重复的统计学原则,如何观察与度量效应,以及数据收集、整理与分析的方法,通过合理的、系统的安排,达到控制系统误差,以尽可能少的资源消耗(最小的人力、物力、财力和时间)获取准确可靠的信息资料及可信的结论,使效益最大化。
3、获取试验与观察的资料,又称为搜集资料4、数据审核与计算机录入5、分析资料进行检测与描述。
(confidence interval)估计与统计学假设检验(hypothesis test)。
统计学分析过程按变量的多寡可分为单变量分析与多重变量分析。
6、分析结果的合理解释(Explication of results):研究中应注意的问题1、统计学结论的正确与否取决于统计学分析数据的真实性、准确性以及研究样本对研究总体的代表性。
2、尽可能地控制系统误差是统计分析数据真实性、准确性的保证。
3、随机化抽样是确保样本数据对研究总体具有代表性的重要过程。
,个体的许多属性(如年龄、性别、血浆胆固醇等)存在变异性,统计学上将反映个体简称变量; 针对不同类型的属性,需采用不同类型的变量,因而产生不同类型的资料。
根据研究目的所确定的具有相同性质的观察单位的集合成为总体(母体)。
从同一总体中通过随机化过程抽取的部分观察单位称为样本(子样)。
对照组的过程。
体的参数不等,或多个样本的统计量存在差异性称为抽样误差。
A的发生概率记为P(A)。
概率的取值在0 到1之间,若P=1或P=0的事件称为必然事件,若0<P<1 的事件为随机事件。
概率接近于0(如P<0.05)的事件称为小概率事件。
μ表示总体均数,σ表示总体标准差,π表示总体率。
第一章概论一、什么是生物统计学生物统计学主要内容和作用1、生物统计学是数理统计在生物学研究中的应用,它是应用数理统计的原理,运用统计方法来认识、分析、推断和解释生命过程中的各种现象和试验调查资料的科学。
属于生物数学的范畴2、主要内容基本原则对比设计试验设计方案制定随机区组设计常用试验设计方法裂区设计资料的搜集和整理拉丁方设计、正交设计统计分析数据特征数的计算统计推断、方差分析协方差分析、回归和相关分析主成分分析、聚类分析3、生物统计学的基本作用:(1)提供整理和描述数据资料的科学方法,确定某些性状和特征的数量特征(2)运用显著检验,判断试验结果的可靠性或可行性(3)提供由样本推断总体的方法(4)提供试验设计的一些重要原则二、解释概念:总体、个体、样本、变量、参数、统计数、效应、试验误差总体:具有相同性质或属性的个体所组成的集合称为总体,它是指研究对象的全体;个体:组成总体的基本单元称为个体样本:从总体中抽出若干个体所构成的集合称为样本变量:变量,或变数,指相同性质的事物间表现差异性或差异特征的数据参数:描述总体特征的数量称为参数,也称参量统计数:描述样本特征的数量称为统计数,也称统计量效应:通过施加试验处理,引起试验差异的作用称为效应试验误差:误差也称为实验误差,是指观测值偏离真值的差异,可分为随机误差和系统误差三、准确性与精确性有何区别准确性,也叫准确度,指在调查或试验中某一试验指标或性状的观测值与其真值接近的程度。
精确性,也叫精确度,指调查或试验中同一试验指标或性状的重复观测值彼此接近的程度。
准确性反应测量值与真值符合程度的大小,而精确性则是反映多次测定值的变异程度。
(具体在课本第7页)第二章样本统计量与次数分布一、算数平均数与加权平均数形式上有何不同为什么说它们的实质是一致的1. 算术平均数定义:总体或样本资料中所有观测数的总和除以观测数的个数所得的商,简称平均数、均数或均值直接计算法或减去(加上)常数法加权平均数2、实质是一样的,是因为它们都反映的一组数据的平均水平二、为了评价两种药物对于小鼠体重的影响,随机从两组各抽出20只测定其体重(g),结果如下:药物A处理组: 15, 15, 23, 24, 26, 25, 22, 19, 15, 17, 15, 20, 23, 21, 19, 22, 26, 21, 18, 23药物B处理组: 31, 28, 26, 31, 28, 34, 32, 29, 32, 35, 28, 29, 33, 30, 34, 32, 36, 38, 40, 38试从平均数、极差、标准差、变异系数几个指标评价两种药物对于小鼠体重的影响,并给出结论。
生物统计学的一些基本概念一、几何平均数:资料中有n个观测值,其乘积开n次方所得的数值,称为几何平均数。
几何平均数适用于变量x为对数正态分布,经对数转换后呈正态分布的资料。
二、变异性--度量变量的离散性,常用指标有:极差、标准差、方差和变异系等。
极差:最大值与最小值之差,一般用R表示。
方差:离均差平方和除以样本容量n,变异系数:将样本标准差除以平均数,得出的百分比。
变异系数是样本变量的相对变异量,是不带单位的纯数。
用变异系数可以比较不同样本相对变异程度的大小。
三、常见的理论分布(一)离散型变量分布1、二项分布“非此即彼”两种情况,彼此构成对立事件,其概率分布称为二项分布。
2、泊松分布在生物学研究中,有许多事件出现的概率很小,而样本容量或试验次数却往往很大,即有很小的p值和很大的n值,这时,二项分布就变成另一种特殊的分布,即泊松分布。
二项分布当p<0.1和np<5时,可用泊松分布来近似。
(二)连续型变量分布3、正态分布正态分布又称高斯分布,是一种连续型随机变量的概率分布。
四、统计推断1、统计推断--从样本到总体统计推断主要包括假设检验和参数估计两个方面。
它们的任务是分析误差产生的原因,确定差异的性质,排除误差干扰,从而对总体的特征做出正确的判断。
假设检验:通常把概率等于或小于0.05叫做差异显著标准,或差异显著水平概率,等于或小于0.01叫做差异极显著标准。
一般达到显著水平,则在资料右上方标以“*”,差异达到极显著水平,则在资料右上方标以“**”2、方差的同质性检验方差的同质性,又称为方差齐性(homogeneity of variance),就是指各个总体的方差是相同的。
方差的同质性检验(homogeneity test),就是要从各样本的方差来推断其总体方差是否相同。
S2为样本方差;σ2为总体方差;k为样本数适合性检验(compatibility test)是比较观测值与理论值是否符合的假设检验;独立性检验是判断两个或两个以上因素之间是否具有关联关系的假设检验。