函数的基本性质及常用结论
- 格式:doc
- 大小:357.50 KB
- 文档页数:5
高中数学函数常用结论在高中数学学习中,函数是一个非常重要的概念,它在数学中具有非常广泛的应用。
随着高中数学课程的深入,我们需要掌握一些常用结论,以便更好地理解和应用函数。
接下来,我将介绍一些高中数学函数常用结论,希望能够帮助大家更好地学习和掌握这一部分内容。
一、函数的基本性质1. 函数的定义域和值域对于函数$f(x)$,其中$x$的取值范围称为函数的定义域,而对应的函数值称为函数的值域。
在研究函数时,我们需要明确函数的定义域和值域,以便更好地理解函数的性质。
2. 函数的奇偶性如果对于任意$x \in D$,有$f(-x) = f(x)$,则函数为偶函数;如果对于任意$x \in D$,有$f(-x) = -f(x)$,则函数为奇函数。
通过函数的奇偶性,我们可以简化函数的研究和计算。
3. 函数的周期性如果存在正数$T$,使得对于任意$x \in D$,有$f(x+T) = f(x)$,则称函数$f(x)$为周期函数,而最小的正数$T$称为函数的周期。
函数的周期性在数学和物理等领域有着广泛的应用。
二、常见函数的图像和性质1. 一次函数$y = kx + b$一次函数的图像为一条直线,斜率$k$决定了直线的倾斜程度,而截距$b$决定了直线与$y$轴的交点。
一次函数是最简单的函数之一,常常用来描述直线运动和线性关系。
2. 二次函数$y = ax^2 + bx + c$二次函数的图像为一个抛物线,在平面几何中有着重要的应用。
二次函数的系数$a$决定了抛物线的开口方向,而系数$b$和$c$则决定了抛物线的位置和形状。
3. 指数函数$y = a^x$指数函数的图像呈现出指数增长或指数衰减的特点,是一种常见的增长模式。
指数函数在经济学、生物学等领域有着重要的应用,能够描述一些复杂的增长规律。
4. 对数函数$y = \log_a x$对数函数是指数函数的逆运算,能够解决指数方程和指数函数的性质。
对数函数在科学计算、信息论等领域有着广泛的应用,是一种十分重要的函数类型。
函数的四大性质总结知识点总结:一. 单调性:1. 定义:在定义域I 里,有两个任意自变量,当时,则f (x )在定义域单调增。
当时,则f (x )在定义域单调减。
2. 判断方法:①定义法(作差或作差比较);②图象法;③单调性的运算性质;④复合函数单调判断法则;⑤倒数法; 二. 奇偶性:偶函数 :f (-x )=f (x )(只需要满足这个式子就可以) 奇函数:f (-x )= - f (x )(只需要满足这个式子就可以) 三. 周期性:如果存在一个数a ,使得f (x+a )=f (x )[记忆方法:括号里面相减等于一个定值a],则f (x )为周期函数,T=a 。
周期函数有三种变形形式: 这三种形式的周期都为2a 。
四. 对称性:如果存在一个数a ,使得f (x+a )=f (a-x )[记忆方法:括号里面相加等于一个定值2a],则f (x )为对称函数,对称轴为x=a 。
对称性和周期性的结合:① f(x)关于(a,0)和(b,0)点对称,则f (x )是周期函数,T=2② f(x)关于直线x=a 和x=b 对称,则f (x )是周期函数,T=2 ③ f(x)关于点(a,0)和x=b 点对称,则f (x )是周期函数,T=4专题训练(一)函数的单调性 1、当⎪⎭⎫ ⎝⎛∈21,0x ,下列式子中正确的是(A )()11log >-x x (B )xx-+⎪⎭⎫ ⎝⎛>⎪⎭⎫⎝⎛112121 (C )()()232311x x -<+ (D )()11log 2->-x2、()()()4,2122∞-+-+=在x a x x f 上是减函数,则a 的取值围是( )(A )3-≤a (B )3-≥a (C )5≤a (D )3≥a3、设2log 3P =,3log 2Q =,23log (log 2)R =,则( ) A.R Q P <<B.P R Q <<C.Q R P <<D.R P Q <<3.1函数是单调函数时,的取值围 A . B . C . D .3.2、设偶函数f(x)的定义域为R ,当x ],0[+∞∈时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) (A )f(π)>f(-3)>f(-2) (B )f(π)>f(-2)>f(-3) (C )f(π)<f(-3)<f(-2) (D )f(π)<f(-2)<f(-3)3.3、函数()f x 是(,)-∞+∞上的增函数,若对于12,x x R ∈都有121()()()f x f x f x +≥-+2()f x -成立,则必有(A )12x x ≥ (B )12x x ≤ (C )120x x +≥ (D )120x x +≤ 3.4、已知函数f (x )、g (x )定义在同一区间D 上,f (x )是增函数,g (x )是减函数,且g (x )≠0,则在D 上Af(x)+g(x)一定是减函数 B f(x)-g(x)一定是增函数 C f(x)·g(x)一定是增函数 D )()(x g x f 一定是减函数4若0.52a =,πlog 3b =,22πlog sin 5c =,则( A ) A .a b c >> B .b a c >> C .c a b >>D .b c a >>5 函数f(x)=㏒0.5(x-1)(x+3)的单调递增区间是(A )A (-∞,-3)B (-∞,-1)C (1,∞)D (-3,-1)6设2lg ,(lg ),lg ,a e b e c e ===则(A )a b c >> (B )a c b >> (C )c a b >> (D )c b a >>7 下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x 的是 A .()f x =1xB ()f x =2(1)x -C ()f x =xe D ()ln(1)f x x =+ 8 定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-则A (3)(2)(1)f f f <-<B (1)(2)(3)f f f <-<C (2)(1)(3)f f f -<<D (3)(1)(2)f f f <<- 9已知函数()x f 是R 上的偶函数,且在区间[)+∞,0上是增函数.令⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan ,75cos ,72sin πππf c f b f a ,则 (A )(A) c a b << (B) a b c << (C) a c b << (D) c b a <<10.函数 的单调区间为11.f (x )= (1)判断函数的奇偶性(2)若y=f (x )在 上为减函数,求a 的取值围。
函数的基本性质及常用结论一、函数的单调性函数的单调性函数的单调性反映了函数图像的走势,高考中常考其一下作用:比较大小,解不等式,求最值。
定义:(略)定理1:[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数; []1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数。
定理2:(导数法确定单调区间) 若[]b a x ,∈,那么()[]b a x f x f ,)(0在⇔>'上是增函数; ()[]b a x f x f ,)(0在⇔<'上是减函数。
1.函数单调性的判断(证明)(1)作差法(定义法) (2)作商法 (3)导数法2。
复合函数的单调性的判定对于函数()y f u =和()u g x =,如果函数()u g x =在区间(,)a b 上具有单调性,当(),x a b ∈时(),u m n ∈,且函数()y f u =在区间(,)m n 上也具有单调性,则复合函数(())y f g x =在区间(),a b 具有单调性。
3。
由单调函数的四则运算所得到的函数的单调性的判断对于两个单调函数()f x 和()g x ,若它们的定义域分别为I 和J ,且I J ⋂≠∅:(1)当()f x 和()g x 具有相同的增减性时,①1()()()F x f x g x =+的增减性与()f x 相同,②2()()()F x f x g x =⋅、3()()()F x f x g x =-、4()()(()0)()f x F xg x g x =≠的增减性不能确定; (2)当()f x 和()g x 具有相异的增减性时,我们假设()f x 为增函数,()g x 为减函数,那么:①1()()()F x f x g x =+、②2()()()F x f x g x =⋅、4()()(()0)()f x F x g x g x =≠、5()()(()0)()g x F x f x f x =≠的增减性不能确定;③3()()()F x f x g x =-为增函数。
函数的概念与性质函数是数学中一种重要的概念,它在各个领域都有着广泛的应用。
本文将介绍函数的基本概念和性质,以帮助读者更好地理解和应用函数。
一、函数的概念函数是一个自变量和因变量之间的对应关系。
它将一个变量的值映射到另一个变量的值,通常表示为f(x),其中x为自变量,f(x)为因变量。
函数可以用图像、表格或公式的形式来表示。
函数的定义域是指自变量的所有可能取值的集合,值域是指函数对应的因变量的所有可能取值的集合。
一个函数可以在定义域内对每个自变量的取值,唯一地确定一个因变量的取值。
二、函数的性质1. 单调性:函数可以具有单调递增或单调递减的性质。
当自变量增大时,如果对应的因变量也增大,则函数为单调递增;当自变量增大时,如果对应的因变量减小,则函数为单调递减。
2. 奇偶性:函数可以具有奇函数或偶函数的性质。
当自变量取负值时,如果对应的因变量取相反数,则函数为奇函数;当自变量取负值时,如果对应的因变量不变,则函数为偶函数。
3. 零点:函数的零点是指使函数等于零的自变量的值。
如果函数的零点存在,可以用解方程的方法来求解。
4. 极值:函数的极值是指函数在其定义域上取得的最大值或最小值。
可以通过求导数或使用判别式的方法来确定函数的极值。
5. 逆函数:函数的逆函数是指满足条件f(f^(-1)(x)) = x和f^(-1)(f(x)) = x的函数。
逆函数可以将原函数的自变量与因变量互相转换。
6. 复合函数:复合函数是指函数嵌套在另一个函数中的情况。
例如f(g(x))表示将g(x)的结果作为自变量代入函数f中。
7. 函数图像:函数的图像是通过绘制自变量和因变量之间的对应关系得到的。
函数图像可以反映函数的性质和变化趋势。
8. 函数关系:函数的关系可以是线性的、二次的、指数的或对数的等。
不同的函数关系对应着不同的函数图像和性质。
总结:函数是数学中的重要概念,它描述了自变量和因变量之间的对应关系。
函数的概念和性质如零点、极值、逆函数等对于解题和理解数学问题都具有重要的意义。
《函数的基本性质》知识总结1.单调性函数的单调性是研究函数在定义域内某一范围的图象整体上升或下降的变化趋势,是研究函数图象在定义域内的局部变化性质。
⑴函数单调性的定义一般地,设函数()y f x =的定义域为A ,区间I A ⊆.如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调增函数,I 称为()y f x =的单调_____区间. 如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调减函数,I 称为()y f x =的单调_____区间.如果函数()y f x =在区间I 上是单调增函数或单调减函数,那么函数()y f x =在区间I 上具有________.单调性的等价定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时,有0)()(21<-x f x f0)]()([)(2121>-⋅-⇔x f x f x x 00)()(2121>∆∆⇔>--⇔xy x x x f x f ; ②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时,有0)()(21>-x f x f0)]()([)(2121<-⋅-⇔x f x f x x 00)()(2121<∆∆⇔<--⇔xy x x x f x f ; ⑵函数单调性的判定方法①定义法;②图像法;③复合函数法;④导数法;⑤特值法(用于小题),⑥结论法等.注意:①定义法(取值——作差——变形——定号——结论):设12[]x x a b ∈,,且12x x ≠,那么0)]()([)(2121>-⋅-x f x f x x 0)()(2121>--⇔x x x f x f )(x f ⇔在区间],[b a 上是增函数;0)]()([)(2121<-⋅-x f x f x x 0)()(2121<--⇔x x x f x f )(x f ⇔在区间],[b a 上是减函数。
《函数的基本性质》知识总结大全函数的基本性质是数学中非常重要的一部分内容,对于理解和应用函数有着重要的作用。
以下是《函数的基本性质》的知识总结大全:1. 定义域和值域:函数的定义域是指函数可以取值的所有实数的范围,值域是指函数实际取值的范围。
函数的定义域和值域可以用图像来表示。
2. 奇偶性:如果对于函数中的任意实数x,有f(-x) = f(x),则称函数f(x)为偶函数;如果对于函数中的任意实数x,有f(-x) = -f(x),则称函数f(x)为奇函数。
3. 函数的图像:函数的图像是指函数在坐标平面上的显示,可以通过画图来表示函数的特点。
可以通过图像来判断函数的增减性、极值、特殊点等。
4. 单调性:如果函数f(x)在定义域上是递增的,则称函数f(x)为增函数;如果函数f(x)在定义域上是递减的,则称函数f(x)为减函数。
5. 极值:如果函数在某一点上的函数值比它邻近的点上的函数值都大(或小),则称这个点为函数的极大值点(或极小值点)。
极大值和极小值统称为极值。
6. 零点:函数的零点是指函数在定义域上满足f(x) = 0的实数x的值。
7. 对称轴:如果函数的图像关于某一直线对称,则这条直线称为函数的对称轴。
8. 周期性:如果函数f(x)在一个定义域上的每一个x都有f(x+T) = f(x)成立,其中T>0,则称函数f(x)为周期函数,T称为函数的周期。
9. 常用函数:常用函数包括线性函数、二次函数、指数函数、对数函数、三角函数等,这些函数有着特殊的性质和应用。
10. 复合函数:复合函数是指由两个函数构成的新函数,其中一个函数的输出是另一个函数的输入。
复合函数的求值需要按照函数的定义进行计算。
关于函数的应用知识点总结一、函数的基本概念1. 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
具体来说,设A和B是两个非空集合,如果存在一个规则f,使得对于A中的任意元素x,都有一个对应的元素y∈B,那么我们就说f是从A到B的一个函数。
我们通常用f(x)来表示函数f对元素x的映射结果。
2. 函数的符号表示函数通常用f(x)、g(x)、h(x)等符号表示,其中x称为自变量,f(x)称为因变量。
自变量的取值范围称为函数的定义域,因变量的取值范围称为函数的值域。
3. 函数的性质函数可以分为线性函数、多项式函数、幂函数、指数函数、对数函数、三角函数、反三角函数等不同类型。
不同类型的函数具有不同的性质,例如线性函数的图像是一条直线,多项式函数的图像是曲线等。
二、函数的图像和性质1. 函数的图像函数的图像是自变量和因变量之间的关系在坐标系中的表示。
通常在直角坐标系中,自变量沿横轴,因变量沿纵轴,可以用一个曲线或者一系列点来表示函数的图像。
2. 函数的性质函数的性质可以通过图像的形状来进行观察和判断。
例如,函数的增减性、奇偶性、周期性等性质可以通过函数的图像来了解。
通过分析函数的性质,可以更好地理解函数的规律和特点。
三、函数的应用1. 函数在数学中的应用函数在数学中有着广泛的应用,例如在微积分中,函数被用来描述曲线的斜率、曲率、面积等概念。
在代数学中,函数被用来解方程、求极限、求导等。
在概率论和统计学中,函数被用来描述随机变量之间的关系等。
函数的应用贯穿于数学的方方面面,为数学的发展提供了重要的支撑。
2. 函数在物理中的应用函数在物理中有着重要的应用,例如在描述物体运动的过程中,速度、位移、加速度等物理量都可以用函数来表示。
在描述能量转化和传递的过程中,功率、能量等物理量也可以用函数来表示。
函数在物理学中有着广泛的应用,为理解和研究物理现象提供了重要的工具。
3. 函数在工程中的应用函数在工程中有着广泛的应用,例如在建筑设计中,通过函数来描述建筑物的结构和材料的力学性质。
高中数学函数知识点总结(精华版)知识分
享
高中数学函数知识点总结(精华版)知识分享
1. 函数的定义和性质
- 定义:函数是一个将各个元素从一个集合映射到另一个集合的规则。
- 函数的性质:单调性、奇偶性、周期性等。
2. 基本函数
- 幂函数:y = x^n,n为常数,图像为直线或曲线。
- 三角函数:包括正弦函数、余弦函数、正切函数等,图像具有周期性。
- 指数函数:y = a^x,a为正常数,图像单调递增或递减。
- 对数函数:y = log_a(x),a为正常数,图像单调递增或递减。
3. 函数的运算与变换
- 四则运算:加法、减法、乘法、除法。
- 复合运算:由两个或多个函数构成一个新的函数。
- 反函数:原函数与定义域互为值域的函数。
- 平移、压缩、翻折等函数的变换。
4. 函数的图像与性质
- 函数图像的绘制和分析方法。
- 函数的最值、零点、极值等特性。
5. 函数的应用
- 函数在物理、经济等领域的应用。
- 函数在数学建模中的应用。
6. 解函数方程
- 求函数方程的解法与步骤。
以上是高中数学函数知识点的精华总结和知识分享。
掌握这些知识能够帮助学生更好地理解和应用函数概念,提升数学能力。
注:本文档内容仅为总结分享,并不保证所有内容的正确性,请酌情参考。
函数的基本性质知识点总结1.函数的定义:函数是一种数学对象,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。
函数通常以符号表示,例如f(x)。
2.定义域:函数的定义域是指函数能够接受的自变量的值的集合。
它是函数能够有效进行计算的自变量的范围。
通常用符号表示为D(f)。
3.值域:函数的值域是指函数在定义域上所有可能的函数值的集合。
它是因变量的取值范围。
通常用符号表示为R(f)。
4.图像:函数的图像是指由函数的所有有序对(x,f(x))组成的点的集合。
可以通过将自变量的取值代入函数的表达式来确定函数的图像。
5.奇偶性:函数的奇偶性指函数在坐标系中的对称性。
一个函数被称为奇函数,如果对于定义域上的任何x值,-x处的函数值等于x处的相反数。
一个函数被称为偶函数,如果对于定义域上的任何x值,-x处的函数值等于x处的函数值。
6.单调性:函数的单调性指函数在定义域上的增减趋势。
一个函数被称为严格递增函数,如果对于定义域上的任意两个x值,f(x1)<f(x2)。
一个函数被称为严格递减函数,如果对于定义域上的任意两个x值,f(x1)>f(x2)。
7.周期性:函数的周期性指函数在定义域上以一定的周期重复。
一个函数被称为周期函数,如果存在一个正整数T,对于定义域上的任意x值,有f(x+T)=f(x)。
8.连续性:函数的连续性指函数在定义域上的无间断性。
一个函数在点x=c处连续,如果当x趋近于c时,f(x)趋近于f(c)。
一个函数在整个定义域上连续,如果它在每个点都连续。
9.可导性:函数的可导性指函数在一些点上的导数是否存在。
函数f(x)在点x=c处可导,如果当x趋近于c时,f(x)的斜率存在,并且等于c处的导数。
10.极值:函数的极值指函数在定义域上的最大值和最小值。
一个局部最大值是指函数在一些区间上的最大值,而不一定是整个定义域上的最大值。
一个局部最小值是指函数在一些区间上的最小值,而不一定是整个定义域上的最小值。
函数的性质(奇偶性,单调性,周期性,对称性一、奇偶性常用性质:1.0)(=x f 是既奇又偶函数;2.奇函数若在0=x 处有定义,则必有0)0(=f ;3.偶函数满足)()()(x f x f x f =-=;4.奇函数图象关于原点对称,偶函数图象关于y 轴对称;5.0)(=x f 除外的所有函数奇偶性满足:奇函数±奇函数=奇函数奇函数×奇函数=偶函数 奇函数±偶函数=非奇非偶 奇函数×偶函数=奇函数 偶函数±偶函数=偶函数 偶函数×偶函数=偶函数6.任何函数)(x f 可以写成一个奇函数2)()()(x f x f x --=ϕ和一个偶函数2)()()(x f x f x -+=ψ的和。
二、函数)(x f y =图象本身的对称性〔自身对称〕若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。
推论1:)()(x a f x a f -=+⇔)(x f y =的图象关于直线a x =对称推论2、)2()(x a f x f -=⇔)(x f y =的图象关于直线a x =对称推论3、)2()(x a f x f +=-⇔)(x f y =的图象关于直线a x =对称推论1、b x a f x a f 2)()(=-++⇔)(x f y =的图象关于点),(b a 对称推论2、b x a f x f 2)2()(=-+⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++-⇔)(x f y =的图象关于点),(b a 对称三、函数周期性的几个重要结论2、()()f x a f x b +=+⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2= 6、)(1)(1)(x f x f a x f +-=+⇔)(x f y =的周期为2T a = 7、()1()()1f x f x a f x ++=-⇔)(x f y =的周期为2T a = 8、)(1)(1)(x f x f a x f -+=+⇔)(x f y =的周期为a T 4= 9、)()()2(x f a x f a x f -+=+⇔)(x f y =的周期为a T 6=10、若.2, )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y =周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y =周期a T 4=跟踪练习1、定义在R 上的奇函数)(x f ,周期为6,那么方程0)(=x f 在区间[6,6-]上的根的个数可能是A.0 B.1 C.3 D.52、f (x )是定义在R 上的以3为周期的偶函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数至少是()A .1B .4C .3D .23、已知)(x f 是R 上的偶函数,)(x g 是R 上的奇函数,且)(x g =)1(-x f ,那么=)3120(f A.0 B.2 C.2- D.2±4、已知112)(-+=x x x f ,那么=+++++-+-+-)8()6()4()2()0()2()4()6(f f f f f f f f A.14 B.15 C.16- D.165、已知)(x f 的定义域为R ,若)1()1(+-x f x f 、都为奇函数,则A.)(x f 为偶函数B.)(x f 为奇函数C.)(x f =)2(+x fD.)3(+x f 为奇函数6、定义在R 上的函数)(x f 对任意的实数x 都有)1()1(--=+x f x f ,则下列结论一定成立的是A.)(x f 的周期为4B.)(x f 的周期为6C.)(x f 的图像关于直线1=x 对称D. )(x f 的图像关于点(1 , 0) 对称7、定义在R 上的函数)(x f 满足:)()(x f x f -=-,)1()1(x f x f -=+,当∈x [1-, 1]时,3)(x x f =,则=)2013(fA.1-B.0C.1D.28、定义在R 上的函数)(x f 对任意的实数x 都有)2()2(x f x f -=+,并且)1(+x f 为 偶函数. 若3)1(=f ,那么=)101(fA.1B.2C.3D.49、已知f (x )(x ∈R)为奇函数,f (2)=1,f (x +2)=f (x )+f (2),则f (3)等于()A.12 B .1C.32 D .2 10、若奇函数f (x )(x ∈R)满足f (3)=1,f (x +3)=f (x )+f (3),则f ⎝⎛⎭⎫32等于()A .0B .1C.12D .-1211、已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则()A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12、设()f x 为定义在R 上的奇函数,满足()()2f x f x +=-,当01x ≤≤时()f x x =,则()7.5f 等于〔〕A .0.5B .0.5-C .1.5D . 1.5-13、设()f x 是定义在R 上的偶函数,且在(-∞,0)上是增函数,则()2f -与()223f a a -+ 〔a R ∈〕的大小关系是〔〕A .()2f -<()223f a a -+B .()2f -≥()223f a a -+C .()2f ->()223f a a -+D .与a 的取值无关14、若函数()f x 为奇函数,且当0x >时,()1f x x =-,则当0x <时,有〔〕A .()f x 0>B .()f x 0<C .()f x ()f x -≤0D .()f x -()f x -0> 15、已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值X 围是〔〕A .a ≤-3B .a ≥-3C .a ≤5D .a ≥316、已知函数()()0f x x a x a a =+--≠,111)(-+-=x x x x g ,⎪⎩⎪⎨⎧≤+>+-=)0()0()(22x x x x x x x h , 则()()(),,f x g x h x 的奇偶性依次为〔〕A .奇函数,偶函数,奇函数B .奇函数,奇函数,偶函数C .奇函数,奇函数,奇函数D .奇函数,非奇非偶函数,奇函数17、已知函数()()221,f x x ax b b a b R =-++-+∈对任意实数x 都有()()11f x f x -=+成立,若当[]1,1x ∈-时,()0f x >恒成立,则b 的取值X 围是〔 〕A .10b -<<B .2b >C .12b b <->或D .不能确定18、已知函数()()2223f x x x =+-,那么〔〕 A .()y f x =在区间[]1,1-上是增函数 B .()y f x =在区间(],1-∞-上是增函数C .()y f x =在区间[]1,1-上是减函数D .()y f x =在区间(],1-∞-上是减函数19、函数()y f x =在()0,2上是增函数,函数()2y f x =+是偶函数,则下列结论中正确的是〔〕A .()57122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ C .()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭ 20、设函数()f x 是R 上的奇函数,且当0x >时,()23x f x =-,则()2f -等于〔〕A .1-B .114C .1D .114- 21、设函数)(x f 是R 上的偶函数,且在()+∞,0上是减函数,且12210x x x x >>+,,则 A.)()(21x f x f > B.)()(21x f x f = C.)()(21x f x f < D.不能确定22、函数()y f x =与()y g x =的定义域相同,且对定义域中任何x 有()()0f x f x -+=,()()1g x g x -=,若()1g x =的解集是{}0,则函数()()()()21f x F x f x g x =+-是〔〕 A .奇函数B .偶函数 C .既奇又偶函数 D .非奇非偶函数23、已知函数=)(x f ⎩⎨⎧<-≥-0,10,sin x e x x x x ,若)()2(2a f a f >-,则实数a 取值X 围是A. (1,-∞-)),2(+∞B. (1,2-)C. (2,1-)D. (2,-∞-)+∞,1( )A .0B .1C .2D .3二、填空题: 24、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 25、已知()f x 为偶函数,()g x 是奇函数,且()f x ()22g x x x -=+-,则()f x 、()g x 分别为;26、定义在()1,1-上的奇函数()21x m f x x nx +=++,则常数m =,n =; 27、已知f (x )是定义在实数集上的函数,且,32)1(,)(1)(1)2(+=-+=+f x f x f x f 若则 f (2005)=.28、函数()f x 定义域为R ,且对于一切实数,x y 都有()()()f x y f x f y +=+,试判断()f x 的奇偶性.29、设)(x f 是定义在R 上的奇函数,且对任意实数x 恒满足)()2(x f x f -=+,当]2,0[∈x 时22)(x x x f -=⑴求证:)(x f 是周期函数;⑵当]4,2[∈x 时,求)(x f 的解析式;⑶计算:+)0(f +)1(f +)2(f )2005(f +30、已知31≤a ≤1,若函数()221f x ax x =-+在区间[1,3]上的最大值为()M a ,最小值为()N a ,令()()()g a M a N a =-.〔1〕求()g a 的函数表达式;〔2〕判断函数()g a 在区间[31,1]上的单调性,并求出()g a 的最小值 .。
函数的性质知识点总结函数的性质知识点总结众所周知,函数是重点也是难点哈,函数性质,图像以及零点和分段函数是高考的热点哦,下面是小编为大家收集整理的函数的性质知识点总结,欢迎阅读。
一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x 轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
函数的基本性质知识点归纳与题型总结0=x2=f(x),所以f(x)为偶函数.4)因为f(x)有意义,则x>0,所以f(x)的定义域不关于原点对称。
所以f(x)为非奇非偶函数.二、知识归纳1.函数的单调性1)单调递增对于函数f(x),如果对于定义域内的任意两个数x1和x2,当x1<x2时,有f(x1)<f(x2),那么函数f(x)就叫做单调递增函数.2)单调递减对于函数f(x),如果对于定义域内的任意两个数x1和x2,当x1<x2时,有f(x1)>f(x2),那么函数f(x)就叫做单调递减函数.3)严格单调性如果对于定义域内的任意两个不相等的数x1和x2,有f(x1)<f(x2)或f(x1)>f(x2),那么函数f(x)就叫做严格单调函数.4)单调性判定设函数f(x)在区间[a,b]上连续,在(a,b)内可导,则①当f'(x)>0时,函数f(x)在(a,b)上单调递增;②当f'(x)<0时,函数f(x)在(a,b)上单调递减;③当f'(x)=0时,函数f(x)在x处取极值.2.函数的极值1)极值定义设函数f(x)在点x0的某个去心邻域内有定义,如果对于x0的任何一个邻域内的x值,都有f(x)≤f(x0)(或f(x)≥f(x0)),那么就称f(x0)是函数f(x)的一个极大值(或极小值),而x0就称为函数f(x)的一个极值点.2)判别极值的方法①一阶导数法设函数f(x)在点x0处可导,且f'(x0)=0,则1)当f''(x0)>0时,f(x0)是函数f(x)的一个极小值;2)当f''(x0)<0时,f(x0)是函数f(x)的一个极大值;3)当f''(x0)=0时,判别困难,需用其他方法.②二阶导数法设函数f(x)在点x0处二阶可导,则1)当f''(x0)>0时,f(x0)是函数f(x)的一个极小值;2)当f''(x0)<0时,f(x0)是函数f(x)的一个极大值;3)当f''(x0)=0时,判别困难,需用其他方法.3.函数的凹凸性1)凹函数对于函数f(x),如果对于定义域内的任意两个数x1和x2,以及任意实数λ(0<λ<1),都有f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),那么函数f(x)就叫做凹函数.2)凸函数对于函数f(x),如果对于定义域内的任意两个数x1和x2,以及任意实数λ(0<λ<1),都有f(λx1+(1-λ)x2)≥λf(x1)+(1-λ)f(x2),那么函数f(x)就叫做凸函数.3)严格凹凸性如果对于定义域内的任意两个不相等的数x1和x2,以及任意实数λ(0<λ<1),都有f(λx1+(1-λ)x2)λf(x1)+(1-λ)f(x2),那么函数f(x)就叫做严格凹函数或严格凸函数.4)凹凸性判定设函数f(x)在区间[a,b]上具有二阶导数,则①当f''(x)>0时,函数f(x)在(a,b)上是凹函数;②当f''(x)<0时,函数f(x)在(a,b)上是凸函数;③当f''(x)=0时,函数f(x)在x处可能是拐点.解题提醒:①判定函数的单调性时,要注意定义域的连续性和可导性.②判定函数的极值和拐点时,要注意函数的可导性和二阶导数的符号.题型二函数单调性、极值和凹凸性的判定典型例题:求函数f(x)=x3-3x2+3的单调性、极值和凹凸性.解:(1)单调性f'(x)=3x2-6x,令f'(x)=0,得x=0或x=2。
第一章函数与极限知识总结本章主要介绍了函数的定义、连续性、极限以及相关的定理和性质。
函数是数学中最基本的概念之一,它描述了变量之间的依赖关系。
函数的定义包括定义域、值域和对应规则等三个方面。
1.1函数的定义和基本性质函数是一种描述变量之间关系的方式,它由定义域、对应规则和值域组成。
定义域是自变量的取值范围,值域是因变量的取值范围。
函数可以用表格、图形和公式等方式表示。
在函数的定义中,一般要求对于定义域中的每一个自变量,都存在唯一的一个因变量与之对应。
对于函数在特定点的值,可以通过函数的极限来确定。
1.2函数的连续性连续性是函数的一个重要性质,它描述了函数在定义域的每一点处都能够保持连续的特性。
函数连续的三个条件是:函数在该点处有定义、函数在该点处存在极限、函数在该点处的极限等于函数在该点处的函数值。
如果函数在特定点处不连续,那么可以被分为可去间断点、跳跃间断点和无穷间断点三种情况。
可去间断点是指函数在该点处可以通过修补来使其连续,跳跃间断点是指函数在该点处存在左右极限但不相等,无穷间断点是指函数在该点处极限为无穷大或无穷小。
1.3函数的极限函数极限是描述函数在其中一点处的局部特性,它可以由函数的定义域中的一系列点的函数值所确定。
对于极限的求解,可以直接代入函数的定义,也可以通过函数的性质和定理进行推导计算。
函数极限的定义有两种形式,一种是ε-δ定义,另一种是无穷小定义。
ε-δ定义是基于函数的定义域中任意接近特定点的自变量值来确定极限。
无穷小定义是基于函数在特定点处函数值无限接近于其中一数值来确定极限。
1.4函数的基本性质函数的基本性质包括有界性、单调性、奇偶性和周期性等。
有界性是指函数在一定区间内的取值范围是有限的,单调性是指函数在一定区间上的增减性质。
奇偶性是指函数关于坐标原点对称,周期性是指函数在其中一间隔内的函数值重复出现。
在实际问题中,可以通过观察函数的图像和定义来判断函数的性质。
对于复杂的函数,可以通过求导来判断函数的单调性和凹凸性。
函数的基本性质知识点总结函数的基本性质基础知识:1.奇偶性1)定义:如果对于函数 $f(x)$ 定义域内的任意 $x$ 都有$f(-x)=-f(x)$,则称 $f(x)$ 为奇函数;如果对于函数 $f(x)$ 定义域内的任意 $x$ 都有 $f(-x)=f(x)$,则称 $f(x)$ 为偶函数。
如果函数 $f(x)$ 不具有上述性质,则 $f(x)$ 不具有奇偶性。
如果函数同时具有上述两条性质,则 $f(x)$ 既是奇函数,又是偶函数。
注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个 $x$,则 $-x$ 也一定是定义域内的一个自变量(即定义域关于原点对称)。
2)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定 $f(-x)$ 与 $f(x)$ 的关系;③作出相应结论:若 $f(-x) =f(x)$ 或 $f(-x)-f(x) = 0$,则 $f(x)$ 是偶函数;若 $f(-x)=-f(x)$ 或 $f(-x)+f(x) = 0$,则 $f(x)$ 是奇函数。
3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于 $y$ 轴成轴对称;②设 $f(x)$,$g(x)$ 的定义域分别是 $D_1$,$D_2$,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇2.单调性1)定义:一般地,设函数 $y=f(x)$ 的定义域为 $I$,如果对于定义域 $I$ 内的某个区间 $D$ 内的任意两个自变量$x_1$,$x_2$,当 $x_1f(x_2)$),那么就说 $f(x)$ 在区间$D$ 上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间 $D$ 内的任意两个自变量 $x_1$,$x_2$;当 $x_1<x_2$ 时,总有 $f(x_1)<f(x_2)$。
函数的基本性质及常用结论一、函数的单调性函数的单调性函数的单调性反映了函数图像的走势,高考中常考其一下作用:比较大小,解不等式,求最值。
定义:(略)定理1:[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数; []1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数. 定理2:(导数法确定单调区间) 若[]b a x ,∈,那么()[]b a x f x f ,)(0在⇔>'上是增函数; ()[]b a x f x f ,)(0在⇔<'上是减函数.1.函数单调性的判断(证明)(1)作差法(定义法) (2)作商法 (3)导数法2.复合函数的单调性的判定对于函数()y f u =和()u g x =,如果函数()u g x =在区间(,)a b 上具有单调性,当(),x a b ∈时(),u m n ∈,且函数()y f u =在区间(,)m n 上也具有单调性,则复合函数(())y f g x =在区间(),a b 具有单调性。
3.由单调函数的四则运算所得到的函数的单调性的判断对于两个单调函数()f x 和()g x ,若它们的定义域分别为I 和J ,且I J ⋂≠∅:(1)当()f x 和()g x 具有相同的增减性时,①1()()()F x f x g x =+的增减性与()f x 相同,②2()()()F x f x g x =⋅、3()()()F x f x g x =-、4()()(()0)()f x F xg x g x =≠的增减性不能确定; (2)当()f x 和()g x 具有相异的增减性时,我们假设()f x 为增函数,()g x 为减函数,那么:①1()()()F x f x g x =+、②2()()()F x f x g x =⋅、4()()(()0)()f x F x g x g x =≠、5()()(()0)()g x F x f x f x =≠的增减性不能确定;③3()()()F x f x g x =-为增函数。
4.奇偶函数的单调性奇函数在其定义域内的对称区间上的单调性相同,偶函数在其定义域内的对称区间上的单调性相反。
二、函数的对称性函数的对称性是函数的一个基本性质, 对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能够更简捷的使问题得到解决,对称关系同时还充分体现数学之美。
1.函数()y f x =的图象的对称性(自身):定理1: 函数()y f x =的图象关于直2a b x +=对称()()f a x f b x ⇔+=-()()f a b x f x ⇔+-= 特殊的有:①函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=。
②函数()y f x =的图象关于y 轴对称(偶函数))()(x f x f =-⇔。
③函数)(a x f y +=是偶函数)(x f ⇔关于a x =对称。
定理2:函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ⇔=--⇔b x a f x a f 2)()(=-++ 特殊的有:① 函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ⇔=--。
② 函数()y f x =的图象关于原点对称(奇函数))()(x f x f -=-⇔。
③ 函数)(a x f y +=是奇函数)(x f ⇔关于点()0,a 对称。
定理3:(性质)①若函数y =f (x )的图像有两条对称轴x =a 和x =b ,(a ≠b ),那么f (x )为周期函数且2|a -b |是它的一个周期。
②若函数y =f (x )的图像有一个对称中心M(m ,n )和一条铅直对称轴x=a,那么f (x )为周期函数且4|a -m |为它的一个周期。
③若函数y =f (x )图像同时关于点A (a ,c )和点B (b ,c )成中心对称(a ≠b ),则y =f (x )是周期函数,且2| a -b |是其一个周期。
④若一个函数的反函数是它本身,那么它的图像关于直线y =x 对称。
2.两个函数图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =-④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =--⑤函数y = f (x )与a -x = f (a -y )的图像关于直线x +y = a 成轴对称。
函数y = f (x )与x -a = f (y + a )的图像关于直线x -y = a 成轴对称。
函数y = f (x )的图像与x = f (y )的图像关于直线x = y 成轴对称。
三.奇偶函数性质对于两个具有奇偶性的函数()f x 和()g x ,若它们的定义域分别为I 和J ,且I J ⋂≠∅:(1)满足定义式子)()(x f x f =-(偶)0)()(=-+x f x f (奇)(2)在原点有定义的奇函数有0)0(=f(3)当()f x 和()g x 具有相同的奇偶性时,假设为奇函数,那么:①函数1()()()F x f x g x =+、3()()()F x f x g x =-也为奇函数;②2()()()F x f x g x =⋅、4()()(()0)()f x F x g x g x =≠为偶函数; ③两个偶函数之和、差、积、商为偶函数 (4)当()f x 和()g x 具有相异的奇偶性时,那么: ①1()()()F x f x g x =+、3()()()F x f x g x =-的奇偶性不能确定;简单地说:奇函数±奇函数=奇函数,偶函数±偶函数=偶函数,奇函数×奇函数=偶函数,偶函数×偶函数=偶函数,奇函数×偶函数=奇函数.②2()()()F x f x g x =⋅、4()()(()0)()f x F x g x g x =≠、5()()(()0)()g x F x f x f x =≠为奇函数。
(5)常见的奇偶函数 (6)任意函数)(x f 均可表示成一个奇函数[])()(21)(x f x f x g --=与一个偶函数[])()(21)(x f x f x h -+=的和。
(7)一般的奇函数都具有反函数,且依然是奇函数,偶函数没有反函数(8)图形的对称性 关于y 轴对称的函数(偶函数)关于原点()0,0对称的函数(奇函数)(9)若)(x f 是偶函数,则必有[])()(b ax f b ax f +-=+若)(x f 是奇函数,则必有[])()(b ax f b ax f +--=+(10)若)(b ax f +为偶函数,则必有)()(b ax f b ax f +-=+若)(b ax f +是奇函数,则必有)()(b ax f b ax f +--=+四、函数的周期性函数的周期性反映了函数的重复性,在试题中它的主要用途是将大值化小,负值化正,求值。
1.周期性的定义对于函数)(x f y =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,非零常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
如果非零常数T 是函数()f x 的周期,那么T -、nT (*n N ∈)也是函数()f x 的周期。
2. 函数的周期性的主要结论:结论1:如果()()f x a f x b +=+(a b ≠),那么()f x 是周期函数,其中一个周期T a b =-结论2:如果()()f x a f x b +=-+(a b ≠),那么()f x 是周期函数,其中一个周期2T a b =-结论3:如果定义在R 上的函数()f x 有两条对称轴x a =、x b =对称,那么()f x 是周期函数,其中一个周期2T a b =-结论4:如果偶函数()f x 的图像关于直线x a =(0a ≠)对称,那么()f x 是周期函数,其中一个周期2T a =结论5:如果奇函数()f x 的图像关于直线x a =(0a ≠)对称,那么()f x 是周期函数,其中一个周期4T a =结论6:如果函数同时关于两点(),a c 、(),b c (a b ≠)成中心对称,那么()f x 是周期函数,其中一个周期2T a b =-结论7:如果奇函数()f x 关于点(),a c (0a ≠)成中心对称,那么()f x 是周期函数,其中一个周期2T a =结论8:如果函数()f x 的图像关于点(),a c (0a ≠)成中心对称,且关于直线x b =(a b ≠)成轴对称,那么()f x 是周期函数,其中一个周期4T a b =-结论9:如果1()()f x p f x +=或1()()f x p f x +=-,那么()f x 是周期函数,其中一个周期2T p = 结论10:如果1()()21()p f x f x f x ++=-或1()()21()p f x f x f x -+=+,那么()f x 是周期函数,其中一个周期2T p =结论11:如果()()f x p f x +=-,那么()f x 是周期函数,其中一个周期2T p =。