生物统计学复习要点
- 格式:doc
- 大小:23.50 KB
- 文档页数:3
1、生物统计学主要包括试验设计和统计分析2、统计学的发展经历了3个阶段:古典记录统计学,近代描述统计学和现代推断统计学3、生物统计学是数理统计在生物学研究中的应用,它是用数理统计的原理和方法来分析和解释生物界各种现象和试验调查资料的一门学科,属于应用统计学的一个分支。
4、英国统计学家R.A.Fisher于1923年发展了显著性检验及估计理论,提出来F分布和F 检验,创立了方差和方差分析,在从事农业试验及数据分析研究时,他提出了随机区组法、拉丁方法和正交试验的方法5、常用的统计学术语有:总体与样本,参数与统计数,变量与资料,因素与水平,处理与重复,效应与互作,准确性与精确性,误差与错误6、总体按所含个体的数目可分为有限总体和无限总体,n小于30的样本称为小样本,n大于等于30的为大样本7、参数也称参量,是对一个总体特征的度量。
统计数也称统计量,是由样本计算所得的数值。
8、准确性反映测定值与真值符合程度的大小,而精确性则是反映多次测定值的变异程度9、生物统计学的基本作用:1)提供整理和描述数据资料的科学方法,确定某些性状和特性的数量特征2)判断试验结果的可靠性3)提供由样本推断总体的方法4) 提供试验设计的一些重要原则10、试验资料具有集中性和离散性两种基本特征。
平均数是反映集中性的特征数,主要包括算术平均数,中位数,众数,几何平均数等;反映离散性的特征数是变异数,主要包括极差,方差,标准差和变异系数11、资料可分为数量性状资料和质量性状资料12、数量性状资料分为计数资料(非连续变量资料)和计量资料(连续变量资料)13、资料的来源(资料的搜集方法)一般有两个,调查和试验14、常用的抽样方法有随机抽样,顺序抽样,典型抽样15、随机抽样的方法:简单随机抽样,分层随机抽样,整体抽样,双重抽样16、计量资料的整理步骤:1,计算全距2.确定组数和组距(样本容量30--60,分组数为5--8)3,确定组限和组中值4,分组,编制次数分布表17、常用的统计图有条形图,饼图,直方图,多边形图,散点图(会辨认)18、算术平均数的算法:直接计算法,减去(或加上)常数法,加权平均法19、算术平均数的重要特性:1)样本中各观测值与其平均数之差称为离均差,其总和等于零2)样本中各观测值与其平均数之差平方的总和,较各观测值与任一数值(不包括平均数)之差的平方和最小,即离均差平方和为最小20、标准差的特性:1,标准差的大小受多个观测值的影响,如果观测值与观测值之间差异较大,其离均差也大,因而标准差也大,反之则小2,计算标准差时,如将各观测值加上或减去一个常数a,其标准差不变,将各观测值乘以或除以一个常数a,则标准差扩大或缩小了a倍3,在正态分布情况下,一个样本变量的分布情况可作如下估计:在平均数两侧的1s范围内,观测值个数约为观测值总个数的68.26%,在平均数两侧的2s范围内,观测值个数约为观测值总个数的95。
复习提纲一、名词解释1、变异系数:变数的相对变异量,CV=S/y×1002、总体与样本:总体是指具有相同性质的个体组成的集团,样本是指从总体中抽出的一部分个体的集合。
3、统计假设测验:根据于某种实际需要,对未知的或不完全知道的统计总体提出一些假设,然后由样本的实际结果,经过一定的计算,作出在概率意义上应当接受那种假设的测验。
4、显著水平:用来测验假设的概率标准5%或1%等,称为显著水平,一般以α表示。
5、适合性测验:比较实验数据与理论假设是否符合的假设测验。
6、单因素试验:整个试验中只变更、比较一个试验因素的不同水平,其它作为试验条件的因素均严格控制一致的试验。
7、连续型数据与离散型数据:连续型数据是指称量、度量或测量方法得到的数据,离散型数据是指用计数方法获得的数据。
8、零假设与备择假设:零假设是指假设总体平均数μ等于某一指定值μ0,记为H0:μ=μ0或μ-μ0=0。
备择假设,和零假设相对立的一个假设,也称为对应假设。
记作H A:μ≠μ0。
9、第一类错误(α错误):如果H0是真实的,我们通过测验却否定了它,就犯了一个否定真实假设的错误,这叫第一类错误(α错误)。
10、第二类错误(β错误):如果H0是错误的,我们通过测验没有发现其不真实而接受了它,即犯了一个接受不真实的H0的错误,这叫第二类错误(β错误)。
11、回归分析:对具有因果关系的两个变数,统计分析的任务是由实验数据推算出一个表示Y 随X 的改变而改变的方程过程称为回归分析。
12、重复:在试验中同一处理设置的试验单位数。
13、样本容量:样本中包含的个体数,用n表示。
14、生物统计学:生物统计学是以概率理论为基础,研究生命科学中随机现象规律性的方法论科学。
15、有限总体:总体中包含的个体数目有限,这种总体称为有限总体。
16、处理与水平:处理是指试验过程中设置的所有试验因素的所有水平,是试验的具体条件或状态,水平是指每一个因素根据其质或量所分的等级或所处的状态。
第一章1.生物统计学(Biostatistics)是数理统计在生物学研究中的应用,它是应用数理统计的原理和方法来分析和解释生物界各种现象和试验调查资料的一门学科。
属于应用统计学的一个分支。
是一门应用数学。
2.统计学(Statistics)是把数学的语言引入具体的科学领域,将所研究的问题抽象为数学问题的过程, 是收集、分析、列示和解释数据的一门科学.3.生物统计学是研究生命过程中以样本推断总体的一门学科。
4.生物统计学的基本类容:①试验设计:如何合理地进行调查或试验设计②统计分析:如何科学地整理、分析所收集来的具有变异的资料,揭示出隐藏其内部的规律性。
5.生物统计学的基本作用:①提供整理和描述数据资料的科学方法,确定某些性状和特性的数量特征.②运用显著检验,判断试验结果的可靠性或可行性。
③提供由样本推断总体的方法。
④提供试验设计的的一些重要原则。
6.常用的统计学术语:一.总体与样本具有相同性质的个体所组成的集合称为总体;总体有分为有限总体和无限总体。
组成总体的基本单元称为个体从总体中抽出若干个体所构成的集合称为样本(sample);(总体中的一部分)构成样本的每个个体称为样本单位;样本中所包含的个体数目叫样本容量或样本大小,样本容量常记为n。
一般在物学研究中,通常n<30的样本叫小样本,n ≥30的样本叫大样本。
二、参数与统计数描述总体特征的数量称为参数,也称参量。
常用希腊字母表示参数,例如用μ表示总体平均数,用σ表示总体标准差;描述样本特征的数量称为统计数,也称统计量。
常用英文字母表示统计数,例如用X-表示样本平均数,用S表示样本标准差.三、变量与常数变量,或变数,指相同性质的事物间表现差异性或差异特征的数据。
常数,表示能代表事物特征和性质的数值,通常由变量计算而来,在一定过程中是不变的.变量包括定量变量和定性变量,定性变量又可分为连续变量(可以有任何小数出现)和非连续变量(只有整数出现)。
1.生物统计:是应用数理统计的原理和方法研究数量变异规律的学科,也是一门应用数学。
2.总体:根据研究目的确定的研究对象的全体称为总体。
3.个体:总体其中的一个研究单位称为个体。
4.样本:总体的一部分称为样本。
5.有限总体:包含有限个个体的总体称为个体。
6.无限总体:包含无限多个个体的总体叫无限总体。
7.样本容量或大小:样本中所包含的个体数目称为样本容量或大小,常记为n,通常n≤30为小样本,n>30为大样本。
8.参数:总体计算的特征数称为参数,通常用希腊字母表示,如用μ表示总体平均数,σ表示总体标准差。
9.统计数:由样本计算的特征数,称为统计数,通常用拉丁字母表示,如用x表均数,用s表示样本标准差。
10.准确性:也叫准确度,指在试验或调查中同一试验指标或性状的观测值与其真值接近的程度。
11.精确性:也叫精确度,指在试验或调查中同一试验指标或性状的重复观测值彼此接近的程度。
12.正确性:试验或调查的准确性,精确性,合称正确性。
13.随机误差:也叫抽样误差,这是由于偶然因素所造成的,随机误差影响试验的精确性。
特点:偶然性和随机波动性难以消除。
14.系统误差:也叫片面误差,这是由于试验动物的初始条件相同,测量的仪器不准,标准试剂未经校正,以及观测、记载、抄录、计算中的错误所引起。
系统误差影响试验的准确性。
特点:定向性,可消除。
15.必然事件(Ω):在一定条件下必然发生的现象。
16.不可能事件(Φ):在一定条件下不可能发生的现象。
17.事件:在一定条件下可能发生也可能不发生的事件,简称事件。
用A,B表示。
18.概率:在相同条件下进行n次重复试验,如果随机事件A发生的次数为m,则把m/n称为随机事件A的频率,把试验重复数n逐渐增大时,如果随机事件A的频率越来越稳定的接近某一数值p,则我们把数值p称为随机事件A的概率。
这样定义的概率称为统计概率或者称为后验概率。
19.古典概率:设样本空间由n个等可能的基本事件所构成,其中事件A包含有m个基本事件,则事件A的概率为m/n,即P(A)=m/n。
《生物统计学》复习资料一、填空题1.变量之间的相关关系主要有两大类:(正相关)和(负相关)。
2.试验误差可以分为(随机误差)和(系统误差)两类。
3.样本标准差的计算公式( )。
解析:4.方差分析必须满足(正态性)、(方差齐性)和可加性3个基本假定。
5.在假设检验中,如果检验样本间差异是否极显著,则显著水平a取值为(0.05)。
6.在分析变量之间的关系时,一个变量X确定,Y是随着X变化而变化,两变量呈因果关系,则X称为(自变量),Y称为(因变量)。
二、单项选择题1.抽取样本的基本首要原则是(B)A、统一性原则B、随机性原则C、完全性原则D、重复性原则2.如果对各观测值加上一个常数a,其标准差(D)A、扩天√a倍B、扩大a倍C、扩大a²倍D、不变3.在一组数据中,其中一个数据9的离均差是3,那么该组数据的平均数是(B)A、12B、10C、6D、34.平均数是反映数据资料(B)0的代表值。
A、变异性B、集中性C、差异性D、独立性5.方差分析适合于(A)数据资料的均数假设检验。
A、两组以上B、两组C、一组D、任何6.在假设检验中,是以(A)为前提。
A、肯定假设B、备择假设C、无效假设D、有效假设7.统计学研究的事件属于(D)事件。
A、不可能事件B、必然事件C、小概率事件D、随机事件8.下列属于大样本的是(A)。
A、40B、25C、20D、109.在方差分析中,已知总自由度是15,组间自由度是3,组内自由度是(B)A、18B、12C、10D、510.已知数据资料有10对数据,并呈线性回归关系,它的总自由度、回归自由度和残差自由度分别是(C)A、9、1和8B、1、8和9C、8、1和9D、9、8和1三、判断题(正确的打√,错误的打×。
)1.对于有限总体不必用统计推断方法。
(×)2. 资料的精确性高,其准确性也一定高。
(×)3. 资料中出现最多的那个观测值或最多一组的中点值,称为众数。
总体:根据研究目的而确定的、具有共同性质的个体所组成的集合,称为总体.变异系数:变异系数为该样本标准差对平均数的百分比标准误:平均数的标准差也称为标准误,它表示了平均数的抽样误差的大小。
参数:由总体的全部观察值算得的特征数,称为参数极差:极差又称全距,记为R,是资料中最大观察值与最小观察值的差数。
离均差:在一个样本中,观察值与该样本平均数的差称为离均差。
统计量:测定样本中的各个体所得的特征数称为统计量,是总体的相应参数的估计值。
算数平均数:一个数量资料中各个观察值的总和除以观察值个数所得的商,称为算术平均数。
几何平均数:一组观察值的连乘积再开这群数值的个数次方所得的值,称为几何平均数,记为G。
中位数:中数又称为中位数,即在同一性质资料内,将所有观察值按大小顺序排列,居中间位置的观察值称为中数,记作Md。
众数:在同一性质的资料中,如某一观察值出现的次数最多,即称该观察值为众数,记作M0抽样:从总体中获得样本的过程。
显著性水平:保证参数在该区间的概率以P =(1-a)表示,称为置信系数或置信度,a称为显著水准或显著水平。
零假设:假设总体平均数u等于某个给定值u0(u=u0),或u-u0=0,这样的假设称为的零假设H0。
离散型数据:指用计数方法得到的数据,其各个观察值必以整数表示。
连续性数据:指由称量、度量或测量等方法得到的数据。
各个观察值并不限于整数。
频率分布:把频率值按要求进行分组归类,则制成频率分布表频数分布:把观察值按数值大小进行分组归类,则制成频数分布表随机抽样:从总体中随机抽取的样本称为随机样本。
无限总体:根据研究目的而确定的、具有共同性质的个体所组成的集合,称为总体.相关系数:描述两个变量间直线趋势好坏程度的量,值越接近1,X、Y直线相关的程度就越真切回归系数:b是直线的斜率,即b是X每增加一个单位时,平均地将要增加(b>0)或减少(b<0)的单位数,样本:由总体的若干个体所组成的集合,称为样本样本标准差:是离均差平方和平均后的方根,用σ表示。
名词解释:1、总体:又叫“统计总体”,是指一个统计问题研究对象的全体,它是具有某种共同特征的元素的集合。
2、参数:是描述总体特征的数,如反映数据的集中趋势的总体平均数,反映数据的变异程度的总体方差,反映不同总体的相关关系的相关系数等,常用希腊字母来表示,μ:总体平均数,σ²:总体方差,ρ:总体相关系数。
3、统计量:是描述样本特征的量,如样本平均数,样本方差,样本相关系数等,常用英文字母来表示。
X:样本平均数,S²:样本方差,r:样本相关系数。
4、准确性:是指观测值或估计值与真值的接近程度。
5、精确性:是对同一物体的重复观察值或估计值彼此之间的接近程度。
6、连续性资料:是指在一定范围内可取任何实数值的数据资料,例如动物个体的体重,奶牛的产奶量,羊的产毛量等指标(变量)进行测定所得到的数据,他们通常是用度量衡等计量工具后得到的,因而也成为计量资料。
7、计数资料:是用计数的方式得到的数据资料,它们必须用整数来表示,如对猪的产仔数,鸡的产蛋数等指标(变量)的记录数据。
8、中位数:将资料内所有观察值,从小到大依次排列,位于中间的那个观察值称为中位数,用Md表示。
9、调和平均数:各观察值倒数的算术平均数的倒数,主要用于速度类和或数据中有个别极端大值的数据资料集中趋势的度量。
10、随机变量:(描述随机试验所有可能结果取值的变量)是在一定范围随机取值的变量,它的取值由于受到许多随机因素的影响。
因而是不可预测的,但是这并不是说随机变量的取值是毫无规律的,其规律性就在于它取值的概率性,也就是说它的取值是服从某种概率分布的,因而我们也可以说随机变量是以一定的概率分布取值的变量。
11、概率函数:描述离散性随机变量取各个可能值的概率的函数。
12、概率分布函数:描述随机变量取值小于等于某值的概率的函数,也称为累计分布函数。
13、抽样分布:从一个总体中随机地抽取含量为几的样本,并由样本计算各种统计量,由于样本是随机抽取的,因而由样本数据计算的统计量也是随机变量,它们也有自己的概率分布,称之为抽样分布。
生物统计学复习资料一、名词解释准确性(accuracy):在试验中某一指标的观测值与真实值的接近程度,也称准确度。
(反映观测值偏离目标值的程度)精确性(precision):在相同试验条件下,对同一指标重复测量时所得观测值之间的接近程度,也称精确度。
(反映观测值之间的变异程度)准确性和精确性合称正确性。
随机误差(random error):由无法控制的偶然因素导致的误差。
(随机误差影响精确性,扩大样本容量或增加试验重复次数有助于减少但无法消除随机误差)系统误差(systematic error):由测量工具不精准、试验方法不完善、操作人员水平差异等因素导致的误差。
(既影响准确性又影响精确性,可消除)总体(population):研究对象的全体成员(有限总体、无限总体)个体(individual):构成总体的各个成员样本(sample):从总体中抽取的部分个体所组成的集合。
样本容量(sample size):样本包含的个体数量。
随机抽样(random sampling):采用随机方式从总体中获取样本的过程。
放回式抽样(sampling with replacement):从总体抽取一个个体,记录特征后放回总体,再抽取下一个个体。
非放回式抽样(sampling without replacement):从总体抽取一个个体,不放回总体就继续抽取下一个个体。
连续型数据(continuous data):与某种标准相比较获得的非整数数据。
(可以提高精确度,采用变量方法分析)离散型数据(discrete data):由记录不同类别个体数目而得到的整数数据。
(不能提高精确度,采用属性方法分析)极差(range,R):数据资料中最大值与最小值的差值。
组距(class interval, i):对频数资料分组时,每个组区间的高限和低限之差,即组区间极差。
样本特征数(sample characteristics):描述频率分布特征的数值总体特征数(population characteristics):描述概率分布特征的数值样本统计数(statistic):由样本数据计算而来的描述样本特征的数值。
生物统计学重要知识点生物统计学重要知识点(说明:下列知识点为考试内容,没涉及的不需要复习。
注意加粗的部分为重中之重,一定要弄懂。
大家要进行有条理性的复习,望大家考出好成绩!)第一章概论(容易出填空题和名词解释)1、生物统计学的目的、内容、作用及三个发展阶段2、生物统计学的基本特点3、会解释总体、个体、样本、样本容量、变量、参数、统计数、效应和互作4、会区分误差(随机误差和系统误差)与错误以及产生的原因5、会区分准确度和精确度第二章试验资料的整理与特征数的计算(容易出填空和名词解释)1、随机抽样必须满足的两个条件2、能看懂次数分布表和次数分布图,会计算全距、组数、组距、组限和组中值3、会求平均数(算数、加权和几何)、中位数、众数,算术平均数的重要特性4、会求极差、方差、标准差和变异系数,理解标准差的性质第三章概率与概率分布(选择、填空和计算)1、理解事件、频率及概率,事件的相互关系,加法定理和乘法定理的运用2、概率密度函数曲线的特点和大数定律3、二项分布、泊松分布和正态分布的概率函数和标准分布图像特征,会计算概率值4、理解分位数的概念,弄清什么时候用单尾,什么时候用双尾5、样本平均数差数的分布第四章统计推断(计算)1、无效假设和备择假设、显著水平、双尾检验和单尾检验、假设检验的两类错误,会根据小概率原理做出是否接受无效假设的判断2、总体方差已知和未知情况下如何进行U检验3、一个样本平均数的t检验(例)成组数据平均数比较的t检验(例和)4、一个样本频率的假设检验(例),知道连续性矫正5、参数的区间估计(置信区间)和点估计第五章X2检验(计算)1、X2检验的原理和条件,以及进行连续性矫正的条件和方法2、适合性检验(例和)3、独立性检验:掌握2*2列联表的X2值的两种求法(例)第六章方差分析(计算)1、平方和与自由度的分解、计算方差、F检验2、掌握多重比较的LSD法,会用标记字母法和梯形法3、组内观测次数相等和不等的方差分析(例和)4、方差分析缺失数据的估计中弥补缺失数据的原则第七章直线回归与相关分析(填空、选择)1、回归和相关的概念,回归截距和回归系数的统计学意义,回归方程的三个基本性质2、直线回归的变异来源,每一部分的平方和的计算3、相关分析的相关系数和决定系数的意义第十章试验设计及其统计分析(填空、选择)1、试验设计的基本原则2、正交表及其特点(两个性质和两个特性)3、知道如何选用合适的正交表和设计表头4、正交设计试验结果的统计分析:利用极值R确定关键因子并选出最优组合(例)。
生物统计学知识点
以下是 6 条关于生物统计学知识点:
1. 样本和总体啊,就像你从一大袋糖果中抓出一把来了解整袋糖果的情况一样!比如说,你想知道全校学生的平均身高,你不可能量所有人的身高吧,那这时候就可以抽一部分学生来当做样本,通过研究这个样本的数据,来推测总体的特征呢。
2. 概率这个东西可太神奇啦!就好像抛硬币,你知道抛一次正面朝上的可能性是二分之一。
那在生物统计学里也经常会用到概率来推断事情发生的可能性呀。
比如某种疾病在人群中发生的概率,或者某个基因出现的概率。
3. 正态分布呀,就如同是一个班级里学生的成绩分布一样!大多数同学的成绩都在中间,只有少数特别高和特别低的。
在生物里很多数据都符合正态分布呢,像人的身高、体重等。
比如研究一群人的体重,你就能发现中间的数值最为常见。
4. 假设检验就像是一场辩论赛!你提出一个观点,然后找各种证据来支持或反驳它。
比如你说一种药能有效治疗某种病,那就要通过假设检验来看看这个说法到底对不对。
哇塞,是不是很有趣呀?
5. 方差和标准差像是数据的“情绪指标”呢!它们能告诉你数据的波动有多大。
好比测量不同班级学生的考试成绩波动情况,方差和标准差大,就
说明成绩很不稳定呢。
想想看,如果一种生物特征的方差很大,那不是很有意思吗?
6. 相关性可不是等于因果关系哦!就像你发现吃冰淇淋的人多的时候游泳的人也多,但这可不是说吃冰淇淋会导致人去游泳呀!在生物统计学里要小心别把它们弄混啦。
比如发现两个因素同时出现,但不一定是一个导致了另一个呀。
总之,生物统计学真的超有意思,可以帮助我们更好地理解生物世界中的各种现象和规律呢!。
生物统计学复习资料生物统计学复习资料(宁肯“错杀”“一切”!)一、选择与填空1、总体(研究的全部对象)分为无限总体和有限总体;构成总体的每个成员称为个体。
2、从总体中获得样品的过程称为抽样,抽样可以分为放回式抽样和非放回式抽样。
3、常见的连续性数据(与某种标准作比较所得到的数据)有:长度、时间、质量、OD 值、血压值等。
这类数据通常是非整数。
4、常见的离散型数据(由记录不同类别个体的数目所得到的的数据)如:动物的头数、种子的粒数、血液中不同类型的细胞的数目。
这类数据全部是整数。
5、样本的几个特征数:平均数、标准差、偏斜度和峭度。
6、度量数据的变异程度的常用方法:范围(极差)、平均离差、标准离差(标准差)。
7、总体的特征数有:数学期望(对随机变量进行长期观测所得数据的平均数)、方差、各阶矩。
8、t 分布中样本标准误差的公式为ns。
t 分布类似于正态分布,也是一种对称分布,它只有一个参数,即自由度,t 分布同样要求总体是正态的。
9、点估计(用由样本数据所计算出来的单个数值对总体参数所做的估计),一个好的估计量应该满足三个条件:无偏性、有效性、相容性。
10、无重复实验时的两因素方差分析的条件:两因素间是否有交互作用。
11、在一元线性回归检验中,∑=ni i e 12称为误差平方和或剩余平方和,用E SS 表示。
12、实验设计的两个基本原则:重复和随机化(重复的两个意义:①只有设置重复才能得到实验误差的估计;②只有设置重复才能推断出处理效应) 13、上尾检验的条件:拒绝0H 之后,接受μ:A H >0μ14、下尾检验的条件:拒绝0H 之后,接受μ:A H <0μ15、双侧检验的条件:无充分的依据断言μ不可能大于0μ或μ不可能小于0μ 16、实际上,一般情况是随机变量Y 服从),(2σμN 。
为了能够使用附表2求其分布函数值,必须经过标准化,即:σμ-=Y U经此变换后,Y 的分布函数Y P (<)y =U P (<)σμ-y =)(σμφ-y17.LSD 法检验的公式:|21y y -|>nMS t E205.0二、名词解释1.标准差:样本中各数值与其平均数离差平方和的算术平均数的平方根,它反映了各数据的离散程度。
生物统计学复习资料(一)引言:生物统计学是生物学中重要的一个分支,它关注如何收集和分析生物数据,并从中推断出关于生物体群和进化的信息。
本文为生物统计学复习资料(一),以提供复习所需的基本概念和方法。
正文:一、生物统计学基本概念1. 生物统计学的定义和作用2. 数据类型和变量的分类3. 总体和样本的概念4. 基本概率论和统计推断的原理5. 生物统计学中常用的统计量和分布二、生物数据的描述统计与图表分析1. 数据的整体描述和总结a. 中心趋势的测度:均值、中位数、众数b. 离散程度的测度:范围、方差、标准差c. 数据的分布形态:偏态与峰态的概念2. 基本图表的绘制和应用a. 直方图、柱状图b. 散点图、折线图c. 箱线图、饼图三、概率与假设检验1. 概率的定义和性质2. 离散型随机变量和连续型随机变量的概率分布3. 假设检验的基本原理a. 零假设和备择假设b. 显著性水平和拒绝域c. 两种类型错误的概念与控制4. 常用的假设检验方法a. 单样本均值检验b. 独立样本均值检验c. 配对样本均值检验d. 卡方检验四、相关分析与回归分析1. 相关分析的概念和方法a. 相关系数的计算和解释b. 相关检验的假设与推断c. 相关分析的注意事项和应用2. 简单线性回归分析a. 直线拟合和回归方程b. 残差分析和回归诊断c. 回归分析的解释和推断3. 多元线性回归分析a. 多元回归方程和解释b. 各项特征的解释和预测c. 多重共线性的识别和处理五、生物统计学实验设计与样本量计算1. 生物统计学实验设计的原则和基本要素a. 随机性和重复性b. 正确的实验设计和对照组设计c. 防止混杂的方法:随机化和分组2. 样本量计算的概念和方法a. 样本量的影响因素和确定方法b. 不同统计检验的样本量计算c. 敏感性分析和样本量的合理设置总结:本文介绍了生物统计学的基本概念、生物数据的描述统计与图表分析、概率与假设检验、相关分析与回归分析以及生物统计学实验设计与样本量计算。
《生物统计学》复习要点课程名称:《生物统计学》适用专业:2016级专升本人力资源管理(业余函授)、行政管理(业余函授)辅导教材:《生物统计学》李春喜等主编科学出版社知识点一概念理解参数;效应;抽样调查;精确性;对立事件;中心极限定理;统计推断;小概率原理;生物学试验的基本要求;多重比较;互作;参数;系统误差;准确性;α错误;计量资料;区间估计;大数定律;水平;方差分析二、基本问题1、试验误差的来源有哪些?如何进行控制?2、平均数和标准差在统计分析中有什么作用?3、什么是u分布?它与t分布有何区别与联系?4、 2检验的主要用途?各用于什么情况下的假设检验?5、什么是生物统计学?其主要内容和作用是什么?6、什么是小概率原理?其在假设检验中有和作用?7、什么是多重比较?多重比较有哪些方法?8、试验误差控制的途径有哪些?三、统计计算1、有一标准正态分布的平均数为16,方差为4。
试计算:(1)落于10-20之间的数据的百分数;(2)小于12或大于20的百分数。
注:F(2)=0.977,F(-2)=0.018,F(-3)=0.001。
2、某养鸡场规定种蛋的孵化率p0>0.80为合格。
现对一批种蛋随机抽取100枚进行孵化检验,结果有78枚孵出,问这批鸡蛋是否合格?(α=0.05)。
单尾u0.05=1.64。
3、某鱼塘水中的含氧量,多年平均为4.5(mg/L),该鱼塘设10个点采集水样,测定含氧量为:4.33,4.62,3.89,4.14,4.78,4.64,4.52,4.55,4.48,4.26(mg/L)。
试检验该次抽样测定的水中含氧量与多年平均值有无显著差别(α=0.05)。
t 0.05(9) =2.262。
4、某猪场对4个不同品种幼猪进行4个月增重量的测定,每个品种选择体重接近的幼猪4头,测定结果列于下表:(1)试对不同品种猪4个月增重量进行显著性方差分析;(2)使用新复极差法(SSR 法)进行多重比较,结果使用字母标记法表述并进行文字推断描述。
生物统计学·简答复习重点1.小概率事件的实际不可能性原理;若随机事件的概率很小,例如小于0.05、0.01、0.001,称之为小概率事件。
在统计学上,把小概率事件再一次试验中堪称是实际不可能发生的时间称为小概率事件实际不可能性原理,亦称为小概率原理。
小概率事件实际不可能原理是统计学上进行假设实验的基础依据。
2.样本标准差与样本标准误二者区别;样本标准差s是反映样本中各观测值变异程度的一个统计,它的大小说明了x对该样本代表性的强弱。
样本标准误Sx是样本平均数x抽样误差的估计值,其大小说明了样本平均数x精确性的高低。
大样本资料记为x±S,用以说明所考察形状或指标的优良与稳定。
小样本资料记为x±Sx,用以表明所考察形状或指标的优良性于抽样误差的大小。
3.动物实验的特点?(一)普遍存在试验误差;首先是实验动物之间的差异;其次是自然环境差异;第三是饲养管理条件的差异;第四是实验人员技术操作上的差异。
(二)实验具有复杂性(三)试验周期长4.实验设计的基本原则和各自的作用;①重复主要作用于估计实验误差和降低试验误差。
②随机目的是为了获得无偏的误差估计。
③局部控制作用是降低试验误差。
5.完全随机设计的优缺点;(一)完全随机设计的主要优点;①设计容易②统计分析简单(二)完全随机设计的主要缺点;①实验误差较大,实验的精确性较低。
②在实验条件、环境、实验动物差异较大时。
不宜采用此种设计方法。
6.多样本不宜用t检验的原因;①检验过程繁琐;②无统一的试验误差,误差估计的精确性和检验的灵敏性低;③推断的可靠性低,检验的Ⅰ型误差大。
7.为什么爱多重比较?F值显著伙计显著并不意味U1≠U2≠U3……≠Un,可能是U1≠U2=U3……=Un,也可能是U1=U2=U3……Ui≠Uj…≠Un,有必要进行两两处理平均数间的比较,以具体判断两两处理平均数间差异显著性多重比较;多个平均数两两间的相互比较法:LSD、LSR。
大学生物统计复习提纲第一章(填空、问答)1、什么是生物统计?它在动物科学研究中有何作用?(1)定义:生物统计是数理统计的原理和方法在生物科学研究中的应用,是一门应用数学。
(2)作用:①提供试验或调查设计的方法狭义的试验设计是指试验单位(如动物试验的畜、禽)的选取,重复数目的确定,试验单位的分组。
生物统计的试验设计通常指狭义的试验设计。
合理的试验设计能控制和降低试验误差,提高试验的精确性,为统计分析无偏估计试验处理效应和试验误差提供必要而有代表性的资料。
狭义的调查设计是指抽样方法的选取,抽样单位、抽样数量的确定。
生物统计的调查设计通常是指狭义的调查设计。
合理的调查设计能控制和降低抽样误差,提高调查的精确性,为可靠估计总体参数提供必要而有代表性的资料。
简而言之,试验或调查设计主要解决合理地收集必要而有代表性的资料的问题。
②提供整理分析资料的方法对资料进行整理的基本方法是根据资料的特性将其整理成统计表、绘制成统计图。
并根据资料计算出几个统计数,用以表示该资料的数量特征,估计相应的总体参数。
对资料进行统计分析的最重要的方法是假设检验。
对资料进行统计分析的另一种重要的方法是进行回归分析或相关分析。
2.什么是总体、个体、样本、样本容量、随机抽取?统计分析的两个特点是什么?(1)总体:根据研究目的确定的研究对象的全体。
个体:总体中的一个研究对象。
样本:从总体中抽取一部分个体组成的集合。
样本容量:样本中所包含的个体数目。
随机抽取:是指总体中的每一个个体都有同等的机会被抽取。
(2)特点:①统计分析一般是通过样本来了解总体。
研究的目的是要了解总体,然而能观测到的却是样本,通过样本来推断总体是统计分析的基本特点。
②然而样本毕竟只是总体的一部分,尽管样本具有一定的错误率,通过样本来推断总体也不可能是百分之百的正确。
有很大的可靠性但有一定的错误率,这是统计分析的又一特点。
3.什么是参数、统计数,二者有何关系?(1)参数:由总体全部个体计算的特征数称为参数,通常用希腊字母表示参数。
⽣物统计学复习资料(重点、名词、问答、计算、模拟)(吐⾎整理)⽣物统计学复习资料第⼀章⽣物统计学:是数理统计在⽣物学研究中的应⽤,它是应⽤数理统计的原理和⽅法来分析和解释⽣物界各种现象和试验调查资料的⼀门学科,属于应⽤统计学的⼀个分⽀。
内容:试验设计:试验设计的基本原则、试验设计⽅案的制定和常⽤试验设计的⽅法统计分析:数据资料的搜集、整理和特征数的计算、统计推断、⽅差分析、回归和相关分析、协⽅差分析等⽣物统计学的作⽤:1. 提供整理、描述数据资料的科学⽅法并确定其特征2. 判断试验结果的可靠性3. 提供由样本推断总体的⽅法4. 试验设计的原则⽣物统计学的研究包括了两个过程:1. 从总体抽取样本的过程——抽样过程2. 从样本的统计数到总体参数的过程——统计推断过程第⼆章7.样本标准差:(1)标准差的⼤⼩,受多个观测值的影响,如果观测值与观测值间差异⼤,标准差就⼤(2)在计算标准差的时候,如果对各个观测值加上或者减去⼀个常数a,其标准差不变;如果乘以或除以⼀个常数a,则标准差扩⼤或者缩⼩a倍STDEV:基于给定样本的标准偏差STDEVP:基于给定样本总体的标准偏差8变异系数(CV):样本标准差除以样本的平均数,得到百分⽐(1)变异系数是样本变量的相对变量,是不带单位的纯数(2)⽤变异系数可以⽐较不同样本相对变异程度的⼤⼩1.次数分布:在不同区间内变量出现的次数所构成的分布。
2.资料根据⽣物的形状特性,可分为数量性状和质量性状3.间断性变数:指⽤计数⽅法获得的数据,其各个观测值必须以整数表⽰,在两个相邻整数间不允许带有⼩数的值存在。
4.连续性变数:指称量、度量或测量⽅法所得到得数据,其各个观测值并不限制于整数,在两个数值之间可以有微量数值差异的第三个数值存在5.质量性状资料的⽅法:统计次数法,评分法统计次数法:于⼀定总体或样本内,统计其具有某个性状的个体数⽬及具有不同性状的个体数⽬,按类别及其次数或相对次数给分法:给予每类性状以相对数量的⽅法。
1、生物统计学主要包括试验设计和统计分析
2、统计学的发展经历了3个阶段:古典记录统计学,近代描述统计学和现代推断统计学
3、生物统计学是数理统计在生物学研究中的应用,它是用数理统计的原理和方法来分析和解释生物界各种现象和试验调查资料的一门学科,属于应用统计学的一个分支。
4、英国统计学家R.A.Fisher于1923年发展了显著性检验及估计理论,提出来F分布和F 检验,创立了方差和方差分析,在从事农业试验及数据分析研究时,他提出了随机区组法、拉丁方法和正交试验的方法
5、常用的统计学术语有:总体与样本,参数与统计数,变量与资料,因素与水平,处理与重复,效应与互作,准确性与精确性,误差与错误
6、总体按所含个体的数目可分为有限总体和无限总体,n小于30的样本称为小样本,n大于等于30的为大样本
7、参数也称参量,是对一个总体特征的度量。
统计数也称统计量,是由样本计算所得的数值。
8、准确性反映测定值与真值符合程度的大小,而精确性则是反映多次测定值的变异程度
9、生物统计学的基本作用:1)提供整理和描述数据资料的科学方法,确定某些性状和特性的数量特征2)判断试验结果的可靠性3)提供由样本推断总体的方法4) 提供试验设计的一些重要原则
10、试验资料具有集中性和离散性两种基本特征。
平均数是反映集中性的特征数,主要包括算术平均数,中位数,众数,几何平均数等;反映离散性的特征数是变异数,主要包括极差,方差,标准差和变异系数
11、资料可分为数量性状资料和质量性状资料
12、数量性状资料分为计数资料(非连续变量资料)和计量资料(连续变量资料)
13、资料的来源(资料的搜集方法)一般有两个,调查和试验
14、常用的抽样方法有随机抽样,顺序抽样,典型抽样
15、随机抽样的方法:简单随机抽样,分层随机抽样,整体抽样,双重抽样
16、计量资料的整理步骤:1,计算全距2.确定组数和组距(样本容量30--60,分组数为5--8)3,确定组限和组中值4,分组,编制次数分布表
17、常用的统计图有条形图,饼图,直方图,多边形图,散点图(会辨认)
18、算术平均数的算法:直接计算法,减去(或加上)常数法,加权平均法
19、算术平均数的重要特性:1)样本中各观测值与其平均数之差称为离均差,其总和等于零2)样本中各观测值与其平均数之差平方的总和,较各观测值与任一数值(不包括平均数)之差的平方和最小,即离均差平方和为最小
20、标准差的特性:1,标准差的大小受多个观测值的影响,如果观测值与观测值之间差异较大,其离均差也大,因而标准差也大,反之则小2,计算标准差时,如将各观测值加上或减去一个常数a,其标准差不变,将各观测值乘以或除以一个常数a,则标准差扩大或缩小了a倍3,在正态分布情况下,一个样本变量的分布情况可作如下估计:在平均数两侧的1s范围内,观测值个数约为观测值总个数的68.26%,在平均数两侧的2s范围内,观测值个数约为观测值总个数的95。
45%,在平均数两侧的3s范围内,观测值个数约为观测值总个数的99,73%
21、标准差的作用:1,表示变量分布的离散程度2,利用标准差的大小,可概括地估计出变量的次数分布极各类观测值在总体中所占的比例3,估计平均数的标准误4,进行平均数的区间估计和变异系数计算
22、标准差除以样本平均数,得出的百分比就是变异系数
23、常见的理论分布主要有离散型随机变量的二项分布,泊松分布和连续型随机变量的正态分布
24、大数定律是概率论中用来阐述大量随机现象平均结果稳定性的一系列定律的总称
伯努利大数定律说明,若试验条件不变,重复次数n接近无限大时,频率m/n与理论概率p 的差值必定要小于一个任意小的正数ε,即这两者可以基本相等,这几乎是一个必然要发生的事件,即P=1 34页
说明为什么可以用算术平均数来推断总体平均数,阐述了当试验重复次数n无限增大,随机变量的算术平均数与总体平均数之间的差一定小于任意小的正数ε,也就是算术平均数与总体平均数相等,这几乎是一个必然要发生的事件,即P=1
25、二项分布的参数的计算(38页)
26、泊松分布在生物学研究中有广泛的应用:1,在生物学研究中,有许多小概率事件,其发生概率p往往小于0.1,甚至小于0 01 2,由于泊松分布是描述小概率事件的,因而二项分布当p小于0.1和np小于5时,可用泊松分布来近似
27、样本平均数是总体平均数的无偏估计值;样本方差是总体方差的无偏估计值;样本标准差不是总体标准差的无偏估计值
28、标准误描述样本均数抽样分布的离散程度及衡量均数抽样误差大小的尺度,反映样本平均数之间的变异(样本平均数分布的方差等于总体方差除以样本容量)
29、正态分布的特征(42页)
30、如果被抽样总体不是正态总体,但具有平均数和方差,当样本容量n不断增大,样本平均数的分布也就越来越接近正态分布,且具有平均数,方差σ2 /n,称中心极限定理48页
31、样本平均数差数分布的基本性质:1)样本平均数差数的平均数等于总体平均数的差数(或样本平均数分布的平均数的差数)2)样本平均数差数的方差等于总体方差除以各自样本容量之和(或两样本平均数方差之和)3)从两个独立正态总体中抽出的样本平均数差数的分布也是正态分布,并具有平均数和方差,记作50页32、t分布具有以下特征:1曲线是左右对称的,围绕平均数u t=0向两侧递减2受自由度df=n-1的制约,每个自由度都有一条t分布曲线3和正态分布相比,t分布的顶部偏低,尾部偏高,自由度df≥30时,其曲线就比较接近正态分布曲线,当df趋近与无穷时,则和正态分布曲线重合
33、卡方分布的特征:1,分布于区间零到正无穷,并且呈反j形偏斜分布 2,卡方分布的偏斜度随自由度降低而增大,当自由度df=1时,曲线以纵轴为渐近线 3,随自由度df增大,卡方分布曲线渐趋左右对称,当df≥30时,卡方分布已接近正态分布 51页
34、F分布的特征:1,F的取值区间为零到正无穷 2,F分布的平均数等于1 3,F分布曲线的形状仅取决于df1和df2,在df1=1时或df=2时,F分布曲线呈严重倾斜的反向j 形,当df1≥3时转为左偏曲线 52页
35、统计推断包括假设检验和参数估计
36、假设检验是在总体理论分布和小概率原理基础上,通过提出假设,确定显著水平,计算统计数,作出推断等步骤来完成的在一定概率意义上的推断
37、假设检验的步骤:1.对样本所属总体提出无效假设Ho和备择假设H A 2,确定β检验的显著水平α 3,在Ho正确的前提下,计算抽样分布的统计数或相应的概率值 4,根据小概率原理,进行差异是否显著的推断,并得出结论
38、具有两个否定区的检验称为双尾检验
39、第一类错误也称α错误,也称弃真错误;第二类错误也称β错误,也称纳伪错误
40、样本平均数的假设检验,计算 59页
41、当np或nq小于5,则由二项式(p+q)n展开式直接检验,当5小于np或nq小于30,二项分布趋近正态分布,可用u检验(n≥30)或t检验(n小于30),但需要进行连续性矫正,如果np、nq均大于30,则不需要进行连续性矫正,用u检验
42、卡方检验主要有三种用途:一个样本方差的同质性检验,适合性检验,独立性检验
43、方差分析是英国统计学家R.A.Fisher,提出的对两个或多个样本平均数差异显著性检验的方法
44、方差分析必须满足正态性,可加性,和方差同质性3个基本假定,如果数据不符合这三个假定则需要对数据进行转换。
对于缺失的数据可以利用误差平方和最小的原则进行弥补
45、方差分析的数学模型:固定模型,随机模型,混合模型
46、多重比较常用的方法有最小显著差数法和最小显著极差法
47、多重比较结果的表示方法常用的是,标记字母法和梯形法
48、最小显著极差法(LSR法)可分为新复极差检验和q检验
49、进行两因素或多因素试验时,一般应设重复
50、方差分析的数据转换:平方根转换,对数转换,反正弦转换
51、常采用最小二乘法建立直线回归方程,变量y的离差平方和可以分解为回归平方和U 和离回归平方和Q,通过F检验或t检验的方法可检验直线回归关系的显著性
52、研究“一因一果”即一个自变量与一个依变量的回归分析称为一元回归分析,可分为直线回归与曲线回归;研究“多因一果”即多个自变量与一个依变量的回归分析称为多元回归分析,可分为多元线性回归于多元非线性回归
53、试验设计是进行生物学研究的重要工具,需遵循重复,随机和局部控制3项原则。
常用的实验设计有对比设计,随机区组设计,拉丁方设计,裂区设计,正交设计
54、试验设计是由英国统计学家R.A.Fisher于20世纪20年代为满足科学试验的需要而提出的
55、生物学试验的基本要求:试验目的要明确,试验条件要有代表性,试验结果要可靠,试验结果要能重演
56、试验设计的基本要素:处理因素,受试对象,处理效应
57、控制试验误差的途径:1)选择纯合一致的试验材料2)改进操作管理制度,使之标准化,3)精心选择试验单位4)采用合理的试验单位
58、用正交表进行试验安排具有的两个特性:均衡分散性,整齐可比性。