卢瑟福背散射(RBS)在材料表征中的应用
- 格式:pdf
- 大小:1.92 MB
- 文档页数:45
第33卷 第6期Vol 133 No 16稀 有 金 属CH I N ESE JOURNAL OF RARE MET ALS2009年12月Dec 12009 收稿日期:2009-10-08;修订日期:2009-10-20 基金项目:国家自然科学基金项目(60706001)资助 作者简介:肖清华(1972-),男,江西吉安人,博士,高级工程师;研究方向:半导体材料3通讯联系人(E -mail:exiaoqh@ )卢瑟福背散射谱和红外干涉反射谱研究冷注入锗离子对单晶硅的损伤肖清华13,王敬欣2(1.北京有色金属研究总院有研半导体材料股份有限公司,北京100088;2.北京有色金属研究总院科技信息研究所,北京100088)摘要:主要研究锗离子在77K 温度下的冷注入对单晶硅片表面的预非晶化效果,并与室温注入情形予以对比。
卢瑟福背散射谱(RBS )和红外干涉反射谱被用于对非晶层的研究。
实验表明,冷注入要比室温注入的退沟道效应更为显著,反射率降低更为明显,意味着引入的损伤更为严重,更容易使硅单晶非晶化。
而且,冷注入产生的最大损伤峰比室温注入的位于更深的位置,相应的非晶层/硅单晶衬底界面有更深的推入。
结果还表明,同样的注入温度下,剂量越大,损伤越严重。
关键词:硅;锗;冷注入;损伤;卢瑟福背散射谱;红外干涉反射谱doi:10.3969/j .issn .0258-7076.2009.06.023中图分类号:O613.72 文献标识码:A 文章编号:0258-7076(2009)06-0879-05 锗离子注入结合固相外延是形成SiGe /Si 异质结构一种重要的方法[1~5]。
事实上,第一个n 型Si/SiGe MOSFET [6]就是通过使用高剂量Ge 离子注入实现的,以SiGe 材料为基极的npn 双极管器件也已通过这种方法实现。
这种方法不需要高纯的原料,设备真空度也不需要分子束外延、超高真空气相外延工艺中那么高,具有成本相对低的优点,并且容易与传统的硅技术相结合。
卢瑟福背散射(RBS)试验汇报何燃核科学与技术学院一、试验目旳1、掌握RBS分析原理,理解试验装置;2、初步掌握RBS旳分析措施。
二、试验原理当入射离子能量远不小于靶中原子旳结合能(~10ev量级),并低于与靶原子发生核反应旳能量(一般100kev/amu ≤E ≤1Mev/amu)时,离子在固体中沿直线运动,入射离子重要通过与电子互相作用而损失能量,直到与原子核发生库仑碰撞被散射后又沿直线回到表面.在这个背散射过程中包括四个基本物理概念.它们是:a)两体弹性碰撞旳运动学因子Kb)微分散射截面σc)固体旳制止截面εd)能量歧离这四个基本概念是背散射分析旳理论基础和应用旳出发点也是限制其应用旳最终原因.RBS旳分析原理详细来说如下:1、运动学因子和质量辨别率1)运动学因子旳定义:K=E1/E0,其中E0是入射粒子能量(动能),E1是散射粒子能量(动能)。
由于库伦散射是弹性散射,动量和能量守恒可以得到由运动学因子公式可以看出:当入射离子种类(m),能量(E0)和探测角度(θ)一定期,E1与M成单值函数关系。
图1 入射粒子与靶原之间旳弹性碰撞示意图因此,通过测量一定角度散射离子旳能量就可以确定靶原子旳质量数M。
这就是背散射定性分析靶元素种类旳基本原理。
2)质量辨别率旳定义如δE是RBS探测器系统旳能量辨别率,也就是可辨别旳背散射离子最小旳能量差异。
那么RBS旳质量辨别率δM为:δM是对样品中靶核质量差异旳辨别能力。
当一靶核质量数与另一靶核质量数M旳差异不不小于δM时RBS无法将这两种元素辨别开。
3)提高背散射质量辨别率旳措施有:a)提高入射离子能量,但入射离子能量过高会使入射离子和靶原子发生核反应。
故不适宜过高。
b)通过提高离子探测系统旳能量辨别率,可采用静电分析器或飞行时间技术。
c)试验安排上要使θ尽量靠近180度。
d)运用大质量旳入射离子。
但金硅面垒探测器对重离子能量辨别率较差,因此M1一般选4~7。
卢瑟福背散【摘要】卢瑟福背散射分析(RBS )是一种对离子束进行分析的方法,其主要优点是能对材料表层的成分作纵向分析,并且无需材料的标准样品就能作定量分析。
本报告主要介绍了RBS 的分析原理、实验装置,并且对实验谱图和数据作了简单分析,重点是对实验谱图进行了能量刻度的标定以及计算薄膜的厚度。
【关键词】RBS 分析原理【引言】背散射分析就是在一束单能的质子、粒子或其他重离子束轰击固体表面时,通过探测卢瑟福背散射(库伦弹性散射、散射角大于90度)离子产额随能量的分布(能谱)确定样品中元素的种类(质量数)、含量及深度分布。
因此背散射分析通常被称为卢瑟福背散射谱学RBS (Rutherford Backscattering Spectrometry).【实验原理】当比靶核轻的入射离子能量amu MeV E amu keV /1/100≤≤范围,靶原子核外电子对入射离子的屏蔽作用不大,且离子和靶原子核的短程相互作用(核力)影响也可以忽略时,离子在固体中沿直线运动,离子主要通过与电子相互作用而损失能量,直到与原子核发生库仑碰撞被散射后又沿直线回到表面。
这个过程就称为离子的背散射过程。
描述离子背散射过程的三个基本物理概念主要有两体弹性碰撞的运动学因子、微分散射截面、固体的阻止截面。
一. 运动学因子和质量分辨率:运动学因子的定义:01E E K =其中0E 是入射粒子能量(动能),1E 是散射粒子能量(动能)。
根据动量与能量守恒定律,可以推导得到:212111⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-==M mM m cos θM m sin θE E K (1-1)由运动学因子公式可以看出:当入射离子种类(m ),能量(0E )和探测角度(θ)一定时,1E 与M 成单值函数关系。
所以,通过测量一定角度散射离子的能量就可以确定靶原子的质量数M 。
这就是背散射定性分析靶元素种类的基本原理。
卢瑟福背散射谱法
卢瑟福背散射谱法
英文名称:Rutherford back scattering spectroscopy 定义:以兆电子伏特级的高能氢元素离子通过针形电极(探针)以掠射方式射入试样,大部分离子由于试样原子核的库仑作用产生卢瑟福散射,改变了运动方向而形成背散射。
测量背散射离子的能量、数量,分析试样所含有元素、含量和晶格的方法。
卢瑟福背散射光谱(RBS)是一种离子散射技术,用于薄膜成份分析。
RBS在量化而不需要参考标准方面是独一无二的。
在RBS测量中,高能量(MeV)He+离子指向样品,这样给定角度下背向散射He离子产生的能量及分布情况被记录下来。
因为每种元素的背向散射截面已知,就有可能从RBS谱内获得定量深度剖析(薄膜要小于1毫米厚).
1、RBS分析的理想用途
薄膜组成成份/厚度
区域浓度测定
薄膜密度测的(已知厚度)
2、RBS分析的相关产业
航天航空国防显示器半导体通信
3、RBS分析的优势
非破坏性成分分析无标准定量分析整个晶圆分析(150, 200, 300 mm)以及非常规大样品导体和绝缘体分析氢元素测量
4、RBS分析的局限性
大面积分析(~2 mm)
有用信息局限于top ~1 μm。
卢瑟福背散射分析(RBS)实验吴玉龙核科学与技术学院201121220011一、实验目的1.了解RBS分析原理,认识实验装置2.通过对选定的样品进行分析实验,初步掌握RBS分析方法,谱图分析及相关的应用二、实验装置RBS实验装置主要由四部分组成:1.加速器(一定能量离子束的的产生装置)2.靶室(离子散射和探测的地方)3.背散射离子的探测和能量分析装置4.放射源RBS三、实验原理背散射分析就是在一束单能的质子、(粒子或其他重离子束轰击固体表面时,通过探测卢瑟福背散射(弹性、散射角大于90度)离子的能量分布(能谱)和产额确定样品中元素的种类(质量数)、含量及深度分布。
当入射离子能量远大于靶中原子的结合能(约10ev量级),并低于与靶原子发生核反应的能量(一般100kev<E<1Mev)时,离子在固体中沿直线运动,入射离子主要通过与电子相互作用而损失能量,直到与原子核发生库仑碰撞被散射后又沿直线回到表面。
在这个背散射过程中包含四个基本物理概念。
它们是:两体弹性碰撞的运动学因子K、微分散射截面、固体的阻止截面、能量歧离,这四个基本概念是背散射分析的理论基础和应用的出发点也是限制其应用的最终因素。
1)运动学因子和质量分辨率运动学因子K=E1/E0,其中E0是入射粒子能量,E1是散射粒子能量。
由于库仑散射是弹性散射,则根据动量守恒和能量守恒可得,22011cos sin 121⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++⎟⎟⎠⎞⎜⎜⎝⎛⎟⎠⎞⎜⎝⎛−==M m M m M m E E K θθ由运动学因子公式可以看出:当入射离子种类(m ),能量(E 0)和探测角度(θ)一定时,E 1与M 成单值函数关系。
所以,通过测量一定角度散射离子的能量就可以确定靶原子的质量数M 。
这就是背散射定性分析靶元素种类的基本原理。
质量分辨率ΔM 定义1011011()(−∆=∆•=∆•=∆dMdK E E E KE d dM E dE dM M RBS 的质量分辨率10)(−=dM dK E E M δδ,δE 是RBS 探测器系统的能量分辨率,也就是可分辨的背散射离子最小的能量差别。
rbs卢瑟福背散射光谱
RBS(Rutherford Backscattering Spectroscopy)是一种自然科
学中的研究技术,利用高能束流(例如离子束)与试样碰撞而产生的背散射来分析样品的物理和结构性质。
而RBS卢瑟福
背散射光谱则是一种利用RBS技术进行表面成分分析的方法。
RBS技术的原理是,在束流与样品碰撞过程中,离子束与样
品中原子核之间发生散射作用,散射角度与碰撞的原子核的质量和能量有关。
其中卢瑟福背散射是一种特殊的散射过程,背散射指的是入射粒子从样品背面发生散射,而不是穿透样品。
通过测量入射粒子的背散射角度和能量变化,可以得到样品中原子核的信息,如原子核的质量、浓度和分布等。
因此,RBS 卢瑟福背散射光谱可以用于研究样品的表面成分、薄膜厚度、晶体结构和晶格缺陷等信息。
RBS卢瑟福背散射光谱在材料科学、固态物理、核物理等领
域有广泛的应用,常用于研究材料薄膜、半导体器件、涂层材料等的成分分析和特性表征。
题目:元素深度分布的卢瑟福背散射(RBS)分析元素深度分布的卢瑟福背散射(RBS)分析摘要卢瑟福背散射(RBS)分析是一种应用非常广泛的离子束分析技术。
1. 前言卢瑟福背散射分析是固体表面层和薄膜的简便、定量、可靠、非破坏性分析方法,是诸多的离子束分析技术中应用最为广泛的一种微分析技术。
其理论基础是在Rutherford、Gerger和Marsden发现了新原子模型(1909-1913)以后的一些年份里逐渐形成的。
在早期的应用中,背散射分析技术主要是用在一些与原子核有关的研究中,一般是通过分析背散射离子束来检测靶的玷污。
1967年背散射技术首次成功的应用于月球土壤成分分析,这是在非核领域第一个公开发表的实际应用例子。
发展至今,背散射技术已经成为一种十分成熟的离子分析技术。
它具有方法简单、可靠、快速(一般只需要30分钟)、无需标准样品就能得到定量分析结果、不必破坏样品宏观结构就能得到深度分布信息等独特优点。
背散射分析技术在固体物理、表面物理、材料科学、微电子学等领域得到广泛应用。
它是分析薄膜界面特性、固体表面层元素成分、杂质含量和元素深度分布以及化合物的化学配比不可缺少的分析手段。
此外,背散射分析与其他核核分析方法组合应用于同一样品,能获得更多的信息。
我国自七十年代起开始这方面的研究。
随着不断发展,背散射分析技术的应用范围也在不断的扩大。
例如,在考古领域,背散射分析可以研究一些大气中对环境不利的因素。
T.Huthwelker等提高利用卢瑟福背散射分析来研究大气浮质中痕量酸性气体(如HCl,HBr,SO2)的相互作用,这种相互作用与全球变暖、臭氧层耗损、酸雨等环境污染问题有很大的关系。
Ulrich K.Krieger等曾利用卢瑟福背散射测量易发挥物质在近表面层区的元素分布。
背散射分析技术分析速度快,能得出表面下不同种类原子的深度分布,并能进行定量分析。
结合沟道效应还能研究单晶样品的晶体完美性。
但它的深度分辨率不够高(一般为100~200埃),因而不能对最表面的原子层进行研究。