液压正负流量控制定义
- 格式:doc
- 大小:22.50 KB
- 文档页数:4
液压阀的流量控制方法液压阀是液压系统中的重要元件,用于控制液体的流动和流量。
在液压系统中,流量的控制对于实现系统的稳定和精确控制是至关重要的。
本文将介绍液压阀的流量控制方法,以及如何选择和使用适合的液压阀来实现所需的流量控制。
一、液压阀的流量控制原理液压阀的流量控制原理主要是通过改变液体的流动阻力来实现的。
当液体流过液压阀时,阀口的大小和形状会改变液体的流动阻力,从而改变液体的流量。
通过调节阀口的大小和形状,可以实现对液体的流量进行精确控制。
二、液压阀的流量控制方法1.节流控制节流控制是液压阀流量控制中最常用的一种方法。
通过调节节流口的大小,可以改变液体的流量。
当节流口较小时,液体的流量也较小;当节流口较大时,液体的流量也较大。
节流控制具有结构简单、调节方便、可靠性强等优点,因此在液压系统中得到了广泛应用。
2.调速阀控制调速阀是一种特殊的节流阀,它通过内置的弹簧力来平衡阀芯两端的压差,从而实现对液体流量的精确控制。
调速阀具有稳定的流量特性,可以保证液体在稳定的流量下流动,因此常用于需要高精度流量控制的场合。
3.溢流阀控制溢流阀是一种安全保护元件,当系统压力过高时,溢流阀会自动打开,将多余的液体排回油箱,以防止系统压力过高对液压元件造成损坏。
同时,溢流阀也可以用作流量控制元件,通过调节溢流阀的开启压力,可以实现对液体流量的调节。
4.比例阀控制比例阀是一种可以按照输入信号的大小和方向,连续地控制液压系统中的压力和流量的元件。
比例阀具有调节方便、精度高、响应速度快等优点,因此在现代液压系统中得到了广泛应用。
通过调节比例阀的输入信号,可以实现对液压系统中液体流量的精确控制。
三、如何选择合适的液压阀实现流量控制在选择合适的液压阀实现流量控制时,需要考虑以下因素:1.所需流量的大小和调节范围;2.系统的工作压力和温度;3.液压油的粘度和清洁度;4.系统的安全保护需求;5.系统的成本和可靠性。
综上所述,液压阀的流量控制对于液压系统的稳定和精确控制至关重要。
常见液压回路介绍液压只有形成回路,才能发挥作用: 常见的液压回油有 1. 差动回路 2. 节流回路 3. 闭式容积回路 4. 多泵回路 5. 多缸回路 6. 闭式控制回路1, 差动回路:功能:在必要的时候提高有油缸伸出速度,使设备动作速度加快一般回路 差动回路 一般回路:u= q /A A 即速度(dm/min)=流量(L/min)/活塞截面积 (dm²) 1L=1dm ³p A = F /A A 即压力pA (N/㎡)=负载力(N )/活塞截面积(m²) 1Pa=1N/㎡ 差动回路:两腔都有压力,实际作业面积只是活塞杆截面积 u= q /A C 流量不变、,速度加快p A = F /A C 负载力不变,负载压力提高2、节流回路功能:通过控制流量来控制油缸速度进口节流出口节流旁路节流2.1 进口节流通过调节进口节流口面积,控制进入油缸的流量,最终控制油缸速度;2-1-1 进口节流 2-1-2 能量消耗 2-1-3 进口节流(恒压)能量消耗:液压功率=压力×流量(压强每升高5Mpa,液压温度上升约3°)图2-1-2图2-1-3,进入油缸流量qA与压差开方成正比,为保持恒定压力,增加溢流阀,成本最低,但会产生新的能耗,多余流量从溢流阀流出qY=qP-qA 溢流阀作为恒压阀2-1-4 能量消耗图2-1-5 采用恒压泵 图2-1-6 采用流量调节阀为减少能量损耗,用恒压泵实时调节泵输出流量,使输出流量几乎全部进入油缸,如超出油缸所需,减小泵排量。
图2-1-5采用流量调节阀,通过调节节流孔大小,实时控制压差,控制进入油缸流量 2.2 出口节流通过调节出口节流面积,限制油液流出,有杆腔有压力,油缸速度降低;图2-2-1 图2-2-2油缸速度与有杆腔流量qB 成正比,qB 由PB 和A 就决定,所以调节节流孔大小可以调节速度。
图2-2-3 图2-2-4 图2-2-5 以上原理同进口节流相似使用单向节流阀的进口节流回路:由于两腔面积不同,同样的速度时,进出流量不同,所以不同程度的节流。
近年来有部分的公司推出正流量控制,并且如此这般地说正流量有诸多好处,而我们日常生活中的常见的是负流量控制的,正负流量到底有什么差别呢?我们一起分析一下吧。
正流量控制系统:????? ?优点:主泵和先导操作手柄输出的压力成正比例关系(依据这些判断对主泵的液压油排量加以控制,因此得名正流量)主控制器根据先导压力信号及其变化趋势判断出流量需求及这种需求的变化趋势。
实现了对变量泵的实时控制,做到按需求供油。
相对于负流量控制系统,正流量”响应时间更短,流量动摇更小,可操作性更好,可提高工作效率约9%节油12%左右,系统的可靠性也更高。
????? ?缺点:技术含量高,只有少数几个企业掌握了这项技术。
负流量控制系统:?? 优点:能够充分利用发动机功率,根据负荷的大小自动调节泵流量,自动适应外载变化。
?? 缺点:使用过程中流量波动大、响应时间长、支配性能差。
????????从上面的分析可以看出,与“负流量”相比,正流量”除了技术难度高以外,其它性能方面都超过了负流量”随着“正流量”普及,采用“负流量”技术的厂家会感到越来越大的市场压力。
液压挖掘机作为一类快速、高效的旌工机械愈来愈被人们所认识。
它是一种大功率设备,其节能性的好坏直接影响了设备使用的经济性和可靠性。
挖掘机回转液压系统是液压挖掘机的重要组成部分,对其整机性能有着巨大的影响,本文通过研究挖掘机的节能,分析对比了传统挖掘机回转液压系统与负载敏感回转液压系统的效率1.1课题研究的背景和意义挖掘机是重要的建筑机械装备,应用于港口建设、房屋建筑、水利建设、国防工程、农田开发、道路工程等土石方施工和矿山的采掘,其对减轻人类的体力劳动,保证工程质量,加速建设速度,提高生产率发挥着巨大作用。
随着国民经济的快速发展,挖掘机在工程建设领域,特别是基础设施建设中的作用越来越明显,作为一类快速、高效的施工机械愈来愈被人们所认识。
据统计,2003年我国挖掘机总销售量突破6万台,其中国内液压挖掘机销量总和达到3.48万台,成为世界第一大挖掘机市场。
液压系统中的流量与压力控制技术液压系统是一种常见的工业动力传输方法,它通过压缩液体,将能量转化成机械能。
在液压系统中,流量和压力是两个非常重要的参数。
合适的流量和压力控制技术能够确保液压系统的工作稳定可靠,并且能够满足特定任务的需求。
本文就液压系统中的流量和压力控制技术进行介绍和分析。
一、流量控制技术在液压系统中,流量控制技术旨在确保液体以合适的速度流动。
流量控制有三种形式:手动控制、自动控制和压力控制。
以下是各种流量控制技术的详细分析:1、手动控制手动控制是一种简单直接的流量控制方式。
通过改变手动控制阀的位置,液体可以以不同速度流动。
流量的变化是直接相关的,即当手动控制阀的位置改变时,所得到的流量大小也相应改变。
手动控制技术适合要求不高的基础应用。
2、自动控制自动控制技术的实现需要使用流量传感器和控制器,它可以直接控制流量的大小。
流量传感器通过测量流体的流速来输出电信号,而控制器则根据输入的信号来改变阀的位置,从而实现流量的调整。
在液压系统中,常见的自动控制技术包括流量稳压控制、流量限制控制、流量分配控制等。
这些技术可以用于优化液压系统的特性和功能,满足不同的应用需求。
3、压力控制压力控制是一种将流量调整为所需值的流量控制方式。
通过改变液压系统中某些区域的压力,可以控制流量的大小。
常见的压力控制技术包括压力限制、压力补偿和压力序列控制。
对于某些液压设备,在特定的应用中需要保持精确的流量值。
这就需要使用压力控制技术,以确保液体以期望的速度流动。
压力控制的实现需要正确的传感器和控制器,以及合适的设计方案。
二、压力控制技术液压系统中的压力控制技术主要是为了保证液压系统提供合适的压力,确保系统的可靠性和稳定性。
以下是液压系统中常见的压力控制技术的详细分析:1、压力稳定控制在压力稳定控制下,系统控制器将监测系统压力并保持其不变。
这种压力控制应用于需要稳定压力的应用中,如油压机的应用。
压力稳定控制可确保持续压力,降低液压系统发生故障的风险。
液压泵工作原理解读Devin外观K3V系列a 1 a 2 P i2P m2 前泵调节器 后泵调节器前泵 后泵中间连接 齿轮泵B 3a 3基本构成泵工作原理图泵工作原理恒流量和交叉控制电磁比例控制 先导控制 负流量控制 低压回路泵工作原理K3V泵是变量斜盘式轴向柱塞泵,泵输出流量通过调节器调节斜盘角度,改变其输出流量。
控制方式主要包括:先导控制负流量控制电磁比例控制恒功率和交叉控制在实际工作过程中,这几种控制方式同时作用,来控制泵的输出流量。
只是在不同的工况下,其中之一或之二其主要作用,其它控制方式起辅助作用。
为了便于理解,下面单独一一介绍:先导控制P=0mpa由于柱塞泵自吸能力较差,顾在开始工作时,首先通过先导控制,让先导液压油流入柱塞泵调节器,增大斜盘角度,提高其自吸能力。
直到系统压力达到负流量控制工作压力,先导控制停止工作。
负流量控制基本原理负流量控制简图(仅用于帮助理解):假设在一个完整的液压系统回油油路上增加一个节流孔并并联一个设定溢流压力的溢流阀。
将节流孔前压力信号通过油路反馈到变量泵,情况一:当设备无动作或者动作较小时,执行元件(油缸或马达)不需要或仅需要少量油液,多余油液需要流回油箱,但是由于节流孔的存在,造成节流孔前压力升高:当压力开始升高时,高压信号反馈到变量泵,在泵内油液作用下,泵斜盘角度开始变小,泵输出流量降低;情况二:当设备进行多个复合动作时,执行元件需要大量油液供给,仅有少量或无油液流回液压油箱,此时节流孔前压力降低:当压力开始降低时,低压信号反馈到变量泵,在泵内弹簧力及油液的作用下,泵斜盘角度开始变大,泵输出流量增加;反馈压力与输出流量总是反方向的关系,即负流量控制;负流量控制当执行元件不工作时,负流量控制最强,随着执行元件工作幅度的增大或者进行复合动作,负流量控制逐渐被其他控制方式所取代,变为辅助控制,由于阀芯存在内泄,负流量控制不会完全消失。
(工作时间段:从泵开始工作到进入恒功率控制之间)恒流量控制阀芯伺服控制阀芯负流量控制私服活塞负流量控制;如上图Pi即为负流量控制,当反馈高压信号时,伺服活塞阀芯右移,油液通过伺服阀芯流入伺服活塞左腔,伺服活塞右移,斜盘角度变小,泵流量降低;当反馈低压信息时,伺服活塞阀芯左移,油液通过伺服阀芯流入伺服活塞右腔,伺服活塞左移,斜盘角度变大,泵流量升高。
所谓正负流量控制,说的是泵的控制方式。
负流量控制是通过负载返作用于泵,控制泵的排量,从而实现有动作时流量大,无动作时流量小。
正流量控制是人为控制泵的排量,需要大流量时就控制着输出一个大流量,需要小流量就控制着输出一个小流量。
液压系统中所有的控制都是由阀执行的。
简单的来说正负流量控制是指变量泵通过压力控制得到所需流量,负流量控制就是随着液控压力提高,泵摆向较小的排量。
正流量控制就是随着液控压力提高,泵摆向较大的排量。
挖掘机上为了更有效地利用发动机的功率通常都采用恒功率变量泵,所谓的恒功率变量泵通俗一点说就是泵的压力与泵的流量的乘积是一个常数,如果这个数值大于发动机的功率时就会出现我们常说的憋车。
所以每个设计者就其设计思想来说,都必须是使整个液压系统的功率无限接近发动机的功率而又绝对不能大于发动机的功率。
挖掘机的恒功率控制在挖掘机的恒功率控制上分为两个部分:一是泵内部的功率控制:他是根据本泵的输出压力和他泵(另一个泵)的输出压力对泵的排量进行的控制,当压力升高时,泵的排量随之减小;当压力降低时,泵的排量随之增大;如果系统的压力低于先导压力时则引入先导压力对其排量进行控制.无论是对于正流量还是负流量, 就此一部分而言,不管是从理论上还是从结构上都没有什么不同,也就是说在此部分没有什么正流量和负流量之分.这是液压泵恒功率控制的主体,在此不作讨论. 二是外部信号对泵的功率的控制:这里说的外部信号是指先导操作系统,主压力系统,发动机系统等等等等一切与泵的功率控制有关的信息的综合.在负流量中是负压信号和其它信号的综合,在正流量中是正压信号和其它信号的综合.这两个其它信号也没有什么不同,关键就在于负压信号和正压信号的区别.我们知道,在挖掘机上,各执行元件的速度会随操作手柄的行程的变化而变化,液压系统会根据这种变化对其排量进行控制,负流量和正流量的区别就在于这种变化的信号采集位置的不同.什么是负流量控制系统?手柄行程越大,对应的二次先导压力也会越大,由二次先导压力控制的主阀芯的开启度也会越大, 与之对应, 主阀芯的开启度越大,主油路分向执行元件的油越多,执行元件的速度就会越快,通过中位流经负压信号发生装置的油越少,负压信号的压力值就会越小;反之如果手柄行程越小,对应的二次先导压力也会越小,由二次先导压力控制的主阀芯的开启度也会越小, 与之对应, 主阀芯的开启度越小,主油路分向执行元件的油越少,执行元件的速度就会越慢, 通过中位流经负压信号发生装置的油就越多,负压信号的压力值就会越大.液压泵根据负压信号的压力值的大小来对其排量进行控制.这就是负流量控制.他的信号采集点是主油路中主控制阀的出口处什么是正流量控制系统?正流量控制系统,是力士乐上世纪80年代的技术,主要特点是:操纵手柄的先导压力不仅控制换向阀,还用来调节油泵的排量。
液压系统流量控制阀的工作原理
液压系统流量控制阀是液压系统中一种重要的控制元件,它能够控制液压系统中的流量,保证液压系统的正常工作。
流量控制阀的工作原理基于流体力学原理以及压力控制原理。
当液体从进口进入流量控制阀时,会在阀芯下方形成一个高压区域,而在阀芯上方形成一个低压区域。
当阀芯上方的压力与下方的压力相等时,阀芯就会停止移动,从而实现了对流量的控制。
流量控制阀的控制方式有两种:一种是通过调节阀口的大小来控制流量;另一种是通过调节阀芯的位置来控制流量。
其中,通过调节阀口大小的控制方式是通过改变阀口的大小来改变液体的流速和流量;而通过调节阀芯位置的控制方式是通过改变阀芯的位置来改变液体通过阀芯的截面积,从而改变液体的流速和流量。
流量控制阀的工作原理和控制方式决定了它在液压系统中的应用范围非常广泛。
在液压系统中,流量控制阀通常用于控制液压缸的速度,从而实现机械运动的平稳和精确控制。
此外,流量控制阀还可以用于防止液压系统中的冲击压力,保护液压系统中的其他元件。
- 1 -。
液压正负流量控制定义
本文来自爱液压论坛正负流量控制定义:
所谓正负流量控制,说的是泵的控制方式,变量泵有一个控制口,如果这个控制口的控制压力越高,泵的排量越大,就是正流量控制,反之就是负流量控制.
正负流量控制是指变量泵通过压力控制得到所需流量:负流量控制就是随着液控压力提高;泵摆向较小的排量。
正流量控制就是随着液控压力提高;泵摆向较大的排量。
现在一般的控制都是负流量控制!最典型的就是工程液压上面的多路阀用的就是负流量控制!(通过多路阀出口的液阻,液阻前后的压差值来控制的泵的流量,要是压差大就促使泵的流量变小,最后在小流量上维持一个平衡。
就是负流量控制)
采用负流量控制的原因是原动机的功率是一个定值,在不超过原动机的能力(功率)的情况下,使输出流量最大(即使工作机械得到最大的速度)。
负流量控制用得很多,基本上是配恒功率泵。
齿轮泵属于定量泵,对于定量泵是没有什么正负控制的。
而所谓的正负控制只是针对变量泵而言的。
泵的排量要有控制信号,在泵没有输出信号时,泵初如排量应为多少呢?很显然,要不就是近零左右的排量,要不就是
接近100%左右的排量。
这样大家所谓的正流量与负流量了吧!其就是泵排量与控制信号相对应关系的两种叫法!信号增加排量从零增加叫正排量控制(排量不就是流量吗?)
反之就是负流量控制!这种叫法对开式泵和比式泵都是一样的!
记住,只是泵的排量与信号的关系,别被挖机的以泵正流量负流量搞得乱晕晕的!你们要知道作为开式系统(阀控系统)最为典型和复杂的应用,在系统中泵只是一个流量源罢了!最重要还是阀的问题。
负流量控制是通过负载返作用于泵,控制泵的排量,从而实现有动作时流量大,无动作时流量小。
正流量控制是人为控制泵的排量,需要大流量时就控制着输出一个大流量,需要小流量就控制着输出一个小流量。
液压系统中所有的控制都是由阀执行的。
负流量一般小日本用得多,负载敏感欧美用得多。
正流量控制为力士乐技术。
正负流量是人为的叫法,讲的都是泵阀的控制方式。
负流量控制就是随着液控压力提高,泵摆向较小的排量;正流量控制就是随着液控压力提高,泵摆向较大的排量。
采用正流量主要是节能。
比负流量控制采用的成本要高。
正流量比较复杂,在工程机械上主要采用梭阀组采集先导信
号;负流量相对来说比较简单
正流量控制系统是力士乐上世纪80年代的技术,主要特点是:操纵手柄的先导压力不仅控制换向阀,还用来调节油泵的排量。
执行元件不工作的时候,油泵上没有先导压力,斜盘摆角最小,油泵只输出少量的备用流量。
操纵先导手柄,则液压先导回路中建立起与手柄偏转量成比例的压力来控制换向阀阀芯的位移和泵的排量。
油泵的流量和由此产生的执行元件的工作速度与先导压力-控制压力成正比例。
负流量控制系统,也是力士乐上世纪80年代的技术,主要特点是:按主操纵阀回油量的大小即主操纵阀阀后节流孔前建立相应的控制压力调节主油泵的排量。
主油泵的排量与该控制压力成反比。
正流量液压系统对于一些业内人士来讲可能比较陌生,其主要特点是主泵的排量与先导操作手柄输出的信号压力成正比。
主控制器根据先导压力信号及其变化趋势判断执行器的流量需求及其变化趋势,并据此对主泵排量实施调节,以使系统的流量供应能够动态跟随执行元件的流量需求,实现系统流量的实时匹配,达到“所得即所需”。
该系统相对负流量系统中位流量损失小,相对负载敏感系统则可靠性高,复合动作更节能。
该系列机器比其它机型工作效率提高了8%左右,能耗下降了10%左右负流量控制系统是指液压泵
负流量控制系统是指液压泵输出油液通过操纵阀(换向阀)阀
杆的控制将油分成两部分:一部分去液压缸或液压马达,是有效流量,另一部分通过阀中位回油道回油箱,为浪费的流量。
为控制这部分浪费流量,使它保持在尽可能小的范围内,在操纵阀中位回油道上加一个节流孔,通过节流孔产生压差,将节流口前压力引至泵排量调节机构来控制泵的排量。
通过节流孔的流量越大,则节流口前先导压力越大,泵排量越小。
泵变量机构的控制压力(先导压力)与泵排量呈反比关系,故称为负流量控制。
这种控制方式能减少流量损失。