四线制方向电路详解
- 格式:doc
- 大小:1.27 MB
- 文档页数:12
四线制方向电路浅析方向电路是双向自动闭塞的关键,它是两站间闭塞关系的基础,并通过它建立各站间的双向自动闭塞区间。
因此它是双向自动闭塞制式中不可缺少的关键。
为方便维修,减少对铁路运输的干扰,下面对四线制方向电路进行简单的分析,供大家参考。
一、主要技术条件:1、电路应能监督区间的空闲及占用和相邻车站接、发车状态。
确认整个区间空闲及对方未建立发车进路时方能改变运行方向。
2、改变运行方向应由处于接车状态的车站办理,随发车进路的办理而自动改变运行方向。
3、电路应防止当区间轨道电路瞬间分路不良时,错误改变运行方向。
4、电路应符合故障—安全原则,保证不出现敌对发车的可能。
5、电路应适用于各种制式的自动闭塞。
6、因故不能改变运行方向时,可使用辅助方式办理。
按辅助方式改变运行方向后,第一次出站信号的开放必须检查该相邻站间区间的空闲。
7、使用该电路的车站,应有相应的表示,在控制台上分别设置接、发车方向,接发车区间占用及辅助办理表示灯,相应的接、发车辅助按钮。
二、电路特点:1、四线制方向电路可以与车站电气集中、计算机联锁以及相应的区间设备配合构成双向运行的自动闭塞区段(包括单线、双线以及三线等)。
2、电路把原两线制电路完成的控制和监督区间这两项“任务”分别由两个回路的四根线完成,二者之间互不干扰,使电路的故障机率大大降低,提高电路动作可靠性,从而保证了运输的需要,实现了安全和效率的统一。
3、本电路在改变运行方向时,对区间的监督(即确认区间空闲与否)只在电路转换运行方向之前进行检查,一旦开始转换运行方向,方向电路就保证继续工作直到把对方站改为接车站及本站改为发车站为止,不因发生任何故障(此处所指“故障”为轨道电路或监督回路的故障)而妨碍改变运行方向的全过程。
4、电路考虑了监督区间电路故障时的辅助办理电路。
它能依靠辅助办理当轨道电路故障、区间监督回路故障、方向混乱(“双接”、“双发”)的情况下,改变运行方向。
5、不论区间有无列车占用,方向回路内各方向继电器线圈中保持定向电流,它能提高系统的安全可靠性。
四线制改变运行方向电路的操作第一节四线制方向电路使用说明电路组成:对应每个车站的每一接车方向设一套改变运行方向电路,相邻两站间该方向的改变运行方向电路由4根外线组成完整的改变运行方向电路。
对于单线区段,一般车站每端需设一套改变运行方向电路。
对于双线区段,一般车站每端需设两套改变运行方向电路。
每一端的改变运行方向电路由14个继电器组成,分别为两个组合,称为改变运行方向主组合FZ和辅助组合FF。
改变运行方向组合组成四线制改变运行方向电路由方向继电器电路、监督区间继电器电路、局部电路、辅助办理电路和表示电路等组成。
方向继电器电路的作用是改变列车的运行方向。
监督区间继电器电路的作用是监督区间是否空闲,保证只有在区间空闲时才能改变运行方向。
局部电路的作用是当改变运行方向时控制方向继电器的电流极性,以控制辅助办理电路以实现运行方向的改变。
辅助办理电路的作用是当监督电路发生故障或改变方向电路瞬间突然停电或方向电路瞬间故障,不能正常改变运行方向时,借助辅助办理电路,实现运行方向的改变。
表示电路的作用是表示两站区间闭塞状态,及改变运行方向电路的动作情况。
1、正常办理:当区间自动闭塞设备和车站联锁设备工作正常时,可以按“正常办理”方式改变区间运行方向,即当接车站一方排列出一条发车进路时,方向电路将随之自动动作,进而改变区间的运行方向。
假定有相邻的甲、乙两个站,其中甲站处于接车站状态,其接车方向灯JD(黄灯)亮,而乙站处于发车站状态,其发车方向灯FD(绿灯)亮,区间空闲,两站的监督区间占用灯JQD(红灯)均熄灭。
若甲站需要发车,则可按正常办理的方式来改变区间的运行方向。
此时甲站值班员办理一条发车进路,当该进路被选通时,方向电路将会自动地改变区间的运行方向,即先将乙站改为接车站状态(其发车方向灯FD先熄灭,接车方向灯JD后点亮),再将甲站改为发车站状态(其接车方向灯JD先熄灭,然后发车方向灯FD后点亮),当运行方向被改变且发车进路锁闭后,甲、乙两站的监督区间占用灯JQD会同时灭,即表示区间已进入闭塞状态,甲站的出站信号机也随之开放,允许列车进入区间。
四线制自闭方向电路一、各按钮作用及表示灯显示意义1、总辅助按钮:为带铅封非自复式按钮,辅助办理时,先按压该按钮后按发车辅助按钮(或接车辅助按钮)。
2、发车辅助按钮:为带铅封自复式按钮,辅助办理时,原接车站按压发车辅助按钮后使运行方向改变。
3、接车辅助按钮:为带铅封自复式按钮,辅助办理时,原发车站一方在对方站按压发车辅助按钮后按压该按钮使运行方向转变。
4、计数器:每按压一次总辅助按钮及发车辅助按钮(或接车辅助按钮)后,计数一次。
5、发车表示灯:发车站亮绿灯,接车站灭灯。
6、接车表示灯:接车站亮黄灯,发车站灭灯。
7、监督区间表示灯:区间空闲、发车站未向发车口排列列车进路则,监督区间表示灯灭灯;发车站向发车口排列列车进路,区间有车占用或欧间区间轨道电路故障(轨道电路短路或断轨)则监督区间表示灯;辅助办理时按压总辅助按扭及发车辅助按扭(或接车辅助按扭)闪红灯,运行方向改变后又亮红灯。
8、辅助办理表示灯:平时灭灯,辅助办理时按压总辅助按扭及发车辅助按扭(或接车辅助按扭)闪白灯,接通外线后亮白灯,按扭松开后灭灯。
二、正常情况下各表示灯的状态1、在区间空闲、发车站未向发车口排列列车进路情况下,发车口发车表示灯亮绿灯,其余表示灯;接车口接车表示灯亮黄灯,其余表示灯灭灯。
2、发车站向发车口排列列车进路后,两站监督区间表示灯均灭灯。
三、正常办理操作过程在监督区间表示灯灭灯情况下,由原接车站向接车口排列一条发车进路(出站信号机延时开放),运行方向自动改变,原接车站接车表示灯灭,发车表示灯绿灯亮,原发车站发车表示灯灭,接车表示灯黄灯亮;在远行方向改变后延时13秒出站信号机开放,监督区间表示灯亮红灯。
注:1、只有接车站有权改变列车运行方向。
2、向逆向办理发车进路时,采用的是站间闭塞,若2JGJ轨道故障亮红光带,则不能开放出站信号机;若开放逆向出站信号机后,2JGJ轨道瞬间短路造成逆向出站信号机关闭,此时必须先取消该进后重新办理发车进路。
结合电路说明D F四线制方向电路Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】一、单线半自动闭塞a)驱采继电器:驱动:BSAJ、FUAU、SGAJ 、FSBJ、JSBJ闭塞按钮继电器、复原按钮继电器、事故按钮继电器、发车锁闭继电器、接车锁闭继电器。
采集:KTJ(前后接点)、XZJ、TCJ 、HDJ、FDJ、BSJ、TJJ、GDJ、JSBJ、FXJ 、ZXJb)联锁条件:(1)向闭塞口开信号条件:KTJ↑、XZJ↓--→允许开放发车信号(2)平时JSBJ↓,JSBJ↑驱动条件如下:i.接近轨↓、YXJP↑或LXJP↑ii.JSBJ↑、接车道岔在锁闭(3)平时FSBJ↑,有该口的列车发车进路时FSBJ↓(4)事故、复原、闭塞按钮继电器SGAJ 、FUAJ、BSAJ平时↓,按钮按下后,驱动对应按钮继电器↑,2秒后再落下↓。
c)显示及语音提示(1)发车表示灯显示(红0x08、黄0x0C、绿0x04)TCJ↑、HDJ↑--→红色TCJ↓、TJJ↓、BSJ↓--→红色TCJ↓、TJJ↓、BSJ↑、KTJ↑--→绿色TCJ↓、TJJ↓、BSJ↑、KTJ↓、GDJ↑--→黄色其他--→无色(2)接车表示灯显示(红0x02、黄0x03、绿0x01)TCJ↑--→红色TCJ↓、TJJ↑、BSJ↑、FDJ↓、HDJ↓--→黄色TCJ↓、TJJ↑、BSJ↓--→绿色其他--→无色(3)接近轨↓、TCJ↑--→发出列车接近语音(0x10)(4)FXJ↑--→发出特殊声响(0x20)(5)ZXJ↑、FXJ↓--→发出闭塞声响(0x40)二、复线半自动闭塞a)驱采继电器:驱动:FUAJ、SGAJ、FDCSJ、JDCSJ、LZJ复原按钮继电器、事故按钮继电器、发车锁闭继电器、接车锁闭继电器、列车终端继电器。
采集:TCJ、DDJ、BSJ、KTJ(前后接点)、TDJ、JXJ 、JDCSJ、FDCSJb)联锁条件:(1)向闭塞口开信号条件:KTJ↑、TDJ↓--→允许开放发车信号(2)发车口平时--→FDCSJ↑、LZJ↓发车道岔已锁闭、有列车发车--→FDCSJ↓、LZJ↑发车道岔已锁闭、无列车发车--→FDCSJ↓、LZJ↓(3)接车口接车道岔已锁闭--→JDCSJ↓接车道岔未锁闭--→JDCSJ↑(4)事故、复原按钮继电器SGAJ 、FUAJ平时↓,按钮按下后,驱动对应按钮继电器↑,2秒后再落下↓。
四线制改变运行方向电路的动作细解
西安电务段
张明琪
关键词:改变方向电路继电器局部控制监督动作辅助流程全文先是介绍了方向电路的继电器组合及局部电路,其次着重剖析了正常改方与辅助改方时控制电路的动作过程,然后描述了监督电路,最后总结了处理方向电路故障的流程。
在双线双向自动闭塞区段,我们现场职工很少接触改方电路,只有每月一次的改方试验的接触机会,自然对改方电路也就不是那么熟悉了,为此本人搜集了有关资料,并结合实际经验,谈谈自己的认识,希望能帮助各位同事更加深刻地了解方向电路.
双线双向自动闭塞区段,反向不设通过信号机,凭机车信号的显示运行.反方向运行时,通过改变运行方向,转换区间的发送和接受设备,并使规定的信号机灭灯。
改变运行方向电路的作用是:1、确定列车的运行方向,即确定接车站和发车站;
2、转换区间的发送和接收设备;
3、转换区间通过信号机的点灯电路。
四线制改变运行方向电路将改变区间运行方向的控制电路和监督区间是否空闲的监督电路分别使用一条互相独立的二线制电路,提高了安全性、可靠性及运输效率. 一、四线制改方电路的继电器组合及局部继电器励磁电路
四线制改方电路是指在甲乙两站的每一个接车方向设置一套改变运行方向电路,通过四根外线联系组成完整的改变运行方向电路。
每一端的改变运行方向电路由15个继电器组成,分为两个组合,改方辅助组合FF和改方主组合FZ。
如表格1所示.
继电器的作用如下:
FJ1控制接发车表示灯,与FJ2一起控制KXJ动作。
FJ2控制区间信号点QZJ、QFJ,与FJ1控制KXJ动作。
KXJ用FJ1、FJ2、1LQJ(反向时3JGJ)来检查出站信号的区间闭塞条件是否满足。
KJ是在区间空闲的条件下辅助改方时控制KXJ的动作。
FAJ在正常改方时记录发车进路的建立,在JQJ2F吸起条件下动作GFJ。
FSJ用来反映发车进路的锁闭情况,区间空闲时控制JQJ的动作,在发车进路已锁闭的情况下禁止辅助办理改方。
FFJ在JQD红灯或双接(两站接车灯均亮)的情况下用以欲发车的车站辅助办理改变运行方向.
JFJ在JQD红灯或双接(两站接车灯均亮)的情况下用以欲接车的车站辅助办理改变运行方向。
DJ在正常改方时短路FGFJ,不许FGFJ接入方向电路,在辅助改方时将FGFJ接入方向电路,吸气后点亮FZD证明正在进行辅助办理。
JQJ监督区间是否空闲或占用,监督两站是否办理发车进路,改方动作后不起监督作用。
JQJF复示接车口JQJ的动作(因为发车口GFFJ落下),利用缓吸13S来防止短车(如单机)瞬间分路不良而车站又恰好倒方向导致双发的可能.
JQJ2F在平时与正常改方时用1—2线圈复示JQJF的动作,在辅助改方时用3-4线圈反复示JQJ的动作,双线圈均有阻容缓放支路用于在GFFJ落下后利用其缓放功能短路外线反电动势确保FJ1动作正确。
GFJ正常办理时记录FAJ动作改变运行方向;辅助办理时记录FGFJ动作改变运行方向。
GFFJ原接车口在GFJ吸起后利用其缓放将两站的电源串接,使两站FJ2可靠转极;原接车口在GFJ吸气后利用其完全落下将原接车口送来电源短接,消除外线上的纵感应电动势,确保FJ1动作正确。
FGFJ原接车口辅助改方时控制GFJ、GFFJ、JQJ2F动作;在原发车口改方时不起作用。
继电器的励磁电路图如下所示
KF
KF
KF
KF
KF
KF
KF
GFJ 、GFFJ 、JQJF 、JQJ2F 、DJ 、JFJ 、
KJ 、FFJ 、KXJ 继电器励磁电路图
.二、四线制改方电路的控制电路和监督电路组成
图1 四线制方向电路图
四线制改变运行方向电路将改变区间运行方向的控制电路和监督区间是否空闲的监督电路分别使用了一条互相独立的二线制电路,如图1所示(区间空闲,且甲乙两站均未办理发车的情况),上面的为控制方向电路图,下面的为监督方向电路图,正常情况下,发车站(甲站)GFJ、FSJ、JQJ处于吸起状态,接车站(乙站)FJ1、FJ2、FSJ、JQJ、JQJF、JQJ2F、GFFJ处于吸起状态。
从图中可以看出方向继电器(FJ1、FJ2)是由接车站向发车站提供电源,其状态直接反映了区间开通的方向;监督继电器(JQJ)是由发车站向接车站提供电源,其状态直接反映了区间的占用情况.电源是经过了硅整流器FZG(ZG1—220/0.1,100/0.1型)经过整流后输出,其输入为50HZ交流220V,输出为100HZ的两路独立电源,最大输出为100V。
三、正常改方动作中的控制电路
正常办理改方时,原接车站(乙站)GFJ吸起,GFFJ缓放还未落下时接通甲站方向电源FZ、FF,向方向电路发送反极性电流,使甲站FJ1转极后定位吸起,转极电路如图2所示。
RF
RF
图2 甲站FJ1转极电路
甲站FJ1转极后,使GFJ落下,并利用原接车站(乙站)GFFJ的缓放,使甲站的方向电源与乙站的方向电源短时间正向串联,形成两倍的供电电压,使方向继电器甲站FJ2可靠转极后吸起及乙站FJ2可靠转极后落下,转极电路如图3所示。
RF
RF
图3 串联电源保证了两站的FJ2的可靠转极
甲站GFFJ缓放落下后,断开乙站的方向电源,电源由甲站独自提供.GFFJ落下使JQJF落下,JQJ2F经短时间缓放后落下,接通乙站(原接车站)FJ1的线圈,使之转极后反位落下。
FJ1转极后,乙站就改为发车站,甲站改为接车站,两站电路已经完成了改变运行方向的任务。
如图4所示
RF
RF
图4 改完方的方向电路图
整个改方电路的动作顺序可以简单归纳为六步:原接车站GFJ吸起→原发车站FJ1转极后为定位吸起,→原发车站GFJ落下,方向电源串接,两站FJ2可靠转极→原接车站GFFJ缓放落下→原接车站JQJ2F落下→原接车站FJ1转极后为反位落下(改方完成).可以这样理解,改方是由原接车站的GFJ吸起开始,以FJ1转极后反位落下而结束.
四、辅助改变方向
辅助改变方向时原接车站(乙站)FFJ吸起,切断了甲站向乙站的供电电路,并使短路继电器DJ缓吸。
当原发车站(甲站)JFJ吸起后,甲站通过JFJ的3、4组的前接点向乙站提供电源,使甲站FGFJ吸起,如图5所示。
FGFJ吸起
后使JQJ2F(图c)、GFJ吸起(图e)。
RF
RF
图5 FGFJ吸起电路图
由于JFJ的吸起是靠电容放电保持的,等电容放电结束后JFJ就自动落下,如图d所示。
JFJ的落下就切断了甲站对乙站FGFJ的供电电路,而FGFJ落下就切断了FFJ的励磁电路,使FFJ落下.这样就勾通了乙站向甲站发送的转极电流,使甲站FJ1转极.甲站FJ1转极后,使GFJ落下,进而构成甲站、乙站方向电源串接,确保FJ2的可靠转极。
在乙站,当GFJ吸起后,FGFJ已落下时,GFFJ、JQJF、JQJ2F先后断电缓放。
GFFJ缓放后,JQJ2F仍在吸起,转极电源被接在FJ1,线圈4与GFFJ13接点的连接所短路,从而防止外线混线或其他原因而产生的感应电势使FJ1错误转极.等JQJ2F经缓放落下后,FJ1接入供电电路,从而转极,电路图如图4所示,至此,改方完成.
辅助改方电路动作顺序可以归纳为:原接车站(乙站)FFJ吸起,原发车站(甲站)JFJ吸起→原接车站(乙站)FGFJ吸起→乙站GFJ、JQJ2F吸起,甲站JFJ 落下→乙站提供转极电流,甲站FJ1转极后吸起→GFJ落下→两站电源串接→两站FJ2可靠转极→FGFJ落下,GFFJ、JQJF、JQJ2F缓放→乙站FJ1转极落下(改方完成)。
五、监督区间继电器电路
监督区间继电器电路的中串联了GFJ 、FSJ及各个闭塞分区的QGJ,QGJ吸起说明闭塞分区空闲,FSJ吸起说明无接车或发车进路,因此JQJ的作用就是监督区间是否空闲,保证只有在空闲的情况下才能改变运行方向.
而JQJ采用的是无极缓放继电器,这样,无论电路中通过哪种极性的电流都可吸起,并且其缓放的作用则实现了转换电源极性保持吸起.
图6 监督电路图
六、故障处理程序
方向电路发生故障首先判断是监督电路故障还是控制电路故障,其次判断是发车站还是接车站,然后再逐渐缩小范围,最后进行处理,如流程图1。
在处理故障前首先必须明白的一个原则:监督电路是由发车站送电,控制电路是由接车站送电。
如果控制台显示区间没有被占用,两站都没有发车进路,但是方向灯为红色,可以断定为监督电路故障,观察FSJ的状态,落下说明FSJ故障;FSJ吸起则检查JQJ的1-4线圈有无电压,有正常电压说明JQJ故障,无电压则说明JQJ励磁电路故障,进一步判断故障在发车站还是在接车站,在分线盘上测试如果都没有电压和电流则说明故障在发车站室内,如果只有发车站有电压无电流则说明外线开路,如果都有足够的电压无电流则说明故障在接车站室内,如流程图2。
观察故障现象
判断是监督电路故障
还是控制电路故障
判断是发车站室内还是接
车站室内还是外线故障
查找处理
流程图1 故障判断流程
流程图2 监督电路故障处理流程
在方向控制电路中,FJ1、FJ2的状态直接决定了区间开通的方向。
发车站的FJ1、FJ2反位落下,接车站的FJ1、FJ2定位吸起。
FJ1反位落下时,GFJ吸起;FJ1定位吸起时,GFJ落下。
FJ2定位吸起则QZJ吸起,QZJ吸起则区间通过信号机点亮;FJ2反位落下则QFJ吸起,QFJ吸起则区间通过信号机灭灯。
处理故障流程如下:
流程图3 控制电路故障处理流程。