一道数学奥林匹克问题的多种解法(不等式)(word版)
- 格式:docx
- 大小:32.22 KB
- 文档页数:3
奥数之解不等式奥数(奥林匹克数学竞赛)是一项旨在培养学生创造力、逻辑推理和解决复杂数学问题能力的竞赛活动。
在奥数的题目中,解不等式是常见的一种题型。
解不等式需要我们找到一个变量的取值范围,使得不等式成立。
本文将介绍解不等式的方法以及一些常见技巧。
一、一元一次不等式一元一次不等式是指只有一个变量、一次方程的不等式。
解一元一次不等式的方法与解一元一次方程类似,只是在求解的过程中需要注意不等式符号的转换。
例如,对于不等式3x-2<5,我们可以按照以下步骤求解:1. 将不等式转化为等式:3x-2=5;2. 解方程:3x=7;3. 求解出x的值:x=7/3;4. 检验解的有效性:将x=7/3带入不等式,验证不等式是否成立。
二、一元二次不等式一元二次不等式是指只有一个变量、二次方程的不等式。
解一元二次不等式的方法相对来说较为复杂,需要我们掌握一些基本的技巧。
1. 图像法:首先将一元二次不等式转化为对应二次函数的图像形式,通过观察图像的开口方向和与x轴的交点来确定不等式的解集。
2. 化简法:对于形如ax^2+bx+c>0或ax^2+bx+c<0的一元二次不等式,我们可以通过化简等式的方法来求解。
化简的关键是对不等式进行因式分解,然后找到各个因式的零点,并根据各个因式在某一区间上的取值情况确定不等式的解集。
三、绝对值不等式绝对值不等式是指以绝对值形式表达的不等式,解绝对值不等式的关键在于找到绝对值函数的取值范围。
1. 绝对值的定义:|x|表示x与0之间的距离,所以对于一个绝对值不等式来说,可以将绝对值不等式分成两个部分,一个是x大于0,一个是x小于0,并根据不等式的符号确定解集。
2. 绝对值的性质:对于绝对值不等式来说,我们需要牢记绝对值的性质,即|a-b|<=c等价于-a+b<=c且a-b<=c。
通过以上的简单介绍,我们了解了一些解不等式的基本方法和技巧。
当然,在实际解题中,有时我们还需要运用其他的数学知识和技巧,如配方法、整体替换法等。
第二章代数第三节不等式B3-001 北京、上海同时制成电子计算机若干台,除本地应用外,北京可支援外地10台,上海可支援外地4台.现在决定给重庆8台,汉口6台,若每台计算机运费如右表所示(单位:百元),又上海、北京当时制造的机器完全相同.问应怎样调运,才能使总的运费最省?【题说】1960年上海市赛高一复赛题6.【解】设北京调给重庆x台,上海调给重庆y台,则0≤x≤10,0≤y≤4x+y=8总运费为8x+4(10-x)+5y+3(4-y)=4x+2y+52=84-2y当y=4时,总运费最小,此时,x=4,10-x=6,4-y=0.答:北京调给重庆4台,调给汉口6台,上海调给重庆4台,这样总运费最省.B3-002 x取什么值时,不等式成立?【题说】第二届(1960年)国际数学奥林匹克题2.本题由匈牙利提供.将原不等式化简得 x2(8x-45)<0,因此,原不等式的解为B3-003甲队有2m个人,乙队有3m个人,现自甲队抽出(14-m)人,乙队抽出(5m-11)人,参加游戏,问甲、乙队各有多少人?参加游戏的人有几种选法?【题说】1962年上海市赛高三决赛题4.【解】抽出的人数必须满足解得m=5.故甲队有2m=10人,乙队有3m=15人,甲队抽出14-m=9(人).乙队抽出5m-11=14(人),从而参加游戏的人共有选法.B3-004 求出所有满足不等式的实数.【题说】第四届(1962年)国际数学奥林匹克题2.本题由匈牙利提供.B3-007 设a1,a2,…,a n为n个正数,且设q为一已知实数,使得0<q<1.求n个数b1,b2,…,b n使1.a k<b k, k=1,2,…,n.【题说】第十五届(1973年)国际数学奥林匹克题6.本题由瑞典提供.【解】设b k=a1q k-1+a2q k-2+…+a k-1q+a k+a k+1q+…+a n q n-k(k=1,2,…,n).1.显然b k>a k对k=1,2,…,n成立.2.比较b k+1=q k a1+q k-1a2+…+qa k+a k+1+…+q n-k-1a n与qb k=q k a1+…+q2a k-1+qa k+q2a k+1+…+q n-k+1a n,qb k的前面k项与bk+1的前面k项相等,其余的项小于b k+1的相应项(因为q<1).因此b k+1>qb k.因此,b1,b2,…,b n满足题目的要求.B3-008求满足条件:x≥1,y≥1,z≥1,xyz=10,x lgx y lgy z lgz≥10的x、y、z的值.【题说】1979年黑龙江省赛二试题3.【解】设lgx=u,lgy=v,lgz=w,则原题条件就变为:u≥0,v≥0,w≥0 (1)u+v+w=1(2)u2+v2+w2≥1(3)(2)平方得 u2+v2+w2+2(uv+vw+wu)=1 (4)(4)-(3)得 uv+vw+wu≤0由(1)得 uv=vw=wu=0(5)由(2)及(5)得:因此满足题意的解为:B3-009长方形的一边长为1cm已知它被两条相互垂直的直线分成四个小长方形,其中三个的面积不小于1cm2,第四个的面积不小于2cm2.问原长方形另一边至少要多长?【题说】第十七届(1983年)全苏数学奥林匹克九年级题6.【解】设小长方形的边长如图所示,则我们要求c+d的最小值,由题设c+d=(a+b)·(c+d)=ac+bd+ad+bcB3-010 m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有的这样的m与n,问3m+4n的最大值是多少?请证明你的结论.【题说】第二届(1987年)全国冬令营赛题6.【解】1987≥2+4+6+2m+1+3+…+(2n-1)=m(m+1)+n2因此,由柯西不等式于是221为3m+4n的上界,当m=27,n=35时,3m+4n取得最大值221.B3-011 求最大的正整数n,使不等式只对一个整数k成立.【题说】第五届(1987年)美国数学邀请赛题8.【解】原式等价于取n=112,则k只能取唯一的整数值97.另一方面,在n>112时,因此满足要求的n=112.B3-012 非负数a和d,正数b和c满足条件b+c≥a+d,这时【题说】第二十二届(1988年)全苏数学奥林匹克九年级题7.【证】不妨设a+b≥c+dc≤c+dB3-013 设a1、a2、…、a n是给定不全为0的实数,r1、r2、…、r n是实数,如果不等式r1(x1-a1)+r2(x2-a2)+…+r n(x n-a n)对任何实数x1、x2、…、x n成立,求,r1、r2、…、r n的值.【题说】第三届(1988年)全国冬令营赛题1.【解】取x i=a i,i=2,3,…,n代入原不等式,得当x1>a1时,由上式得当x1<a1时,上述不等式反号.令x1分别从大于a1与小于a1的方向趋于a1,得到B3-014 对于i=1,2,…,n,有|x i|<1 ,又设|x1|+|x2|+…+|x n|=19+|x1+…+x n|.那么整数n的最小值是多少?【题说】第六届(1988年)美国数学邀请赛题4.另一方面,令x1=x2=…=x10=0.95,x11=x12=…=x20=-0.95,则有故n=20即为所求最小值.B3-015 设m、n为正整数,证明存在与m、n无关的常数a【题说】1989年瑞典数学奥林匹克题5.【解】 a max=3因为 m2≡0,1,2,4(mod7)所以 7n2-m2≡-m2≡0,6,5,3(mod7)a=3maxB3-016 设x、y、z>0且x+y+z=1.求1/x+4/y+9/z的最小值.【题说】1990年日本第一轮选拔赛题10.【解】 1/x+4/y+9/z=(x+y+z)(1/x+4/y+9/z)B3-017 设n为自然数,对任意实数x、y、z,恒有(x2+y2+z2)2≤n(x4+y4+z4)成立,求n的最小值.【题说】1990年全国联赛一试题2(3).原题为填空题.【解】(x2+y2+z2)2=x4+y4+z4+2x2y2+2y2z2+2z2x2≤x4+y4+z4+(x4+y4)+(y4+z4)+(z4+x4)=3(x4+y4+z4)当x=y=z>0时,原不等式化为9x4≤3nx4,故n≥3.所以,n的最小值是3.B3-019 a、b、c是一个任意三角形的三边长,证明:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.【题说】第六届(1964年)国际数学奥林匹克题2.本题由匈牙利提供.【证】不妨设a≤b≤c.3abc-a2(b+c-a)-b2(c+a-b)-c2(a+b-c)=a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)≥b(b-c)(b-a)+c(c-a)(c-b)≥c(c-b)[(c-a)(b-a)]=c(c-b)2≥0 B3-020 怎样的整数a,b,c满足不等式 a2+b2+c2+3<ab+3b+2c?【题说】1965年匈牙利数学奥林匹克题1.【解】对于整数a、b、c,所要解的不等式等价于a2+b2+c2+4≤ab+3b+2c这个不等式可以变成由此可知,原不等式只可能有唯一的一组解a=1,b=2,c=1.B3-021有限数a1,a2,…,a n(n≥3)满足关系式a1=a n=0,a k-1+a k+1≥2a k(k=2,3,…,n-1),证明:数a1,a2,…,a n中没有正数.【题说】1966年~1967年波兰数学奥林匹克二试题1.【证】设a1,a2,…,a n中,a r最大,s是满足等式a s=a r的最小下标.若n>s>1,则a s-1;<a s,a s+1≤a s,从而a s-1+a s+1<2a s,与已知条件a s-1+a s+1≥2a s矛盾.故只有s=1或s=n,于是a r=0,数a1,a2,…,a n中没有正数,B3-022设a、b、c、d是正数,证明不等式a+b<c+d(1)(a+b)(c+d)<ab+cd (2)(a+b)cd<ab(c+d)(3)中至少有一个不正确.【题说】第三届(1969年)全苏数学奥林匹克九年级题1.【证】假定(1)、(2)、(3)都正确.则(a+b)2(c+d)<(a+b)(ab+cd)<ab(a+b)+ab(c+d)<2ab(c+d)从而(a+b)2<2ab,矛盾.B3-023 证明:任何正数a1,a2,…,a n满足不等式【题说】第三届(1969年)全苏数学奥林匹克十年级题6.原不等式左端的和大于故原不等式得证.【注】可以考虑更强的不等式(1954年美国数学家夏皮罗提出的猜测)对n≤12上式成立.对偶数n≥14与奇数n ≥27不成立.B3-024证明:对所有满足条件x1>0,x2>0,x1y1-成立,并求出等号成立的充要条件.【题说】第十一届(1969年)国际数学奥林匹克题6.本题由原苏联提供.所以当且仅当x1=x2,y1=y2,z1=z2时,等号成立.B3-025 设a、b、n都是自然数,且a>1,b>1,n>1,A n-1和A n 是a进制数系中的数,B n-1和B n是b进制数系中的数.A n-1、A n、B n-1和B n呈如下形式:A n-1=x n-1x n-2…x0,A n=x n x n-1…x0(a进制的位置表示法);B n-1=x n-1x n-2…x0,B n=x n x n-1…x0(b进制的位置表示法).其中x n≠0,x n-1≠0.证明:当a>b时,有【题说】第十二届(1970年)国际数学奥林匹克题2.本题由罗马尼亚提供.【证】由于a>b,故A n B n-1-A n-1B n=(x n a n-1+A n-1)B n-1-(x n b n-1+B n-1)A n-1=x n[x n-1(a n-1b n-2-a n-2b n-1)+…+x0(a n-1-b n-1)]>0B3-026 (n>2)是自然数,证明下述论断仅对n=3和n=5成立:对任意实数a1,a2,…,a n都有(a1-a2)·(a1-a3)…(a1-a n)+(a2-a1)·(a2-a3)…(a2-a n)+…+(a n-a1)·(a n-a2)…(a n-a n-1)≥0【题说】第十三届(1971年)国际数学奥林匹克题1.本题由匈牙利提供.1979年湖南省赛二试题4.【证】不妨设a1≤a2≤a3≤…≤a n.若n为偶数,令a1<a2=a3=…=a n,则左边小于0,因而不等式不成立;若n=3,则左边前两项的和为(a1-a2)2≥0第三项不小于0,故不等式成立;若n=5,则同样可知左边前两项的和不小于0,末两项的和也不小于0,第三项不小于0,因此左边总不小于0,不等式成立;若n≥7,令a1=a2=a3<a4<a5=a6=…=a n则左边只有一个非零项(a4-a1)(a4-a2)…(a4-a n)<0故不等式不成立.B3-027 A=(a ij)是一个元素为非负整数的矩阵,其中i、j=1,2,…,n.该矩阵有如下性质:如果某一a ij=0,那么对i和j有a i1+a i2+…+a in+a1j+a2j+…+a nj≥n证明:这个矩阵所有元素的和不小于0.5n2.【题说】第十三届(1971年)国际数学奥林匹克题6.本题由瑞典提供.【证】交换A的两行或两列不改变题设的A的性质(因为行和与列和均不变、只是交换了位置),因此我们可以先通过交换两行或两列的变换,使得有尽可能大的k满足a11=a22=…=a kk=0.此时对于i,j>k有a ij≠0.对于i≤k,j>k,若a ij=0,则a ji≠0,因若不然,交换i,j行,就会使a11=a22=…=a kk=a jj=0,与k的极大性矛盾.因而对于j>k,仍有a j1+…+a jn+a1j+…+a nj≥nB3-028求出所有能使不等式组成立的所有解(x1,x2,x3,x4,x5),其中x1,x2,x3,x4,x5都是正实数.【题说】第十四届(1972年)国际数学奥林匹克题4.本题由荷兰提供.【解】为方便起见,令x5+i=x i,则可以把原不等式组简写为将它们加起来得=x5=x2=x4.反之,如果x i都相等,原不等式组当然成立.B3-029 证明:对于正数a、b、c,下述不等式成立:a3+b3+c3+3abc≥ab(a+b)+bc(b+c)+ac(a+c)(1)【题说】第九届(1975年)全苏数学奥林匹克十年级题2.【证】不失一般性,可假定a≥b≥c.那末c(a-c)(b-c)≥0,(a-b)2(a+b-c)≥0从而 c3+abc≥ac2+bc2 (2)a3+b3+2abc≥ab(a+b)+a2c+b2c (3)(2)、(3)两式相加即得(1)式.B3-030已知a1,a2,…,a n为任何两两各不相同的正整数,求证对任何正整数n,下列不等式成立;【题说】第二十届(1978年)国际数学奥林匹克题5.本题由法国提供.【证】由柯西不等式【别证】利用排序不等式.B3-031 已知0≤a1,0≤a2,0≤a3,a1+a2+a3=1,0<λ1<λ2<λ3.求证:下面不等式成立【题说】1979年北京市赛二试题5.本题是康托洛维奇不等式的特例.【证】对任意正实数x,B3-032设a、b、c为正实数,证明【题说】第三届(1974年)美国数学奥林匹克题2.注意:这是一个对称不等式.【证】不失一般性,可以假定a≥b≥c>0.原不等式即a2a-b-c·b2b-a-c·c2c-a-b≥1 (1)由2a-b-c>0,得a2a-b-c·b2b-a-c≥b2a-b-c·b2b-a-c=b a+b-2ca=b=c时,等号成立.【别证】可以利用等式然后证明右端括号为正.B3-033 设x i、y i是实数(i=1,…,n).且x1≥x2≥…≥x n;y1≥y2≥…≥y n;z1、z2、…、z n是y1、y2、…、y n的任一个排列,证明【题说】第十七届(1975年)国际数学奥林匹克题1.本题由捷克斯洛伐克提供.【证】由排序不等式所以原式成立.B3-034有n个数a1,a2,…,a n.假设C=(a1-b1)2+(a2-b2)2+…+(a n-b n)2D=(a1-b n)2+(a2-b n)2+…+(a n-b n)2证明:C≤D≤2C.【题说】第十三届(1978年)全苏数学奥林匹克十年级题10.【证】设f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2则 f(x)=n(x-b n)2+f(b n)(1)现在用归纳法来证明不等式C≤D≤2C.当n=1时,C=D,故有C≤D≤2C.假设当n时,不等式成立,往a1,a2,…,a n中添一个数a n+1,此时C 增加了(a n+1-b n+1)2,而D增加了(a n+1-b n+1)2+f(b n+1)-f(b n).在(1)式中,令x=bn+1,得这样,D增加的值(a n+1-b n+1)2+f(b n+1)-f(b n)在(a n+1-b n+1)2与2(a n+1-b n+1)2之间,从而,对于n+1时,也有C≤D≤2C所以,对一切n,都有C≤D≤2CB3-035 a、b、c、d、e为整数,满足1≤a<b<c<d<e其中[m,n]为m、n的最小公倍数.【题说】第十一届(1979年)加拿大数学奥林匹克题3.【证】更一般地,可以证明:对于n个整数a1,a2,…,a n,满足1≤a1<a2<…<a n 时,有n=2时,(1)显然成立.假设n=k-1时(1)成立,考虑n=k的情况:若a k>2k,则若a k≤2k,则其中(m,n)为m、n的最大公约数,从而B3-036 S为正奇数集{a i},i=1,2,…,n.没有两个差|a i-a j|相等,1≤i<j ≤n.求证:【题说】1979年英国数学奥林匹克题3.【证】不妨设a1<a2<…<a n,r为整数且2≤r≤n.对于1≤所以, a r≥a1+r(r-1)≥1+r(r-1)r=1时,上式也成立,故B3-037对于n为一正整数,以p(n)表示将n表为一个或较多个正整数的和的方法数,例如p(4)=5,因为有5个不同的和,即1+1+1+1,1+1+21+3,2+2,4证明:当n>1时,p(n+1)-2p(n)+p(n-1)≥0【题说】1979年英国数学奥林匹克题5.【证】将n的p(n)个不同的表达式各加上1,得到p(n)个n+1的不同表达式,每一个都包含加数1.而且,n+1的每一个含有加数1的表达式,都可由这方法得到.因此将n+1表为大于1的整数的和的方法数q(n+1)=p(n+1)-p(n)同样将n+1表为大于2的整数的和的方法数即q(n+1)-q(n).显然q(n+1)-q(n)≥0因此p(n+1)-2p(n)+p(n-1)≥0B3-038若0≤a,b,c≤1,证明:【题说】第九届(1980年)美国数学奥林匹克题5.结论可以推广到n个数的情形.【证】令因为(1-b)(1-c)(1+b+c)≤(1-b)(1-c)(1+b)(1+c)=(1-b2)(1-c2)≤1(当a、b、c轮换时均成立)因此δ≥0.B3-039 若x为正实数,n为正整数.证明:其中[t]表示不超过t的最大整数.【题说】第十届(1981年)美国数学奥林匹克题5.【证】用数学归纳法.当n=1,2时,(1)显然成立.假设(1)对n≤k-1均成立.kx k=kx k-1+[kx]=(k-1)x k-1+x k-1+[kx] (2)(k-1)x k-1=(k-2)x k-2+x k-2+[(k-1)x] (3)…2x2=x1+x1+[2x](k)将(2)至(k)式相加,得kx k=x k-1+x k-2+…+x1+x1+[kx]+[(k-1)x]+…+[2x]因此,由归纳假定,kx k≤[kx]+2([(k-1)x]+[(k-2)x]+…+[x])但是[(k-m)x]+[mx]≤[(k-m)x+mx](m<k),所以kx k≤[kx]+([(k-1)x)]+[x])+…+([x]+[(k-1)x])≤k[kx]即x k≤[kx].此即所欲证之(1)式.B3-041 设a、b、c是三角形的边长,证明:a2b(a-b)+b2c(b -c)+c2a(c-a)≥0,并说明等号何时成立.【题说】第二十四届(1983年)国际数学奥林匹克题6.本题由美国提供.【证】设a是最大边,原式左边=a(b-c)2(b+c-a)+b(a-b)(a-c)(a+b-c)显然上式是非负的,从而原式成立,当且仅当a=b=c,即这三角形为正三角形时等号成立.B3-043 设x1,x2,…,x n都是正整,求证:【题说】1984年全国联赛二试题5.本题可用柯西不等式、数学归纳法等多种方法证明.将以上各式相加,即得所要证的不等式.B3-044设P(x)=a0+a1x+…+a k x k为整系数多项式,其中奇系数的个数由W(P)来表示,设Q i(x)=(1+x)i,i=0,1,…,n.如果i1,i2,…,i n是整数,且0≤i1<i2<…<i n,证明:【题说】第二十六届(1985年)国际数学奥林匹克题3.本题由荷兰提供.当i n=1时,命题显然成立.设i n>1并且命题在i n换为较小的数时成立.令k=2m<i n<2m+1,(1)i1<k.设i r<k,i r+1>k,Q=R+(1+x)k S,其中的次数均小于K,由(1)(1+x)k≡1+x k(mod2),故W(Q)=W(R+S+x k S)=W(R+S)+W(S)≥W(R)的次数均小于K.W(Q)=W(S+x k S)=2W(S)≥2W(R)=W(R+x k R)=W((1+x k)R)045 证明:对于任意的正数a1,a2,…,a n不等式成立.【题说】第二十届(1986年)全苏数学奥林匹克十年级题2.【证】不妨设a1≤a2≤…≤a n.因为当2≤k≤(n+1)/2时【注】原不等式可加强为B3-046 正数a,b,c,A,B,C满足条件a+A=b+B=c+C=k证明: aB+bC+cA <k2【题说】第二十一届(1987年)全苏数学奥林匹克八年级题5.【证】由题设k3=(a+A)(b+B)(c+C)=abc+ABC+aB(c+C)+bC(a+A)+cA(b+B)=abc+ABC+k(aB+bC+cA)>k(aB+bC+cA)即 aB+bC+cA<k2B3-048证明:对于任意的正整数n,不等式(2n+1)n≥(2n)n+(2n-1)n 成立.【题说】第二十一届(1987年)全苏数学奥林匹克十年级题8.【证】只须证明由恒等式所以(1)式成立.B3-049已知a、b为正实数,且1/a+1/b=1.试证:对每一个n∈N,有(a+b)n -a n-b n≥22n-2n+1【题说】1988年全国联赛一试题5.【证】用数学归纳法证.(1)当n=1时,左边=0=右边,命题成立.(2)假设n=k时,不等式成立,即(a+b)k-a k-b k≥22k-2k+1当n=k+1时,左边=(a+b)k+1-a k+l-b k+1=(a+b)[(a+b)k-a k-b k]+a k b+ab k从而有≥2·2k+1=2k+2所以,左边≥4(22k-2k+1)+2k+2=22(k+1)-2k+2=右边由(1)及(2),对一切n∈N,不等式成立.B3-050已知a5-a3+a=2.证明:3<a6<4.【题说】第十四届(1988年)全俄数学奥林匹克八年级题3.【证】由a5-a3+a=2,变形为(1)a[(a2-1)2+a2]=2(2)由(2)知 a>0且a≠1(1)÷a得 a4-a2+1=2/a (3)(1)×a得 a6-a4+a2=2a (4)(3)+(4)得 a6+1=2(a+1/a)>4 (5)又由(1)知 2=(a5+a)-a3>2a3-a3=a3故 a3<2(6)由(5)和(6)得3<a6<4.B3-051已知a、b、c、d是任意正数,求证:【题说】1989年四川省赛二试题1.由平均值不等式,(2)≤2ab+2ac+2ad+2bc+2bd+2cd+2a2+c2+b2+d2=(a+b+c+d)(3)(2)÷(3)即得结论.B3-052已知x i∈R(i=1,2,…,n,n≥2),满足【题说】1989年全国联赛二试题2.因为 A/n≤a≤A,B≤b≤B/nB3-053已知a1,a2,…,a n是n个正数,满足a1·a2…a n=1,求证(2+a1)(2+a2)…(2+an)≥3n【题说】1989年全国联赛一试题3.B3-054对于任何实数x1,x2,x3,如果x1+x2+x3=0,那么x1x2+x2x3+x3x1≤0,请证明之.又对于什么样的n(n≥4),如果x1+x2+…+x n=0,那么x1x2+x2x3+…+x n-1x n+x n x1≤0?【题说】1989年瑞典数学奥林匹克题3.【证】如果x1+x2+x3=0,则有当n=4时,若x1+x2+x3+x4=0,则即n=4时,命题成立.当n≥5时,令x1=x2=1,x4=-2,x3=x5=x6=…=x n=0,则x1+x2+x3+x4+…+x n=0而 x1x2+x2x3+x3x4+…+x n-1x n+x n x1=l>0 所以n≥5时,命题不成立.B3-055证明:对于任意的x、y、z∈(0,1),不等式x(1-y)+y(1-z)+z (1-x)<1成立.【题说】第十五届(1989年)全俄数学奥林匹克九年级题6.【证】设f(x)=(1-y-z)x+y(1-z)+z,它是x的一次函数,因此关于x是单调的.因为f(0)=y-yz+z=(y-1)(1-z)+1<1f(1)=1-yz<1所以当x∈(0,1)时,f(x)的最大值小于1,即x(1-y)+y(1-z)+z(1-x)<1B3-056证明:若a、b、c为三角形三边的长,且a+b+c=1,则【题说】第二十三届(1989年)全苏数学奥林匹克九年级题2.1990年意大利数学奥林匹克题4.所以B3-057已知二次函数f(x)=ax2+bx+c,当-1≤x≤1时,有-1≤f(x)≤1求证:当-2≤x≤2时,有-7≤f(x)≤7.【题说】1990年南昌市赛二试题1【证】由已知 -1≤f(1)=a+b+c≤1 (1)-1≤f(0)=c≤1(2)-1≤f(-1)=a-b+c≤1 (3)(1)+(3)得 -1≤a+c≤1 (4)由(4)、(2)得 -2≤a≤2从而 |4a±2b+c|=|2(a±b+c)+2a-c| ≤2|a±b+c|+2|a|+|c|≤7即 |f(±2)|≤7|f(x)|≤7所以,当|x|≤2时B3-058证明:对于和为1的正数a1,a2,…,a n,不等式成立.【题说】第二十四届(1990年)全苏数学奥林匹克十年级题2.当a1=a2=…=a n=时,上式取等号.B3-059设a、b、c、d是满足ab+bc+cd+da=1的非负数.试证:【题说】第三十一届(1990年)IMO预选题88.本题由泰国提供.【证】设则由柯西不等式熟知所以B3-060设a1≤a2≤…≤a7≤a8是8个给定的实数,且x=(a1+a2+…+a7+a8)/8;【题说】1991年中国国家教委数学试验班招生数学题3.【证】≥0并且由柯西不等式,y≥x2,所以B3-061已知0<a<1,x2+y=0,求证:【题说】1991年全国联赛一试题5.B3-063已知a1,a2,…,a n>1(n≥2),且|a k+1-a k|<1,k=1,2,…,n-1.证明: a1/a2+a2/a3+…+a n-1/a n+a n/a1<2n-1【题说】第十七届(1991年)全俄数学奥林匹克九年级题8.【证】若a k≤a k+1(k=1,2,…,n-1),则a k/a k+1≤1,故a1/a2+a2/a3+…+a n-1/a n+a n/a1<(n-1)+na1/a1=2n-1(n≥2)若有a k>a k+1,则由|a k+1-a k|<1知a k/a k+1<1+1/a k+1<2设有p个k值使a k≤a k+1,(n-1-p)个k值使a k>a k+1,则a1/a2+a2/a3+…+a n-1/a n≤p+2(n-1-p)同时 a n/a1=[(a n-a n-1)+…+(a2-a1)+a1]/a1<p+1因此 a1/a2+a2/a3+…+a n-1/a n+a n/a1<p+2(n-1-p)+p+1=2n-1B3-064令其中m,n∈N,证明a m+a n≥m m+n n【题说】第二十届(1991年)美国数学奥林匹克题4.【证】不妨设m≥n,则故n≤a≤m,而有m m-a m=(m-a)(m m-1+m m-2a+…+a m-1)≤(m-a)(m m-1+m m-1+…+a m-1)=(m-a)m m (2)a n-n n=(a-n)(a n-1+a n-2+…+n n-1)≥(a-n)n n由(1)有(m-a)m m=(a-n)n n (3)将(2)、(3)代入,即得a n-n n≥m m-a m或a m+a n≥m m+n n此即所求证之式.B3-065设a、b、c是非负数,证明:【题说】第二十五届(1991年)全苏数学奥林匹克十年级题1.【证】(a+b+c)2=(a2+bc)+(b2+ca)+(c2+ab)所以原不等式成立.B3-066设a i≥0(i=1,2,…,n),a=min{a1,a2,…,a n},试证式中a n+1=a1.【题说】1992年第七届数学冬令营题2.B3-067设n(≥2)是整数,证明:【题说】1992年日本数学奥林匹克题3.B3-068 n是正整数,证明:【题说】1992年澳大利亚数学奥林匹克题8.【证】因为B3-069对x、y、z≥0,证明不等式x(x-z)2+y(y-z)2≥(x-z)(y-z)(x+y-z)等号何时成立?【题说】第二十四届(1992年)加拿大数学奥林匹克题2.【解】原不等式即x3+y3+z3+3xyz≥x2y+xy2+y2z+yz2+z2x+zx2由对称性,可设x≥z≥y,于是x(x-z)2+y(y-z)2≥0≥(x-z)(y-z)(x+y+z)B3-070设实数x、y、z满足条件yz+zx+xy=-1,求x2+5y2+8z2的最小值和最大值.【题说】1992年英国数学奥林匹克题4.【解】由于(y-2z)2+(x+2y十2z)2≥0所以x2+5y2+8z2≥-4(xy+yz+zx)=4的最小值为4.x2+5y2+8z2>x2当y→0时,函数x2+5y2+8z2的值可趋于无穷大.B3-071设A是一个有n个元素的集合,A的m个子集A1,A2,…,A n两两互不包含,证明:其中a i为A i中元素个数.【题说】1993年全国联赛二试题2.【证】A中元素的全排列共n!个.其中开头a i个元素取自A i中的,有a i!(n-a i)!个.由于A i与A j(i≠j)互不包含,故这些排列与开头a j个元素取自A j中的不同.由柯西不等式,结合(1)便得(2).B3-073设函数f:R+→R+满足条件:对任意x、y∈R+,f(xy)≤f(x)f(y).试证:对任总x>0,n∈N,有【题说】1993年中国数学奥林匹克(第八届数学冬令营)题6.【证】f(x2)≤f2(x),所以f(x2)≤f(x)f1/2(x2).假设有则≥f n-1(x n)所以(1)对所有的自然数n成立.B3-075设a、b、c、d都是正实数,求证不等式【题说】第三十四届(1993年)IMO预选题本题由美国提供.【证】由柯西不等式即又(a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2≥0结合(1)、(2)即得结论.B3-076设a1,a2,…,a n为n个非负实数,且a1+a2+…a n=n.证明:【题说】1994年合肥市赛题4.一方面由柯西不等式知B3-077已知f(z)=c0z n+c1z n-1+…+c n (1)是z的n次复系数多项式.求证:存在一个复数z0,|z0|=1,使|f(z0)|≥|c0|+|c n|(2)【题说】1994年中国数学奥林匹克(第九届数学冬令营)题4.【证】取复数β,使|β|=1且βn·c0与c n辐角相同,从而|βn c0+c n|=|βn c0|+|c n|=|c0|+|c n|再令ω=e2πi/n,a k=β·ωk(0≤k≤n-1)故必有一个k,使 |f(αk)|≥|c0|+|c n|显然,|αk|=1,于是αk就是所求的z0。
奥林匹克数学题型代数恒等式与不等式奥林匹克数学题型:代数恒等式与不等式代数恒等式和不等式是奥林匹克数学竞赛中常见的题型之一。
通过研究恒等式和不等式的性质和性质,可以深入理解数学的基本概念和方法。
在本文中,我们将探讨奥林匹克数学竞赛中常见的代数恒等式和不等式题型及解题方法。
1. 线性恒等式和不等式线性恒等式和不等式是最简单和最基本的代数恒等式和不等式。
形式上,线性恒等式可用以下表示:ax + b = cx + d其中,a、b、c、d为实数,并且a和c不同时为0。
要求找到x的值使得等式成立。
解决线性恒等式时,可以通过合并同类项、移项、整理得到最终的结果。
例如:2x + 3 = 4x + 5将所有含x的项放到一边,常数项放到另一边,经过整理得到:2x - 4x = 5 - 3-2x = 2x = -1类似地,线性不等式的解题方法与线性恒等式类似。
不同之处在于,当乘以或除以负数时,需要改变不等号的方向。
2. 平方恒等式和不等式平方恒等式和不等式以平方项为主要特征。
形式上,平方恒等式可用以下表示:(ax + b)² = (cx + d)²其中,a、b、c、d为实数,并且a和c不同时为0。
解决平方恒等式的关键是找到可能的解,并对解进行验证。
举例来说:(x + 1)² = 9通过开方可得:x + 1 = ±3当x + 1 = 3时,x = 2当x + 1 = -3时,x = -4平方不等式与平方恒等式类似,不同之处在于需要考虑到平方的非负性质。
3. 分式恒等式和不等式分式恒等式和不等式以分式项为主要特征。
形式上,分式恒等式可用以下表示:(a/x + b/y) = (c/x + d/y)其中,x和y不等于0。
解决分式恒等式的关键是找到可能的解,并对解进行验证。
例如:(3/x + 1/y) = (2/x + 4/y)通过合并同类项,得到:(1/x + 3/y) = 0同样地,分式不等式的解题方法与分式恒等式类似。
奥林匹克数学题型高级因式分解技巧数学是一门精密的学科,它需要我们掌握各种解题技巧和方法。
在奥林匹克数学竞赛中,因式分解是一种常见的题型。
而在高级因式分解题目中,我们需要掌握更多的技巧和方法来解题。
本文将介绍一些高级因式分解的技巧,帮助读者更好地应对奥林匹克数学题目。
一、整式的因式分解在奥林匹克数学竞赛题目中,有许多要求我们对整式进行因式分解的题目。
对于这类题目,我们需要掌握一些基本的技巧。
1.1 通用的因式分解公式对于形如$ab+ac+ad+...$的整式,可以使用因式分解的公式进行处理。
这个公式是:$a(b+c+d+...)$其中,$a$是整式中的一个公因式,$b$、$c$、$d$等是整式中的多项式。
使用这个公式,我们可以快速地将整式进行因式分解。
例如,对于整式$2xy+2xz+2yz$,我们可以提取公因式2,得到$2(x+y+z)$。
这样,整式就被因式分解为$2(x+y+z)$。
1.2 利用特殊的因式分解公式在奥林匹克数学竞赛中,有一些特殊的因式分解公式可以帮助我们处理题目。
下面是其中两个常用的公式:(1) 差平方公式差平方公式是$(a-b)(a+b)=a^2-b^2$。
利用差平方公式,我们可以将某些整式进行因式分解。
例如,对于整式$x^2-4$,可以使用差平方公式进行因式分解,得到$(x-2)(x+2)$。
(2) 完全平方公式完全平方公式是$a^2\pm2ab+b^2=(a\pm b)^2$。
利用完全平方公式,我们可以将某些整式进行因式分解。
例如,对于整式$x^2+6x+9$,可以使用完全平方公式进行因式分解,得到$(x+3)^2$。
通过掌握和灵活运用这些因式分解公式,我们可以更高效地解答奥林匹克数学竞赛中的因式分解题目。
二、多项式的因式分解在奥林匹克数学竞赛中,我们还会遇到一些要求对多项式进行因式分解的题目。
对于这类题目,我们需要掌握一些高级的因式分解技巧和方法。
2.1 提取公因式和消元法对于形如$ax^3+bx^2+cx+d$的多项式,我们可以尝试提取公因式的方法进行因式分解。
奥林匹克数学题型排列组合中的不等式在奥林匹克数学竞赛中,排列组合是一个重要的题型之一。
排列组合涉及到数学中的选择和排列方式,常常出现在组合数学、概率论和数论等领域。
在解决排列组合问题时,往往会出现一些不等式的推导和应用。
本文将探讨奥林匹克数学题型中与排列组合相关的不等式。
一、基本的数学不等式在解决排列组合问题时,一些基本的数学不等式经常被用来进行推导和证明。
这些不等式包括但不限于以下几个:1.阶乘不等式:对于任意正整数n,n的阶乘n!比n的m次方(n^m)(其中m为正整数)要大。
2.柯西-施瓦茨不等式:对于实数a1,a2,...,an和b1,b2,...,bn,有(a1b1+a2b2+...+anbn)^2 ≤ (a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2)。
3.雅可比不等式:对于正实数a,b,c,有(a+b+c)^2 ≥ 3(ab+bc+ca)。
这些基本的数学不等式在解决排列组合问题时起到了重要的作用,能够帮助我们进行推导和证明。
二、排列组合中的不等式应用在奥林匹克数学竞赛中,排列组合题型经常涉及到一些不等式的应用。
以下将介绍一些常见的不等式应用。
1.单调性:在某些排列组合问题中,不等式的单调性常常能够帮助我们找到解决问题的方法。
例如,当我们需要证明一个式子关于某个变量是增函数或减函数时,可以通过不等式的推导来证明。
在进行不等式推导过程中,我们需要将不等式化简为一个更加易处理的形式,然后通过引入变量的方式进行推导。
2.区间分割:有时,排列组合问题会要求我们对一个集合或区间进行分割或划分。
在进行分割时,我们常常需要利用不等式来确定划分的边界。
例如,当我们需要将一组正整数划分为连续的子集时,可以利用不等式来确定不同子集的边界条件。
3.加权平均:在某些排列组合问题中,不等式的加权平均性质可以帮助我们求解问题。
例如,当我们需要求解一组数的平均值,并且每个数都有不同的权重时,可以利用不等式的加权平均性质来推导出最优解。
数学数学奥赛题解析数学奥赛题解析在数学奥林匹克竞赛中,参赛选手需要通过解答一系列数学题目来展示自己的数学才华和解题能力。
这些题目不仅考察了选手对数学知识的理解和掌握,还要求他们具备创造性思维和解决问题的能力。
本文将对一些常见的数学奥赛题目进行解析,帮助读者了解奥赛题的出题思路和解题方法。
一、奥赛题类型及解题思路在数学奥赛中,常见的题型包括代数、几何、数论和组合数学等。
不同类型的题目需要运用不同的解题方法和策略。
以下将以几何题为例,简要介绍几种常见的奥赛题解题思路。
1. 图形的分析和性质利用几何题中,常常需要通过对图形的分析和性质利用来解题。
例如,对于一个给定的三角形,我们可以通过对其内角和性质的利用来推导出其他角度的关系,从而解决问题。
此外,利用图形的对称性、相似性和几何关系等也是常见的解题思路。
2. 利用特殊性质和定理在解决几何问题时,我们还可以利用一些特殊性质和定理来推导解答。
例如,利用勾股定理、正弦定理、余弦定理等可以推导出一些角度和边长之间的关系,从而解决几何题。
3. 抽象转化和数学思维有些几何题目较为复杂,难以直接应用已知的几何定理来解决。
这时,我们可以尝试进行抽象转化和数学思维,将问题转化为数学方程或等价的几何图形,通过数学的推导和分析来解决问题。
二、实例解析接下来,我们以一道几何奥赛题为例进行解析。
题目:已知直径为12 cm 的圆上有A、B、C三点,且BC=6 cm,CD为直径,初中C上任意一点D。
连接AD,交圆于E点,求BE的长度。
解析:首先,我们可以根据题目中给出的信息,做出如下的图形:(插入题目图形)根据题意,我们需要求解线段BE的长度。
由于直径CD为圆的直径,所以角ACD为直角。
接下来,我们需要运用一些几何性质和定理来解决问题。
观察图形可知,三角形ABC为直角三角形,根据勾股定理,可得:AB² + BC² = AC²AB² + 6² = 12²AB² + 36 = 144AB² = 108AB = √108 = 6√3由于AD是圆的切线,所以角ABE为直角。
初二数学奥林匹克竞赛题及答案1、如图,梯形ABCD 中,AD ∥BC ,DE =EC ,EF ∥AB 交BC 于点F ,EF =EC ,连结DF 。
(1)试说明梯形ABCD 是等腰梯形;(2)若AD =1,BC =3,DC DCF 的形状;(3)在条件(2)下,射线BC 上是否存在一点P ,使△PCD 是等腰三角形,若存在,请直接写出PB 的长;若不存在,请说明理由.2、在边长为6的菱形ABCD 中,动点M 从点A 出发,沿A →B →C 向终点C 运动,连接DM 交AC 于点N 。
(1)如图25-1,当点M 在AB 边上时,连接BN .①求证:△ABN ≌△ADN ; ②若∠ABC = 60°,AM = 4,求点M 到AD 的距离; (2)如图25-2,若∠ABC = 90°,记点M 运动所经过的路程为x (6≤x ≤12)试问:x 为何值时,△ADN 为等腰三角形.3、对于点O 、M ,点M 沿MO 的方向运动到O 左转弯继续运动到N ,使OM =ON ,且OM ⊥ON ,这一过程称为M 点关于O 点完成一次“左转弯运动".正方形ABCD 和点P ,P 点关于A 左转弯运动到P 1,P 1关于B 左转弯运动到P 2,P 2关于C 左转弯运动到P 3,P 3关于D 左转弯运动到P 4,P 4关于A 左转弯运动到P 5,……. (1)请你在图中用直尺和圆规在图中确定点P 1的位置;(2)连接P 1A 、P 1B ,判断 △ABP 1与△ADP 之间有怎样的关系?并说明理由。
(3)以D 为原点、直线AD 为y 轴建立直角坐标系,并且已知点B 在第二象限,A 、P 两点的坐标为(0,4)、(1,1),请你推断:P 4、P 2009、P 2010三点的坐标.BA4、如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt △A1B1C1关于直线QN成轴对称的图形;(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?5、如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图中有几个等腰三角形?猜想: EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由。
第八章 二次方程与方程组第一节 一元二次方程【赛题精选】§1、一元一次方程的解法主要有:直接开平方法、因式分解法、配方法、公式法。
例1、利用直接开平方法解下列关于x 的方程。
(1)0)1(9)2(22=+--x x (2))0(0)22()(22>=+-+a a x a x(3))21(2142222nx n x n x x ++=++例2、利用因式分解法解下列关于x 的方程。
(1)(5x+2)(x-1)=(2x+11)(x-1) (2)0452=+-x x(3)02_23()12(2=++-+x x (4)0)()(22222=-++-q p pq x q p x(5)x m x m x x m )1()1()1(2222-=--+-例3、用配方法解下列关于x 的方程。
(1))0(02≠=++a c bx ax (2)03)12()1(2=-+-+-m x m x m(3)01333223=-+++x x x§2、根的判别式、根与系数的关系韦达定理:若)0(02≠=++a c bx ax 的两个根为1x 、2x ,那么1x 、2x 与a 、b 、c的关系为:两根之和a b x x -=+21;两根之积ac x x =21。
例4、若首项系数不相等的两个二次方程02)2()1(222=+++--a a x a x a (1)、02)2()1(222=+++--b b b x b (2)(其中a 、b 均为正整数)有一个公共根。
求ab ab b a b a --++的值。
例5、已知方程02=++c bx x 与02=++b cx x 各有两个根1x 、2x 及'1x 、'2x ,且1x 2x >0,'1x '2x >0。
求证:(1)1x <0,2x <0,'1x <0,'2x <0;(2)b-1≤c ≤b+1;(3)求b 、c 所有可能的值。
高中数学竞赛中不等式的解法摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。
希望对广大喜爱竞赛数学的师生有所帮助。
不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用.1.排序不等式 定理1设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有1211...n n n a b a b a b -+++ (倒序积和)1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和)其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或12...n b b b ===时成立.(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.)证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。
不等式1212...nr r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n===时,S 达到最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有.n n k n n r k r n n a b a b a b a b +≤+ (1-1)事实上, ()()()0n n n n nk r k n n r n r n k a b a b a b a b b b a a +-+=--≥不等式(1-1)告诉我们当nr n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++.再证不等式左端,由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端,得1211(...)nn n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++即 1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++ .例1 (美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3()a b c a b ca b c abc ++≥.思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设ab c ≥≥,则有lg lg lg a b c ≥≥根据排序不等式有:lg lg lg lg lg lg a a b b c c a b b c c a ++≥++lg lg lg lg lg lg a a b b c c a c b a c b ++≥++ 以上两式相加,两边再分别加上 lg lg lg a a b b c c ++有 3(lg lg lg )()(lg lg lg )a a b b c c a b c c a b ++≥++++ 即 lg lg 3a b ca b cab c abc ++≥故 3()a b c a b cab c abc ++≥ .例2 设a,b,c R +∈,求证:222222333222a b b c c a a b c a b c c a b bc ca ab+++++≤++≤++. 思路分析:中间式子每项都是两个式子之和,将它们拆开,再用排序不等式证明. 证明:不妨设ab c ≥≥,则 222a b c ≥≥且111c b a≥≥根据排序不等式,有222222111a b c a b c c a b a b c++≥++222222111a b c a b c b c a a b c++≥++ 两式相加除以2,得222222222a b b c c a a b c c a b+++++≤++再考虑333ab c ≥≥,并且111bc ca ab≥≥ 利用排序不等式,333333111 a b c a b c bc ca ab ca ab bc++≥++333333111 a b c a b c bc ca ab ab bc ac++≥++ 两式相加并除以2,即得222222333222a b b c c a a b c c a b bc ca ab+++++≤++ 综上所述,原不等式得证.例3 设12120...,0...n n a a a b b b ≤≤≤≤≤≤≤≤,而1,2,...,n i i i 与1,2,...,n j j j 是1,2,...,n 的两个排列. 求证:1111r snnnni j r sr s r s a b a b r sr s ====≥++∑∑∑∑. (1-2) 思路分析:已知条件中有两组有序实数,而式(1-2)具有“积和”形式,考虑使用排序不等式.证明:令 1s nj rs b d r s==+∑(r=1,2,...,n )显然 12...n d d d ≥≥≥ 因为 12...n b b b ≤≤≤ , 且111...(1)1r n r n r ≤≤≤++-+ 由排序不等式1nsr s b d r s =≤+∑ 又因为 12...n a a a ≤≤≤所以 11rnnr r i r r r a d a d ==≤∑∑且111nnnsr r r r s r b a a d r s ===≤+∑∑∑(注意到r a ≥0)故11111r ssrn nn nni j j iri rr s r s r a b b a a dr s r s =======++∑∑∑∑∑11111nn nn ns r s r r r r r s r s b a ba d a r s r s=====≥≥=++∑∑∑∑∑ 故 原式得证.2.均值不等式定理2 设12,,...,n a a a 是n 个正数,则()()()()H n G n A n Q n ≤≤≤称为均值不等式.其中,121()111...nH n a a a =+++,()G n =12...()na a a A n n+++=,()Q n =分别称为12,,...,n a a a 的调和平均数,几何平均数,算术平均数,均方根平均数. 证明: 先证 ()()G n A n ≤.记c= i ia b c=,则 原不等式12...n b b b n ⇔+++≥其中 12121...( (1)n n b b b a a a c == 取 12,,...,n x x x 使 11212123,,...,,n n n x x xb b b x x x --=== 则 1.n n x b x = 由排序不等式,易证111221......n n n n x x x b b b n x x x -+++=+++≥下证()()A n Q n ≤因为 222212121...[(...)n n a a a a a a n+++=+++22212131()()...()n a a a a a a +-+-++-2222232421()()...()...()n n n a a a a a a a a -+-+-++-++-]2121(...)n a a a n≥+++ 所以12...n a a a n +++≤从上述证明知道,当且仅当12...n a a a ===时,不等式取等号.下面证明 ()()H n G n ≤对n 个正数12111,,...,na a a ,应用 ()()G n H n ≤,得12111...n a a a n +++≥即 ()()H n G n ≤(等号成立的条件是显然的).例4已知2201,0a x y <<+=,求证:1log ()log 28x y a a a a +≤+. 证明:由于 01a <<,0,0x y a a >>,有xy aa +≥=从而log ()log log 22xy a a a x ya a ++≤=+下证128x y +≤ , 即 14x y +≤。
一道数学奥林匹克问题的多种解法 莱州市第一中学 李明辉
问题背景:本题被孙一鸣同学放在一个看板上,以求“挑战天下英雄”。
我看过这道题后觉得颇有意思,经过一番思索,确实发现了一些出乎我意料的解法,现将其中四种做法以及思考过程进行展示,以飨读者。
问题:
α 13prove c b a cy c ≥+-∆∑c
b a a ABC :三边
是、、 探究:
刚拿到这道题时,我们会想到“内切圆代换”来突破“三边是、、ABC ∆c b a ”的束缚。
βα 1222y 2222y x 1242424y x z y x x z c z y b y x a ≥+++++⇔≥++++++++⇔≥++++++++⇔∈+=+=+=+x
z x z y z y x x
z x z z y z y y x x
z x z z y z y y x R )
、、(其中,,设:
对于β式,我们不难想到这样一种做法: []done z y x z y x x z x z y z y x y z y x x z x z y z y x y z y x x z x z y z y x y x z x z y z y x y ,1)()(222)()2()2()2()(222)2()2()2(Cauchy 2
2
22=++++≥+++++++=+++++++≥⎪⎪⎭
⎫ ⎝⎛++++++++++故不等式,
注意到:由
我们继续对β进行探究:
1121121121)1(,,1121121121≥+++++⇔=∈===≥+++++⇔
+w v u uvw R w v u x
z w z y v y x u x
z z y y x ,且、、其中设β 这样,我们不难发现这一问题的另一解法:
done
u f v f u f v v u u f v u u f v u uv u u v v u f u f v u f v v uv u v u uv v u u f v uv v u uv v u 恒成立,综上所述,时,当时,时,时,注意到时,当下证恒成立
时,显然,当:我们构造这样一个函数对于0)(0)1(
)(4010)(;100)(10)2()12()1)(4(2)(0
)(40:0)(41
21)2)(12()4(22121121)(,002
212112112
uv 121121000
00
20220000000000≥=≥<<><'<<>'==++--='≥<<≥≥++++-=+-+++=>∀≥+-+++⇔≥+++++⇔
β 接下来,我们再次对β式进行探索,以期得到更加出乎我们意料的解法: 不等式,显然成立
由AG xyz
x z z y y x xy y x xyz xy y x xyz x z z y y x z y y x x x z y x z x z z y y cyc cyc
cyc 3249)(43)2)(2)(2()2)(2()2)(2()2)(2(2222
222≥++⇔++≥++⇔+++≥++++++++⇔∑∑∑β 经过一翻化简,竟然得到了一个简洁明了的式子,着实出乎我们意料,可见去分母的做法并非总使问题复杂化!
最后,我们回到原题目α式,再次尝试,试图发现“三边是、、ABC ∆c b a ”这一条件的其他应用形式,即不通过“内切圆代换”将题目证明出来。
经过探索,我们确实发现了不运用“内切圆代换”的另一种解法:
done c b a c b a b a c b a c a c b a c b c b a c b a c b a c b a c b a c b a c b a c b a b a c a c b c b a ABC c b a c b a c b a c b a cyc cyc cyc
cyc ,1)()()
)(3())(3())(3()()
)(3()(3:0
,0,01343422
2
2
=++++=-++-+-++-+-++-++≥-++--+=+--+>-+>-+>-+∆≥+--+⇔≥+-⇔∑∑∑∑由权方和不等式,
对于由此三边
是、、由于γγα
经询问,这道题来源于《不等式探秘》一书,而第四种解法也是《不等式探秘》一书中给出的标答。
可以发现,对“三边
b
a”这一条件的灵
c
是
、
、ABC
活运用是本题的关键。
这些便是我解这道题的思路与四种做法,水平有限不足请斧正。
参考文献:《不等式探秘》彭翕成等湖南科学技术出版社
《奥林匹克小丛书高中卷5 不等式的解题方法与技巧》苏勇、熊斌华东师范大学出版社
2019.6.6 莱州。