卢瑟福背散射分析 Rutherford Backscattering Spectrometry (RBS)
- 格式:ppt
- 大小:505.00 KB
- 文档页数:29
卢瑟福背散射谱法
卢瑟福背散射谱法
英文名称:Rutherford back scattering spectroscopy 定义:以兆电子伏特级的高能氢元素离子通过针形电极(探针)以掠射方式射入试样,大部分离子由于试样原子核的库仑作用产生卢瑟福散射,改变了运动方向而形成背散射。
测量背散射离子的能量、数量,分析试样所含有元素、含量和晶格的方法。
卢瑟福背散射光谱(RBS)是一种离子散射技术,用于薄膜成份分析。
RBS在量化而不需要参考标准方面是独一无二的。
在RBS测量中,高能量(MeV)He+离子指向样品,这样给定角度下背向散射He离子产生的能量及分布情况被记录下来。
因为每种元素的背向散射截面已知,就有可能从RBS谱内获得定量深度剖析(薄膜要小于1毫米厚).
1、RBS分析的理想用途
薄膜组成成份/厚度
区域浓度测定
薄膜密度测的(已知厚度)
2、RBS分析的相关产业
航天航空国防显示器半导体通信
3、RBS分析的优势
非破坏性成分分析无标准定量分析整个晶圆分析(150, 200, 300 mm)以及非常规大样品导体和绝缘体分析氢元素测量
4、RBS分析的局限性
大面积分析(~2 mm)
有用信息局限于top ~1 μm。
卢瑟福散射公式的推导及谈α粒子散射实验的应用意义摘要1909年卢瑟福和他的助手盖革(H.Geiger)及学生马斯登(E.Marsden)在做α粒子和薄箔散射实验时观察到绝大部分α粒子几乎是直接穿过铂箔,但偶然有大约1/8000α粒子发生散射角大于90°。
这一实验结果当时在英国被公认的汤姆逊原子模型根本无法解释。
在汤姆逊模型中正电荷分布于整个原子,根据对库仑力的分析,α粒子离球心越近,所受库仑力越小,而在原子外,原子是中性的,α粒子和原子间几乎没有相互作用力。
在球面上库仑力最大,也不可能发生大角度散射。
卢瑟福等人经过两年的分析,于1911年提出原子的核式模型,原子中的正电荷集中在原子中心很小的区域内,而且原子的全部质量也集中在这个区域内。
原子核的半径近似为10,约为原子半径的千万分之一。
α粒子散射实验是物理学史上具有里程碑意义的重要实验之一,评为“最美丽”的十大物理实验之三。
由α散射实验现象确立了原子的核式结构,为现代物理的发展奠定了基石。
从20世纪60年代中后期首先应用卢瑟福背散射于月球表面元素成分分析至今,成为成为一种常规的杂质成分、含量及深度分布、膜厚度分析手段。
本文首先介绍原子的的大小和质量,然后介绍原子有核模型提出的历史过程和α粒子散射实验的过程,根据α粒子散射实验中不可忽视的大角度散射引出卢瑟福原子模型,运用相关数学手段和理论力学的基本知识具体详细的推导出库伦散射公式和卢瑟福散射公式,指出了行星模型的意义和困难,并阐述了α粒子散射实验实际应用意义和α粒子试验仪在天体物理中的应用,在最后对相关数学手段和理论力学的相关知识进行了详细的介绍。
关键词:α粒子散射实验;库仑散射公式;卢瑟福散射公式;行星模型;原子稳定性AbstractIn 1909,Rutherford and his assistant Geiger (H. Geiger) and students Marsden (E. Marsden) doing α particles and thin foil scattering experiments observed that most of the α-particles is almost directly through the platinum foil But occasionally, about 1/8000α particles in the scattering angle greater than 90 °. The results of this experiment was to be accepted in the United Kingdom Thomson atomic model could not explain. Chiang Kai-shek in the Thomson model of charge distribution in the atom, based on the analysis of Coulomb force, α par ticles from the hot core closer, suffered the smaller Coulomb force, and in the atom, the atom is neutral, α particles and atoms almost no interaction. Coulomb force in the largest sphere, large angle scattering can not occur. Rutherford, who after two years of analysis, in 1911 proposed the nuclear atom-type model, the positive charge concentration of atoms at the atomic center of a very small area, and the atoms of all the quality of focus within the region. Radius of the nucleus is approximately 10, approximately ten-millionth of atomic radius. α-particle scattering experiment is a milestone in the history of physics in one of the important experiments, as the "most beautiful" of the top ten physics experiments III. Established by the α scattering behavio r of atoms and nuclear structure, the development of modern physics have laid a foundation. 60 years from the late 20th century, first applied Rutherford backscattering elemental composition analysis on the lunar surface so far as to become a routine impurity content and depth distribution, film thickness analysis tool. This paper describes the size and quality of the atom, then introduces a nuclear atom model proposed by the historical process and α-particle scattering process, according to α-particle scattering experiment can not be ignored in the large angle scattering leads to Rutherford atomic model, the use of relevant mathematics tools and basic knowledge of theoretical mechanics specific detailed Coulomb scattering formula is derived and the Rutherford scattering formula, that the planetary model of the significance and difficulties, and described the practical application of α-particle scattering experiment significance and α particle tester in astrophysics application of mathematical methods in the final of the relevant knowledge and theoretical mechanics, a detailed description.Keywords:Alpha particle Scattering experiments; Coulomb scattering formula; Rutherford formula; planetary model; Atomic stability目录绪论-------------------------------------------------------- 1第一章背景知识-------------------------------------------- 31.1 电子的发现------------------------------------------------------- 3 1.2 电子的电荷和质量-------------------------------------------------- 4 1.3 阿伏伽德罗常数---------------------------------------------------- 4 1.4 原子的大小------------------------------------------------------- 4第二章原子核式结构理论提出的历史过程----------------------- 62.1 汤姆孙在发现电子后提出的原子结构设想------------------------------ 6 2.2 开尔文原子模型---------------------------------------------------- 6 2.3 汤姆孙的葡萄干—布丁原子模型-------------------------------------- 7 2.4 勒那德的原子模型-------------------------------------------------- 7 2.5 长岗的土星原子模型------------------------------------------------ 8 2.6 尼克尔森的初始物质原子结构--------------------------------------- 9第三章α粒子散射实验及大角度散射现象的思考--------------- 103.1 α粒子散射实验--------------------------------------------------- 10 3.2 大角度散射现象引出的思考和核式模型的由来------------------------- 11第四章库伦散射公式及卢瑟福散射公式的推导------------------ 144.1 库伦散射公式----------------------------------------------------- 14 4.2 卢瑟福散射公式--------------------------------------------------- 16第五章卢瑟福理论的实验验证------------------------------- 185.1 卢瑟福散射公式的拓展--------------------------------------------- 18 5.2 卢瑟福理论的实验验证--------------------------------------------- 19 5.3 关于小角与180°处的卢瑟福公式----------------------------------- 21第六章α粒子散射实验的应用意义--------------------------- 226.1 对于α粒子散射实验的回顾和一些说明------------------------------ 22 6.2 用α粒子散射实验估计原子核大小--------------------------------- 22 6.3 α粒子散射实验的新应用——卢瑟福背散射分析---------------------- 24 6.4 粒子散射实验给我们今天留下的财富 ----------------------------- 24第七章行星模型的意义和困难-------------------------------- 267.1 行星模型的意义--------------------------------------------------- 26 7.2 行星模型的困难--------------------------------------------------- 26参考文献--------------------------------------------------- 28附录------------------------------------------------------- 29附录A 中心力---------------------------------------------------- 29附录B 极坐标------------------------------------------------------ 30附录C 两体问题--------------------------------------------------- 33绪论原子物理学是研究原子结构,运动规律及相互作用的物理学的一个分支,主要研究:原子的电子结构、原子光谱、原子之间或与其他物质的碰撞过程和相互作用。
rbs卢瑟福背散射光谱
RBS(Rutherford Backscattering Spectroscopy)是一种自然科
学中的研究技术,利用高能束流(例如离子束)与试样碰撞而产生的背散射来分析样品的物理和结构性质。
而RBS卢瑟福
背散射光谱则是一种利用RBS技术进行表面成分分析的方法。
RBS技术的原理是,在束流与样品碰撞过程中,离子束与样
品中原子核之间发生散射作用,散射角度与碰撞的原子核的质量和能量有关。
其中卢瑟福背散射是一种特殊的散射过程,背散射指的是入射粒子从样品背面发生散射,而不是穿透样品。
通过测量入射粒子的背散射角度和能量变化,可以得到样品中原子核的信息,如原子核的质量、浓度和分布等。
因此,RBS 卢瑟福背散射光谱可以用于研究样品的表面成分、薄膜厚度、晶体结构和晶格缺陷等信息。
RBS卢瑟福背散射光谱在材料科学、固态物理、核物理等领
域有广泛的应用,常用于研究材料薄膜、半导体器件、涂层材料等的成分分析和特性表征。
本科毕业论文(设计)论文(设计)题目:卢瑟福背散射(RBS)测量数据的拟合学院:理学院专业:电子科学与技术班级:电技071学号:************学生姓名:***指导教师:***2011年 6 月14 日贵州大学本科毕业论文(设计)诚信责任书本人郑重声明:本人呈交和毕业论文(设计),是在导师的指导下独立进行研究所完成。
毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均已注明出处。
特此声明。
论文(设计)作者签名:日期:目录摘要 (III)Abstract (IV)第一章绪论 (1)1.1 卢瑟福散射实验的简介 (1)1.2 卢瑟福散射实验的原理 (1)1.2.1库仑散射偏转角公式 (1)1.2.2卢瑟福散射公式 (3)1.3 卢瑟福散射实验的验证方法 (5)1.4 卢瑟福散射实验的装置 (6)1.4.1 散射真空室的结构 (6)1.4.2 电子学系统结构 (6)1.4.3 步进电机及其控制系统 (7)第二章卢瑟福背散射分析介绍 (8)2.1 卢瑟福背散射概述 (8)2.2 卢瑟福背散射基本原理 (9)2.2.1 运动学关系 (9)2.2.2 能量损失 (11)2.2.3 散射截面 (12)2.2.4 质量分辨率 (14)2.2.5 深度分辨率 (16)2.2.6 分析灵敏度 (16)2.2.7 背散射产额和能谱 (17)2.3 卢瑟福背散射(RBS)实验设备 (18)2.3.1 真空系统与靶室 (19)2.3.2 数据获取系统 (20)2.4 卢瑟福背散射(RBS)数据处理 (21)2.5 卢瑟福背散射(RBS)最佳试验条件选择和样品要求 (22)2.5.1 卢瑟福背散射(RBS)最佳试验条件选择 (22)2.5.2 卢瑟福背散射(RBS)样品要求 (23)第三章卢瑟福背散射的应用及拟合 (24)3.1 卢瑟福背散射应用的简介 (24)3.2 薄膜分析 (24)3.2.1 厚度测定 (24)3.2.2 组分分析 (26)3.2.3 薄膜反应、界面原子迁移 (27)3.3 杂质分析 (27)3.3.1 表面杂质浓度分析 (27)3.3.2 离子注入杂质层分析 (28)3.4 在其他方面的应用 (29)3.4.1 离子能量损失和能量歧离测量 (29)3.4.2 与沟道技术配合,研究单晶样品 (29)第四章卢瑟福背散射的发展 (30)4.1 用重离子弹性反冲轻质元素 (30)4.2 高能量入射离子的非卢瑟福散射 (30)4.3 杂质原子精确定位的沟道技术 (30)第五章结语 (31)参考文献 (32)致谢 (33)附录 (34)卢瑟福背散射(RBS)测量数据的拟合摘要本文对卢瑟福背散射分析的基本原理作了概要的介绍。
题目:元素深度分布的卢瑟福背散射(RBS)分析元素深度分布的卢瑟福背散射(RBS)分析摘要卢瑟福背散射(RBS)分析是一种应用非常广泛的离子束分析技术。
1. 前言卢瑟福背散射分析是固体表面层和薄膜的简便、定量、可靠、非破坏性分析方法,是诸多的离子束分析技术中应用最为广泛的一种微分析技术。
其理论基础是在Rutherford、Gerger和Marsden发现了新原子模型(1909-1913)以后的一些年份里逐渐形成的。
在早期的应用中,背散射分析技术主要是用在一些与原子核有关的研究中,一般是通过分析背散射离子束来检测靶的玷污。
1967年背散射技术首次成功的应用于月球土壤成分分析,这是在非核领域第一个公开发表的实际应用例子。
发展至今,背散射技术已经成为一种十分成熟的离子分析技术。
它具有方法简单、可靠、快速(一般只需要30分钟)、无需标准样品就能得到定量分析结果、不必破坏样品宏观结构就能得到深度分布信息等独特优点。
背散射分析技术在固体物理、表面物理、材料科学、微电子学等领域得到广泛应用。
它是分析薄膜界面特性、固体表面层元素成分、杂质含量和元素深度分布以及化合物的化学配比不可缺少的分析手段。
此外,背散射分析与其他核核分析方法组合应用于同一样品,能获得更多的信息。
我国自七十年代起开始这方面的研究。
随着不断发展,背散射分析技术的应用范围也在不断的扩大。
例如,在考古领域,背散射分析可以研究一些大气中对环境不利的因素。
T.Huthwelker等提高利用卢瑟福背散射分析来研究大气浮质中痕量酸性气体(如HCl,HBr,SO2)的相互作用,这种相互作用与全球变暖、臭氧层耗损、酸雨等环境污染问题有很大的关系。
Ulrich K.Krieger等曾利用卢瑟福背散射测量易发挥物质在近表面层区的元素分布。
背散射分析技术分析速度快,能得出表面下不同种类原子的深度分布,并能进行定量分析。
结合沟道效应还能研究单晶样品的晶体完美性。
但它的深度分辨率不够高(一般为100~200埃),因而不能对最表面的原子层进行研究。
卢瑟福背散射谱,简称背散射分析,是一种谱学分析技术,用于样品中元素的定性、定量和深度分布分析。
这种技术的理论基础是快速运动的入射离子受静止的靶原子核的库仑排斥作用而发生散射。
通过对散射离子能量的测量,可以确定靶原子的质量;通过对散射产额的测量,可以定量地确定靶原子的含量;通过对散射离子的能谱测量,可以确定靶原子的深度分布。
背散射谱分析方法主要用于:
1. 定性分析:通过测量不同元素的背散射谱,可以确定样品中存在的元素种类。
因为不同元素的原子核大小、电荷数和原子序数都不同,这些因素会影响背散射谱的形状和能量分布,因此通过比对标准谱库,可以确定样品中存在的元素种类。
2. 定量分析:通过测量背散射谱的强度,可以确定样品中各元素的含量。
因为背散射谱的强度与元素的原子序数和密度有关,因此通过比对标准样品,可以计算出各元素的含量。
3. 深度分布分析:通过测量不同能量的背散射谱,可以确定样品中元素的深度分布。
因为不同能量的背散射谱对应于不同深度的元素分布,因此通过测量一系列不同能量的背散射谱,可以绘制出元素在样品中的深度分布图。
背散射谱分析技术的应用范围非常广泛,包括材料科学、生物学、环境科学、能源科学等领域。
例如,在材料科学中,背散射谱可以用于研究材料的微观结构和成分分布;在生物学中,背散射谱可以用于研究生物组织的成分和结构;在环境科学中,背散射谱可以用于研究土壤、水体等环境中的元素分布和污染情况;在能源科学中,背散射谱可以用于研究燃料电池、太阳能电池等能源转换装置中的元素组成和性能。