江苏省苏州市石牌中学2017年中考数学一轮复习第19讲《直角三角形》讲学案
- 格式:doc
- 大小:398.50 KB
- 文档页数:14
江苏省苏州市2017年中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•苏州)(﹣3)×3的结果是()A.﹣9 B.0C.9D.﹣6考点:有理数的乘法.分析:根据两数相乘,异号得负,可得答案.解答:解:原式=﹣3×3=﹣9,故选:A.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.2.(3分)(2017•苏州)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°考点:对顶角、邻补角分析:根据对顶角相等可得∠β与∠α的度数相等为30°.解答:解:∵∠α和∠β是对顶角,∠α=30°,∴根据对顶角相等可得∠β=∠α=30°.故选:A.点评:本题主要考查了对顶角相等的性质,比较简单.3.(3分)(2017•苏州)有一组数据:1,3,3,4,5,这组数据的众数为()A.1B.3C.4D.5考点:众数分析:根据众数的概念求解.解答:解:这组数据中3出现的次数最多,故众数为3.故选B点评:本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.4.(3分)(2017•苏州)若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4 B.x≥﹣4 C.x≤4 D.x≥4考点:二次根式有意义的条件分析:二次根式有意义,被开方数是非负数.解答:解:依题意知,x﹣4≥0,解得x≥4.故选:D.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(3分)(2017•苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.考点:几何概率.分析:设圆的面积为6,易得到阴影区域的面积为4,然后根据概率的概念计算即可.解答:解:设圆的面积为6,∵圆被分成6个相同扇形,∴每个扇形的面积为1,∴阴影区域的面积为4,∴指针指向阴影区域的概率==.故选D.点评:本题考查了求几何概率的方法:先利用几何性质求出整个几何图形的面积n,再计算出其中某个区域的几何图形的面积m,然后根据概率的定义计算出落在这个几何区域的事件的概率=.6.(3分)(2017•苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°考点:等腰三角形的性质分析:先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.解答:解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选B.点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.7.(3分)(2017•苏州)下列关于x的方程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1=0考点:根的判别式.专题:计算题.分析:分别计算A、B中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C 进行判断;根据非负数的性质对D进行判断.解答:解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A选项错误;B、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B选项错误;C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,所以C选项正确;D、(x﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2017•苏州)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C.2D.5考点:二次函数图象上点的坐标特征.分析:把点(1,1)代入函数解析式求出a+b,然后代入代数式进行计算即可得解.解答:解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.故选B.点评:本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键.9.(3分)(2017•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km考点:解直角三角形的应用-方向角问题.分析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选C.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.10.(3分)(2017•苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB 在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B′,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)考点:坐标与图形变化-旋转.分析:过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.解答:解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选C.点评:本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.二、填空题(共8小题,每小题3分,共24分)11.(3分)(2017•苏州)的倒数是.考点:倒数.分析:根据乘积为1的两个数倒数,可得一个数的倒数.解答:解:的倒数是,故答案为:.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.12.(3分)(2017•苏州)已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为 5.1×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于510000000有9位,所以可以确定n=9﹣1=8.解答:解:510 000 000=5.1×108.故答案为:5.1×108.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.13.(3分)(2017•苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为4.考点:正方形的性质.分析:根据正方形的对角线等于边长的倍求出边长,再根据正方形的周长公式列式计算即可得解.解答:解:∵正方形ABCD的对角线AC=,∴边长AB=÷=1,∴正方形ABCD的周长=4×1=4.故答案为:4.点评:本题考查了正方形的性质,比较简单,熟记正方形的对角线等于边长的倍是解题的关键.14.(3分)(2017•苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解个门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有240人.考点:用样本估计总体;条形统计图.分析:根据样本的数据,可得样本C占样本的比例,根据样本的比例,可C占总体的比例,根据总人数乘以C占得比例,可得答案.解答:解:C占样本的比例,C占总体的比例是,选修C课程的学生有1200×=240(人),故答案为:240.点评:本题考查了用样本估计总体,先求出样本所占的比例,估计总体中所占的比例.15.(3分)(2017•苏州)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.考点:锐角三角函数的定义;等腰三角形的性质;勾股定理.分析:先过点A作AE⊥BC于点E,求得∠BAE=∠BAC,故∠BPC=∠BAE.再在Rt△BAE中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tan∠BPC=tan∠BAE=.解答:解:过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE=,∴tan∠BPC=tan∠BAE=.故答案为:.点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.16.(3分)(2017•苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为20.考点:二元一次方程组的应用.分析:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,就有4x+9y=120,8x+3y=120,由此构成方程组求出其解即可.解答:解:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,由题意,得,解得:.∴x+y=20.故答案为:20.点评:本题考查了列二元一次房产界实际问题的运用,二元一次方程组的解法的运用,工程问题的数量关系的运用,解答时由工程问题的数量关系建立方程组求出其解是关键.17.(3分)(2017•苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为5.考点:矩形的性质;勾股定理.分析:连接BE,设AB=3x,BC=5x,根据勾股定理求出AE=4x,DE=x,求出x的值,求出AB、BC,即可求出答案.解答:解:如图,连接BE,则BE=BC.设AB=3x,BC=5x,∵四边形ABCD是矩形,∴AB=CD=3x,AD=BC=5x,∠A=90°,由勾股定理得:AE=4x,则DE=5x﹣4x=x,∵AE•ED=,∴4x•x=,解得:x=(负数舍去),则AB=3x=,BC=5x=,∴矩形ABCD的面积是AB×BC=×=5,故答案为:5.点评:本题考查了矩形的性质,勾股定理的应用,解此题的关键是求出x的值,题目比较好,难度适中.18.(3分)(2017•苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是2.考点:切线的性质.分析:作直径AC,连接CP,得出△APC∽△PBA,利用=,得出y=x2,所以x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.解答:解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴=,∵PA=x,PB=y,半径为4∴=,∴y=x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.点评:此题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键.三、解答题(共11小题,共76分)19.(5分)(2017•苏州)计算:22+|﹣1|﹣.考点:实数的运算.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用平方根定义化简,计算即可得到结果.解答:解:原式=4+1﹣2=3.点评:此题考查了实数的运算,熟练掌握运算法则解本题的关键.20.(5分)(2017•苏州)解不等式组:.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:,由①得:x>3;由②得:x≤4,则不等式组的解集为3<x≤4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.(5分)(2017•苏州)先化简,再求值:,其中.考点:分式的化简求值.分析:分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.解答:解:=÷(+)=÷=×=,把,代入原式====.点评:此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.22.(6分)(2017•苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.(6分)(2017•苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.考点:全等三角形的判定与性质;旋转的性质.分析:(1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.解答:(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.点评:本题考查了全等三角形的判定和性质、同角的余角相等、旋转的性质、平行线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.(7分)(2017•苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.考点:两条直线相交或平行问题.专题:计算题.分析:(1)先利用直线y=x上的点的坐标特征得到点M的坐标为(2,2),再把M(2,2)代入y=﹣x+b可计算出b=3,得到一次函数的解析式为y=﹣x+3,然后根据x轴上点的坐标特征可确定A点坐标为(6,0);(2)先确定B点坐标为(0,3),则OB=CD=3,再表示出C点坐标为(a,﹣a+3),D点坐标为(a,a),所以a﹣(﹣a+3)=3,然后解方程即可.解答:解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣a+3),D点坐标为(a,a)∴a﹣(﹣a+3)=3,∴a=4.点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.25.(7分)(2017•苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.考点:列表法与树状图法.专题:计算题.分析:画树状图得出所有等可能的情况数,找出A与C中颜色不同的情况数,即可求出所求的概率.解答:解:画树状图,如图所示:所有等可能的情况有8种,其中A、C两个区域所涂颜色不相同的有4种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.(8分)(2017•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.分析:(1)根据待定系数法,可得函数解析式,根据图象上的点满足函数解析式,可得D 点坐标,根据三角形的面积公式,可得答案;(2)根据BE的长,可得B点的纵坐标,根据点在函数图象上,可得B点横坐标,根据两点间的距离公式,可得答案.解答:解;(1)y=(x>0)的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴.(2)∵BE=,∴.∵BE⊥CD,∴点B的横坐标是,纵坐标是.∴CE=.点评:本题考查了反比例函数k的几何意义,利用待定系数法求解析式,图象上的点满足函数解析式.27.(8分)(2017•苏州)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.考点:圆的综合题.分析:(1)利用圆心角定理进而得出∠BOD=120°,再利用弧长公式求出劣弧的长;(2)利用三角形中位线定理得出BF=AC,再利用圆心角定理得出=,进而得出BF=BD;(3)首先过点B作AE的垂线,与⊙O的交点即为所求的点P,得出BP⊥AE,进而证明△PBG≌△PBF(SAS),求出PG=PF.解答:(1)解:连接OB,OD,∵∠DAB=120°,∴所对圆心角的度数为240°,∴∠BOD=120°,∵⊙O的半径为3,∴劣弧的长为:×π×3=2π;(2)证明:连接AC,∵AB=BE,∴点B为AE的中点,∵F是EC的中点,∴BF为△EAC的中位线,∴BF=AC,∵=,∴+=+,∴=,∴BD=AC,∴BF=BD;(3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,∵BF为△EAC的中位线,∴BF∥AC,∴∠FBE=∠CAE,∵=,∴∠CAB=∠DBA,∵由作法可知BP⊥AE,∴∠GBP=∠FBP,∵G为BD的中点,∴BG=BD,∴BG=BF,在△PBG和△PBF中,,∴△PBG≌△PBF(SAS),∴PG=PF.点评:此题主要考查了圆的综合应用以及全等三角形的判定与性质和弧长公式以及圆心角定理等知识,正确作出辅助线是解题关键.28.(9分)(2017•苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD 沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).考点:圆的综合题.分析:(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.解答:解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.点评:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.29.(10分)(2017•苏州)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a >0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.考点:二次函数综合题.分析:(1)由C在二次函数y=a(x2﹣2mx﹣3m2)上,则其横纵坐标必满足方程,代入即可得到a与c的关系式.(2)求证为定值,一般就是计算出AD、AE的值,然后相比.而求其长,过E、D作x轴的垂线段,进而通过设边长,利用直角三角形性质得方程求解,是求解此类问题的常规思路,如此易得定值.(3)要使线段GF、AD、AE的长度为三边长的三角形是直角三角形,且(2)中=,则可考虑若GF使得AD:GF:AE=3:4:5即可.由AD、AE、F点都易固定,且G 在x轴的负半轴上,则易得G点大致位置,可连接CF并延长,证明上述比例AD:GF:AE=3:4:5即可.解答:(1)解:将C(0,﹣3)代入二次函数y=a(x2﹣2mx﹣3m2),则﹣3=a(0﹣0﹣3m2),解得a=.(2)证明:如图1,过点D、E分别作x轴的垂线,垂足为M、N.由a(x2﹣2mx﹣3m2)=0,解得x1=﹣m,x2=3m,则A(﹣m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,﹣3).∵AB平分∠DAE,∴∠DAM=∠EAN,∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴==.设E坐标为(x,),∴=,∴x=4m,∴E(4m,5),∵AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m,∴==,即为定值.(3)解:如图2,记二次函数图象顶点为F,则F的坐标为(m,﹣4),过点F作FH ⊥x轴于点H.连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.∵tan∠CGO=,tan∠FGH=,∴=,∴OG=3m.∵GF===4,AD===3,∴=.∵=,∴AD:GF:AE=3:4:5,∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为﹣3m.点评:本题考查了二次函数性质、勾股定理及利用直角三角形性质求解边长等知识,总体来说本题虽难度稍难,但问题之间的提示性较明显,所以是一道质量较高的题目.。
2017年中考数学一轮复习第19讲《直角三角形》【考点解析】知识点一:直角三角形的性质【例题】(2016·青海西宁·2分)如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD= 2 .【考点】角平分线的性质;含30度角的直角三角形.【分析】作PE⊥OA于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.【解答】解:作PE⊥OA于E,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD(角平分线上的点到角两边的距离相等),∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ACP=∠AOB=30°,∴在Rt△PCE中,PE=PC=×4=2(在直角三角形中,30°角所对的直角边等于斜边的一半),∴PD=PE=2,故答案是:2.【变式】(2013·泰安,23,3分)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC 于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.【解析】含30度角的直角三角形;线段垂直平分线的性质.根据同角的余角相等、等腰△ABE 的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.【解答】解:∵∠ACB=90°,FD⊥AB,∴∠∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.【点评】本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.知识点二:直角三角形的判定【例题】(2013·潍坊,9,3分)一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A 与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近.同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()10海里/小时 B. 30海里/小时A.3C .320海里/小时D .330海里/小时 答案:D考点:方向角,直角三角形的判定和勾股定理.点评;理解方向角的含义,证明出三角形ABC 是直角三角形是解决本题的关键. 【变式】(3分)(2015•桂林)(第8题)下列各组线段能构成直角三角形的一组是( ) A . 30,40,50 B . 7,12,13 C . 5,9,12 D . 3,4,6考点: 勾股定理的逆定理.分析: 根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解答: 解:A 、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B 、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; C 、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; D 、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; 故选A .点评: 本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.知识点三勾股定理及其逆定理的应用【例题】(2016·山东省东营市·3分)在△ABC 中,AB =10,AC =210,BC 边上的高AD =6,则另一边BC 等于( )A .10B .8C .6或10D .8或10【解析】勾股定理、分类讨论思想,在图①中,由勾股定理,得BD =AB 2-AD 2=102-62=8;CD =AC 2-AD 2=(210)2-62=2;∴BC =BD +CD =8+2=10. 在图②中,由勾股定理,得BD =AB 2-AD 2=102-62=8;CD =AC 2-AD 2=(210)2-62=2;∴BC =BD ―CD =8―2=6. 故选择C.第9题答案图②第9题答案图①DDACAC BB【点拨】本题考查分类思想和勾股定理,要分两种情况考虑,分别在两个图形中利用勾股定理求出BD 和CD ,从而可求出BC 的长. 【变式】(2016·陕西·3分)如图,在△ABC 中,∠ABC=90°,AB=8,BC=6.若DE 是△ABC 的中位线,延长DE 交△ABC的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .10【考点】三角形中位线定理;等腰三角形的判定与性质;勾股定理.【分析】根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC=EF=AC ,由此即可解决问题.【解答】解:在RT △ABC 中,∵∠ABC=90°,AB=8,BC=6, ∴AC===10,∵DE 是△ABC 的中位线, ∴DF ∥BM ,DE=BC=3, ∴∠EFC=∠FCM , ∵∠FCE=∠FCM ,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.知识点四:直角三角形的综合应用【例题】(2016·四川眉山·3分)把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A. B.6 C. D.【分析】由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.【解答】解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴B′C=3﹣3,在等腰Rt△OBC′中,OB=BC′=3﹣3,在直角三角形OBC′中,OC=(3﹣3)=6﹣3,∴OD′=3﹣OC′=3﹣3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6.故选:A.【点评】本题考查了旋转的性质、正方形的性质以及等腰直角三角形的性质.此题难度适中,注意连接BC′构造等腰Rt△OBC′是解题的关键,注意旋转中的对应关系.【变式】(2013四川巴中,29,10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.【解析】(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC;(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.【解答】(1)证明:∵▱ABCD,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∴△ADF∽△DEC.(2)解:∵▱ABCD ,∴CD=AB=8. 由(1)知△ADF ∽△DEC , ∴,∴DE===12.在Rt △ADE 中,由勾股定理得:AE===6.【点评】本题主要考查了相似三角形的判定与性质、平行四边形的性质和勾股定理三个知识点.题目难度不大,注意仔细分析题意,认真计算,避免出错. 【典例解析】【例题1】(2016·四川内江)已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( ) ABC .32D .不能确定[答案]B[考点]勾股定理,三角形面积公式,应用数学知识解决问题的能力。
江苏省连云港市岗埠中学 中考数学《解直角三角形及其应用锐角三角函数》温习教案 苏科版教学目标:1.进一步明白得三角函数的概念,并利用其进行相关计算2.能灵活的应用三角函数的概念解决有关问题教学重难点:三角函数概念和性质的应用教学进程:【查漏补缺】依照学生完成中考指南情形(学案—知识建构与基础训练)进行解疑答疑【课前热身】1.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(结果保留根号)2. 某坡面的坡度为1:3,则坡角是_______度. 3.王英同窗从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,现在王英同窗离A 地 ( )A .150mB .350mC .100 mD .3100m 【典例精析】例1 Rt ABC ∆的斜边AB =5, 3cos 5A =,求ABC ∆中的其他量.例2 海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里抵达B 点,这时测得小岛P 在北偏东45°方向上.若是渔船不改变航线继续向东航行,有无触礁危险?请说明理由.例3为了农田浇灌的需要,某乡利用一土堤修筑一条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:的渠道(其横断面为等腰梯形),并把挖出来的土堆在两旁,使土堤高度比原先增加了0.6米.(如图所示) 求:(1)渠面宽EF ;(2)修200米长的渠道需挖的土方数.【中考演练】1.在Rt ABC ∆中,090C ∠=,AB =5,AC =4,则 sinA 的值是_________.2.升国旗时,某同窗站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时, 该同窗视线的仰角恰为30°,若两眼距离地面1.2m ,则旗杆高度约为_______.(取3 1.73=,结果精准到0.1m )3.已知:如图,在△ABC 中,∠B = 45°,∠C = 60°,A B = 6.求BC 的长. (结果保留根号)﹡4.如图,在测量塔高AB 时,选择与塔底在同一水平面的同一直线上的C 、D 两点,用测角仪器测得塔顶A 的仰角别离是30°和60°.已知测角仪器高C E=1.5米,CD=30米,求塔高AB .(保留根号)【当堂反馈】见中考指南【作 业】中考指南活页训练。
中考数学一轮复习第18课直角三角形(勾股定理)导学案【考点梳理】:1. 直角三角形的定义;2. 直角三角形的性质和判定;3.特殊角度的直角三角形的性质.4.勾股定理:a2+b2=c2【思想方法】1. 常用解题方法——数形结合2. 常用基本图形——直角三角形【考点一】:直角三角形的性质【例题赏析】(2015•青岛,第4题3分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B.2 C.3 D.+2考点:含30度角的直角三角形.分析:根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.解答:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故选C.点评:本题考查了角的平分线的性质以及直角三角形的性质,斜边的一半,理解性质定理是关键.【考点二】:勾股定理【例题赏析】(2015•青海西宁第17题2分)如图,Rt△ABC中,∠B=90°,AB=4,BC=3 AC的垂直平分线DE分别交AB,AC于D,E两点,则CD的长为.考点:线段垂直平分线的性质;勾股定理..分析:先根据线段垂直平分线的性质得出CD=AD,故AB=BD+AD=BD+CD,设CD=x,则BD=4﹣x,在Rt△BCD中根据勾股定理求出x的值即可.解答:解:∵DE是AC的垂直平分线,∴CD=AD,∴AB=BD+AD=BD+CD,设CD=x,则BD=4﹣x,在Rt△BCD中,CD2=BC2+BD2,即x2=32+(4﹣x)2,解得x=.故答案为:.点评:本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键【考点三】:勾股定理的逆定理【例题赏析】(2015•桂林)(第8题)下列各组线段能构成直角三角形的一组是()A. 30,40,50 B. 7,12,13 C. 5,9,12 D. 3,4,6考点:勾股定理的逆定理.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解答:解:A、∵302+402=502正确;B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选A.点评:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,作出判断.【考点四】:用勾股定理解展开与折叠问题【例题赏析】(2015•山东泰安,第20题3分)如图,矩形ABCD中,E是ADABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=4,则FD的长为([中^国教育出版&#网~@]A.2 B. 4 C. D. 2考点:翻折变换(折叠问题)..分析:根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解.解答:∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,∵在Rt△EDF和Rt△EGF中,,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=6+x,CF=6﹣x,在Rt△BCF中,(4)2+(6﹣x)2=(6+x)2,解得x=4.故选:B.点评:本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,熟记性质,找出三角形全等的条件EF=EC是解题的关键.【考点五】:勾股定理的综合运用【例题赏析】(2015•甘肃庆阳,第20题,3分)在底面直径为2cm,高为3cm上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)考点:平面展开-最短路径问题.分析:根据绕两圈到C,则展开后相当于求出直角三角形ACB的斜边长,并且AB的长为圆柱的底面圆的周长,BC的长为圆柱的高,根据勾股定理求出即可.解答:解:如图所示,∵无弹性的丝带从A至C,∴展开后AB=2πcm,BC=3cm,由勾股定理得:AC==cm.故答案为:.点评:本题考查了平面展开﹣最短路线问题和勾股定理的应用,能正确画出图形是解此题的关键,用了数形结合思想.【真题专练】1.(2015•毕节市)(第19题)如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD= .2.(2015•枣庄,第15题4分)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.3.(2015•江苏宿迁,第14题3分)如图,在Rt△ABC中,∠ACB=90°,点D,E,F为AB,AC,BC的中点.若CD=5,则EF的长为.4.(2015•毕节市)(第5题)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,, B. 1,, C. 6,7,8 D. 2,3,45.(2015•甘肃天水,第8题,4分)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为()A. 2 B. 3 C. 4 D. 56.(2015•铜仁市)(第17题)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为.7.(2015•昆明第16题,3分)如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为.8.(2015•山东泰安,第23题3分))如图,在矩形ABCD中,M、N分别是边AD、BCE、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.9.(2015•东营,第17题4分)如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.10.(2015·湖北省咸宁市,第23题10有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.【真题演练参考答案】1.(2015•毕节市)(第19题)如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD= 2 .思考与收获考点:含30度角的直角三角形;角平分线的性质..分析:根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.解答:解:∵∠C=90°,∠B=30°,∴∠CAB=60°,AD平分∠CAB,∴∠BAD=30°,∴BD=AD=2CD=2,故答案为2.点评:本题考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出AD的长是解此题的关键.2.(2015•枣庄,第15题4分)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8 .考点:勾股定理;直角三角形斜边上的中线.专题:计算题.分析:由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD 中,利用勾股定理来求线段CD的长度即可.解答:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD===8.故答案是:8.点评:本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一3.(2015•江苏宿迁,第14题3分)如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为 5 .考点:三角形中位线定理;直角三角形斜边上的中线..分析:已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.解答:解:∵△ABC是直角三角形,CD是斜边的中线,[中国%&*教育^出版网~]∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.故答案为:5.点评:此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.4.(2015•毕节市)(第5题)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,, B. 1,, C. 6,7,8 D. 2,3,4考点:勾股定理的逆定理..分析:知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.解答:解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.(2015•甘肃天水,第8题,4分)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为()A. 2 B. 3 C. 4 D. 5考点:等腰直角三角形;点到直线的距离.分析:首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长与比较得出答案.解答:解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=2,CD=,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=2•sin45°=2•=2>,所以在AB和AD边上有符合P到BD的距离为的点2个,故选A.点评:本题考查了解直角三角形和点到直线的距离,解题的关键是先求出各边上点到BD 的最大距离比较得出答案.6.(2015•铜仁市)(第17题)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为8 .考点:三角形中位线定理;直角三角形斜边上的中线.分析:先根据点D是AB的中点,BF∥DE可知DE是△ABF的中位线,故可得出DE的长,根据CE=CD可得出CD的长,再根据直角三角形的性质即可得出结论.解答:∵点D是AB的中点,BF∥DE,∴DE是△ABF的中位线.∵BF=10,∴DE=BF=5.∵CE=CD,∴CD=5,解得CD=4.∵△ABC是直角三角形,∴AB=2CD=8.故答案为:8.点评:本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.7.(2015•昆明第16题,3分)如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为(6+2)a .考点:含30度角的直角三角形;等边三角形的判定与性质;勾股定理..分析:先根据∠C=30°,∠BAC=90°,DE⊥AC可知BC=2AB,CD=2DE,再由AB=AD可知点D是斜边BC的中点,由此可用a表示出AB的长,根据勾股定理可得出AC的长,由此可得出结论.解答:解:∵∠C=30°,∠BAC=90°,DE⊥AC,∴BC=2AB,CD=2DE=2a.∵AB=AD,∴点D是斜边BC的中点,∴BC=2CD=4a,AB=BC=2a,∴AC===2a,∴△ABC的周长=AB+BC+AC=2a+4a+2a=(6+2)a.故答案为:(6+2)a.点评:本题考查的是含30°的直角三角形,熟知在直角三角形中,30°角所对的直角边等于斜边的一半是解答此题的关键.8.(2015•山东泰安,第23题3分))如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为20 .考点:三角形中位线定理;勾股定理;矩形的性质..分析:根据M是边AD的中点,得AM=DM=6,根据勾股定理得出BM=CM=10,再根据E、F 分别是线段BM、CM的中点,即可得出EM=FM=5,再根据N是边BC的中点,得出EM=FN,EN=FM,从而得出四边形EN,FM的周长.解答:解:∵M、N分别是边AD、BC的中点,AB=8,AD=12,∴AM=DM=6,∵四边形ABCD为矩形,∴∠A=∠D=90°,∴BM=CM=10,∵E、F分别是线段BM、CM的中点,∴EM=FM=5,∴EN,FN都是△BCM的中位线,∴EN=FN=5,∴四边形ENFM的周长为5+5+5+5=20,故答案为20.点评:本题考查了三角形的中位线,勾股定理以及矩形的性质,是中考常见的题型,难度不大,比较容易理解.9.(2015•东营,第17题4分)如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.考点:平面展开-最短路径问题.专题:计算题.分析:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,此时AB最短,根据三角形MCB与三角形ACN相似,由相似得比例得到MC=2NC,求出CN的长,利用勾股定理求出AC的长即可.解答:解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,∵△BCM∽△ACN,∴=,即==2,即MC=2NC,∴CN=MN=,在Rt△ACN中,根据勾股定理得:AC==,故答案为:.点评:此题考查了平面展开﹣最短路径问题,涉及的知识有:相似三角形的判定与性质,勾股定理,熟练求出CN的长是解本题的关键.10.(2015·湖北省咸宁市,第23题10分)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.考点:四边形综合题..分析:(1)根据对等四边形的定义,进行画图即可;(2)连接AC,BD,证明Rt△ADB≌Rt△ACB,得到AD=BC,又AB是⊙O的直径,所以AB≠CD,即可解答;(3)根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.解答:(1)如图1所示(画2个即可).(2)如图2,连接AC,BD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,在Rt△ADB和Rt△ACB中,∴Rt△ADB≌Rt△ACB,∴AD=BC,又∵AB是⊙O的直径,∴AB≠CD,∴四边形ABCD是对等四边形.(3)如图3,点D的位置如图所示:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,设BE=x,∵tan∠PBC=,∴AE=,在Rt△ABE中,AE2+BE2=AB2,即,解得:x1=5,x2﹣5(舍去),∴BE=5,AE=12,∴CE=BC﹣BE=6,由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,在Rt△AFD2中,,∴,,综上所述,CD的长度为13、12﹣或12+.点评:本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.在(3)中注意分类讨论思想的应用、勾股定理的应用.。
第20讲:直角三角形与勾股定理一、复习目标(1)掌握判定直角三角形全等的条件和直角三角形的性质。
(2)掌握角平分线性质的逆定理。
(3)掌握勾股定理及其逆定理。
二、课时安排1课时三、复习重难点直角三角形的性质和判定,勾股定理及其逆定理,直角三角形全等的判定及其应用。
四、教学过程(一)知识梳理直角三角形的概念、性质与判定定义有一个角是________的三角形叫做直角三角形性质(1)直角三角形的两个锐角互余(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于___________(3)在直角三角形中,斜边上的中线等于________________判定(1)两个内角互余的三角形是直角三角形(2)一边上的中线等于这边的一半的三角形是直角三角形拓展(1)S Rt△ABC=12ch=12a b,其中a、b为两直角边,c为斜边,h为斜边上的高;(2)Rt△ABC内切圆半径r=a+b-c2,外接圆半径R=c2,即等于斜边的一半勾股定理及逆定理勾股定理直角三角形两直角边a、b的平方和,等于斜边c的平方.即:________勾股定理的逆定理逆定理如果三角形的三边长a、b、c有关系: ________ ,那么这个三角形是直角三角形用途(1)判断某三角形是否为直角三角形;(2)证明两条线段垂直;(3)解决生活实际问题互逆命题互逆命题如果两个命题的题设和结论正好相反,我们把这样的两个命题叫做互逆命题,如果我们把其中一个叫做______,那么另一个叫做它的______互逆定理若一个定理的逆定理是正确的,那么它就是这个定理的________,称这两个定理为互逆定理命题、定义、定理、公理定义在日常生活中,为了交流方便,我们就要对名称和术语的含义加以描述,作出明确的规定,也就是给他们下定义命题定义判断一件事情的句子叫做命题分类正确的命题称为________错误的命题称为________组成每个命题都由______和______两个部分组成公理公认的真命题称为________定理除公理以外,其他真命题的正确性都经过推理的方法证实,推理的过程称为________.经过证明的真命题称为________(二)题型、技巧归纳考点一:利用勾股定理求线段的长度技巧归纳:勾股定理的作用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边求另两边的关系;(3)用于证明平方关系的问题.考点2实际问题中勾股定理的应用技巧归纳:利用勾股定理求最短线路问题的方法:将起点和终点所在的面展开成为一个平面,进而利用勾股定理求最短长度.考点3勾股定理逆定理的应用技巧归纳:判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.考点4定义、命题、定理、反证法技巧归纳:只有对一件事情做出判定的语句才是命题,其中正确的命题是真命题,错误的命题是假命题.对于命题的真假(正误)判断问题,一般只需根据熟记的定义、公式、性质、判定定理等相关内容直接作出判断即可,有的则需要经过必要的推理与计算才能进一步确定真与假.(三)典例精讲例1 将一个有45度角的三角板的直角顶点放在一张宽为3 cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图21-1,则三角板的最大边的长为( )A、3CMB、6CMC、32CMD、62CM[解析] 如图所示,过点A作AD⊥BD,垂足为D,所以AB=2AD=2×3=6 (cm),△ABC是等腰直角三角形,AC=2AB=62(cm).例2 一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长;(3)求点B1到最短路径的距离.解:(1)如图,木柜的表面展开图是两个矩形和.蚂蚁能够最快到达目的地的可能路径有如图的AC′1和AC1.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长是l1=42+(4+5)2=97.蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长是l2=(4+4)2+52=89.l1>l2,最短路径的长是l2=89.(3)作B1E⊥AC1于E,则B1E=B1C1AC1·AA1=489·5=208989例3 已知三组数据:①2,3,4;②3,4,5;③1,,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( )A .②B .①②C .①③D .②③[解析] 根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.只要判断两个较小的数的平方和是否等于最大数的平方即可判断.①∵22+32=13≠42,∴以这三个数为长度的线段不能构成直角三角形,故不符合题意;②∵32+42=52 ,∴以这三个数为长度的线段能构成直角三角形,故符合题意;③∵12+(√3)2=22, ∴以这三个数为长度的线段能构成直角三角形,故符合题意.故构成直角三角形的有②③.故选D.例4 下列命题为假命题的是( )A .三角形三个内角的和等于180°B .三角形两边之和大于第三边C .三角形两边的平方和等于第三边的平方D .三角形的面积等于一条边的长与该边上的高的乘积的一半[解析] 选项A 和B 中的命题分别为三角形的内角和定理与三角形三边关系定理,均为真命题;对于选项C ,只有直角三角形中两直角边的平方和等于斜边的平方,而其他三角形的三边都不具有这一关系,因此是假命题;选项D 中的命题是三角形的面积计算公式,也是真命题,故应选C.(四)归纳小结本部分内容要求熟练掌握判定直角三角形全等的条件和直角三角形的性质、掌握角平分线性质的逆定理、掌握勾股定理及其逆定理。
2017年中考数学一轮复习第20讲《解直角三角形》【考点解析】知识点一、锐角三角函数的概念.【例1】(2015浙江丽水)如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示αcos 的值,错误..的是( )A .BC BD B .ABBC C .AC AD D .AC CD 【分析】由图可知∠α=∠ACD ,所以cos α=cos ∠ACD ,∠α是RT △ABC 、△BCD 的内角,∠ACD 是RT △ACD 的内角,共有三种表示方法,故可做出判断. 【解析】根据ACCD ACD AB BC BC BD =∠===cos cos α,所以选项A 、B 、D 正确,选项C 错误.故选C .【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻边比斜边;正切等于对边比邻边.【点评】在解直角三角形时,许多问题中并不是直角三角形,而是要通过构造直角三角形,将问题转化为直角三角形问题.通常通过作三角形的高,构造一个包含所求角的直角三角形,然后利用三角函数定义解决.【变式】(2016•怀化)在Rt △ABC 中,∠C=90°,sinA=,AC=6cm ,则BC 的长度为( )A .6cmB .7cmC .8cmD .9cm【分析】根据三角函数的定义求得BC 和AB 的比值,设出BC 、AB ,然后利用勾股定理即可求解.【解答】解:∵sinA==,∴设BC=4x,AB=5x,又∵AC2+BC2=AB2,∴62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),则BC=4x=8cm,故选:C.【点评】本题考查了三角函数与勾股定理,正确理解三角函数的定义是关键.知识点二、特殊角的三角函数值【例2】(2016•天津)sin60°的值等于()A.B.C.D.【分析】直接利用特殊角的三角函数值求出答案.【解答】解:sin60°=.故选:C.【点评】此题主要考查了特殊角的三角函数值,正确把握定义是解题关键.【变式】(2016•玉林)sin30°=()A.B.C.D.【分析】根据特殊角的三角函数值进行解答即可.【解答】解:sin30°=.故选:B.【点评】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值即可解答该题.知识点三、解直角三角形【例3】1.(2016·山东省菏泽市·3分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9 B.5:3 C.:D.5:3【考点】互余两角三角函数的关系.【分析】先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论.【解答】解:过A 作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=AD•BC=0.5AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=0.5A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC:S△A′B′C′=25:9.故选A.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和三角形面积公式.【变式】如图,将一副三角板按图中方式叠放,BC=4,那么BD=【答案】.【解析】 在Rt△ABC 中,∵∠BAC=90°,∠C=45°,BC=4,. 在Rt△ABC 中,∵∠DBA=90°,∠D=30°,,∴BD=tan 30AB ==︒. 知识点四、方位角【例4】(2015江苏苏州)如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB=2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4km B.(2+km C..(4km【答案】B【解析】根据题意中方位角的特点,过点B 作BE ⊥AC ,交AC 于点E ,由∠CAB=45°,AB=2km ,可知km ,根据题意还可知∠BCA=∠BCD=22.5°,因此CB 是∠ACD 的角平分线,根据角平分线的性质可知km ,因此CD=AD=AB+BD=()km.故选B【点评】本题考查了方位角的问题,能正确地识图,选择知识点是解题的关键,属中等题.【变式】(2013江苏苏州)如图,在一笔直的海岸线l上有A、B两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)【思路分析】(1)过点P作PD⊥AB于点D,设PD=x km,先解Rt△PBD,用含x的代数式表示BD,再解Rt△PAD,用含x的代数式表示AD,然后根据BD+AD=AB,列出关于x的方程,解方程即可;(2)过点B作BF⊥AC于点F,先解Rt△ABF,得出BF=12AB=1 km,再解Rt△BCF,得出BC BF km.【解】(1)如图,过点P作PD⊥AB于点D.设PD=x km.在Rt△PBD中,∠BDP=90°,∠PBD=90°-45°=45°,∴BD=PD=x km.在Rt△PAD中,∠ADP=90°,∠PAD=90°-60°=30°,∴AD PD x km.∵BD+AD=AB,∴x x=2,x1,∴点P到海岸线l1)km;(2)如图,过点B作BF⊥AC于点F.在Rt△ABF中,∠AFB=90°,∠BAF=30°,∴BF=12AB=1km.在△ABC中,∠C=180°-∠BAC-∠ABC=45°.在Rt△BCF中,∠BFC=90°,∠C=45°,∴BC BF km,∴点C与点B km.【方法指导】本题考查了解直角三角形的应用——方位角问题,难度适中.通过作辅助线,构造直角三角形是解题的关键.【易错警示】不会作辅助线,构造直角三角形,无法解决问题.知识点五、俯角和仰角【例5】盐城电视塔是我市标志性建筑之一.如图,在一次数学课外实践活动中,老师要求测电视塔的高度AB.小明在D处用高1.5m的测角仪CD,测得电视塔顶端A的仰角为30°,然后向电视塔前进224m 到达E 处,又测得电视塔顶端A 的仰角为60°.求电视塔的高度AB .取1.73,结果精确到0.1m )【答案】195.3m.【解析】设AG=x ,在Rt△AFG 中, ∵tan∠AFG=AG FG , ∴FG = 在Rt△ACG 中,∵tan∠ACG=AG CG ,∴tan 30x CG ==︒,224=, 解得:x≈193.8.则AB=193.8+1.5=195.3(米).答:电视塔的高度AB 约为195.3米.【变式】(2016·湖北随州·8分)某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D 处沿山坡向着雕像方向前进1620尺到达E 点,在点E 处测得雕像顶端A 的仰角为60°,求雕像AB 的高度.【考点】解直角三角形的应用-仰角俯角问题.【分析】构造直角三角形,利用锐角三角函数,进行简单计算即可.【解答】解:如图,过点E作EF⊥AC,EG⊥CD,在Rt△DEG中,∵DE=1620,∠D=30°,∴EG=DEsin∠D=1620×=810,∵BC=857.5,CF=EG,∴BF=BC﹣CF=47.5,在Rt△BEF中,tan∠BEF=,∴EF=BF,在Rt△AEF中,∠AEF=60°,设AB=x,∵tan∠AEF=,∴AF=EF×tan∠AEF,∴x+47.5=3×47.5,∴x=95,答:雕像AB的高度为95尺.知识点六坡度和坡角【例6】(2016•重庆)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米【分析】作BF⊥AE于F,则FE=BD=6米,DE=BF,设BF=x米,则AF=2.4米,在Rt△ABF中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AE的长度,在Rt△ACE中,由三角函数求出CE,即可得出结果.【解答】解:作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF,∵斜面AB的坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AE•tan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米;故选:A.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.【变式】(2016·重庆市B卷·4分)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)A.30.6 B.32.1 C.37.9 D.39.4【考点】解直角三角形的应用-坡度坡角问题.【分析】延长AB交DC于H,作EG⊥AB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得出方程,解方程求出BH=6米,CH=6米,得出BG、EG的长度,证明△AEG是等腰直角三角形,得出AG=EG=6+20(米),即可得出大楼AB的高度.【解答】解:延长AB交DC于H,作EG⊥AB于G,如图所示:则GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:x2+(x)2=122,解得:x=6,∴BH=6米,CH=6米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=6+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=6+20(米),∴AB=AG+BG=6+20+9≈39.4(米);故选:D.【点评】本题考查了解直角三角形的应用﹣坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键.【典例解析】【例题1】(2016•兰州)在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=()A.4 B.6 C.8 D.10【分析】在直角三角形ABC中,利用锐角三角函数定义表示出sinA,将sinA 的值与BC的长代入求出AB的长即可.【解答】解:在Rt△ABC中,∠C=90°,sinA==,BC=6,∴AB===10,故选D【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.【例题2】12.(2016海南)如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【专题】应用题;解直角三角形及其应用.【分析】(1)在直角三角形DCE中,利用锐角三角函数定义求出DE的长即可;(2)过D作DF垂直于AB,交AB于点F,可得出三角形BDF为等腰直角三角形,设BF=DF=x,表示出BC,BD,DC,由题意得到三角形BCD为直角三角形,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出AB的长.【解答】解:(1)在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=90°,∴DE=DC=2米;(2)过D作DF⊥AB,交AB于点F,∵∠BFD=90°,∠BDF=45°,∴∠BFD=45°,即△BFD为等腰直角三角形,设BF=DF=x米,∵四边形DEAF为矩形,∴AF=DE=2米,即AB=(x+2)米,在Rt△ABC中,∠ABC=30°,∴BC====米,BD=BF=x米,DC=4米,∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°,在Rt△BCD中,根据勾股定理得:2x2=+16,解得:x=4+或x=4﹣,则AB=(6+)米或(6﹣)米.【点评】此题考查了解直角三角形﹣仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.【例题3】(2016·云南省昆明市)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE﹣CE.【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.【例题4】(2016·山东省菏泽市·3分)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国还巡警干扰,就请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.【考点】解直角三角形的应用-方向角问题.【分析】作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD可得出方程,解出x的值后即可得出答案.【解答】解:如图,作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=x,又∵BC=20(1+),CD+BD=BC,即x+x=20(1+),解得:x=20,∴AC=x=20(海里).答:A、C之间的距离为20海里.【点评】此题考查了解直角三角形的应用,解答本题的关键是根据题意构造直角三角形,将实际问题转化为数学模型进行求解,难度一般.【中考热点】【热点1】(2016·四川攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A. B. C. D.【考点】锐角三角函数的定义.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故选:D.【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数的定义;熟练掌握圆周角定理是解决问题的关键.【热点2】(2016·贵州安顺·3分)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B. C. D.【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.【热点3】(2016·四川宜宾)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】作CF⊥AB于点F,设AF=x米,在直角△ACF中利用三角函数用x表示出CF的长,在直角△ABE中表示出BE的长,然后根据CF﹣BE=DE即可列方程求得x的值,进而求得AB的长.【解答】解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.【热点4】(2016·四川泸州)如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】如图作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出线段BN,在RT△ABM中求出AM,再证明四边形CMBN是矩形,得CM=BN即可解决问题.【解答】解:如图作BN⊥CD于N,BM⊥AC于M.在RT△BDN中,BD=30,BN:ND=1:,∴BN=15,DN=15,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=60﹣15=45,在RT△ABM中,tan∠ABM==,∴AM=27,∴AC=AM+CM=15+27.。
2019年中考数学专题练习20《直角三角形》【知识归纳】1. 锐角三角函数1.定义在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b,则∠A的正弦:sinA=∠A的对边斜边=;∠A的余弦:cosA=∠A的邻边斜边=;∠A的正切:tanA=∠A的对边∠A的邻边=;它们统称为∠A的锐角三角函数2. 特殊角的三角函数值sin30°= ,cos30°= tan30°=sin45°= ,cos45°= tan45°=sin60°= ,cos60°= tan60°=3. 解直角三角形(1)解直角三角形的定义在直角三角形中,除直角外,共有5个元素,即3条边和2个锐角.由这些元素中的一些已知元素,求出所有未知元素的过程叫做解直角三角形(2)解直角三角形的常用关系在Rt△ABC中,∠C=90°,则:(1)三边关系:a2+b2= ;(2)两锐角关系:∠A+∠B= ;(3)边与角关系:sinA=cosB=________,cosA=sinB=,tanA=;(4)sin2A+cos2A=4.解直角三角形的应用常用知识(1)仰角和俯角在视线与水平线所成的角中,视线在水平线上方的叫,视线在水平线下方的叫(2)坡度和坡角坡度: 坡面的铅直高度h和水平宽度l的比叫做坡面的 (或 ),记作i=坡角: 坡面与水平面的夹角叫做坡角,记作a. i=tana,坡度越大,a角越大,坡面(3)方向角(或方位角): 指北或指南方向线与目标方向线所成的小于°的水平角叫做方向角【基础检测】1.(2019•绥化)如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是()A.250米B.250米C.米D.500米2.(2019•泰安)如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()A.22.48 B.41.68 C.43.16 D.55.633.(2019•长沙)如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为()A.160m B.120m C.300m D.160m4.(2019·吉林·7分)如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=43°,求飞机A与指挥台B的距离(结果取整数)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)5. (2019·江西·8分)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)6.(2019·辽宁丹东·10分)某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)7.(2019·湖北黄石·8分)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BA F=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.( 1.414,CF结果精确到米)【达标检测】一、选择题1.(2019•无锡)sin30°的值为()A.B.C.D.2.(2019•永州)下列式子错误的是()A.cos40°=sin50° B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°3.(2019•南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米4.(2019•金华)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米25.(2019•菏泽)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9 B.5:3 C.:D.5:36.(2019•苏州)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m7.(2019•聊城)聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米B.204米C.240米D.407米二、填空题:8.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.9. (2019·青海西宁·2分)⊙O的半径为1,弦AB=,弦AC=,则∠BAC度数为.10. (2019·湖北荆州·3分)全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为58 米(参考数据:tan78°12′≈4.8).11.(2019•重庆)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC 是12米,梯坎坡度i=1:,则大楼AB 的高度约为 。
2017年中考数学专题练习21《相似形》【知识归纳】(一)1.成比例线段在四条线段中,如果其中两条线段的比 另外两条线段的比,那么这四条线段叫做成比例线段.2.比例线段的基本性质若a b =c d,则 ;当b =c 时, ,那么b 是a ,d 的比例中项. 3.线段的黄金分割点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果AC 是线段AB 和BC 的比例中项,且AC AB =BC AC =5-12≈0.618,则C 点叫做线段AB 的 . 4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。
(二)1.相似图形定义:形状相同的图形称为相似图形.相似图形的性质:对应角 ,对应边的比 .2.相似三角形的判定(1)如果一个三角形的两角分别与另一个三角形的两角对应 ,那么这两个三角形相似;(2)如果一个三角形的两条边与另一个三角形的两条边对应 ,且夹角 ,那么这两个三角形相似;(3)如果一个三角形的三条边和另一个三角形的三条边对应 ,那么这两个三角形相似;(4)平行于三角形一边的直线和其他两边(或延长线)相交,所构成的三角形与原三角形 .3.相似三角形的性质(1)相似三角形周长的比等于 .(2)相似三角形面积的比等于 . (3)相似三角形对应高、对应角平分线、对应中线的比等于 .4.相似多边形的性质(1)相似多边形周长的比等于 . (2)相似多边形面积的比等于 .5.位似图形(1)定义两个多边形不仅相似,而且每组对应顶点所在直线相交于一点,这个点叫做 ,对应边的比叫做.位似是一种特殊的相似.(2)性质(1)位似图形上的任意一对对应点到位似中心的距离的比等于;(2)位似图形对应点的连线或延长线相交于点;(3)位似图形对应边;(4)位似图形对应角.【基础检测】1.(2016•德州)对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是()A.平移B.旋转C.轴对称D.位似2.(2016•达州)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2 B.3 C.4 D.53.(2016•哈尔滨)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.4.(2016•巴中)如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE 的面积与四边形BCED的面积的比为()A.1:2 B.1:3 C.1:4 D.1:15.(2016•烟台)如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)6.(2016·辽宁丹东·3分)如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,F A⊥AE,交CB延长线于点F,则EF的长为.7.(2016·广西桂林·3分)如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD 于H,点O是AB中点,连接OH,则OH=.8.(2016·贵州安顺·4分)如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF,那么EH的长为.9. (2016·四川眉山)已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.10. (2016·四川眉山)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.【达标检测】一.选择题1.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对2.如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A.1:2 B.2:3 C.1:3 D.1:43.(2016·湖北随州)如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3 B.1:4 C.1:5 D.1:254.如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是()A.AD=AE B.DB=EC C.∠ADE=∠C D.DE=12 BC5.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A. P1B. P2C. P3D. P46.(2016·江西)如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③7. (2016·辽宁丹东)如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BA D.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个二、填空题8.如图,在△ABC中,DE∥BC,23DEBC,△ADE的面积是8,则△ABC的面积为9.(2016贵州毕节)在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD=.10.(2016·湖北武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则BD的长为_______.11.(2016·黑龙江龙东)已知:在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE交BD于点F,则EF:FC的值是.12.(2016·黑龙江齐齐哈尔·3分)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为.13.如图,在平面直角坐标系中,等腰△OBC的边OB在x轴上,OB=CB,OB边上的高CA与OC边上的高BE相交于点D,连接OD,AB CBO=45°,在直线BE上求点M,使△BMC与△ODC相似,则点M的坐标是.三、解答题14.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A1B1C1.(1)△ABC与△A1B1C1的位似比等于;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A1B1C1是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为.15.如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:AD AC BE BC.16.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;17. (2016·陕西)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB ⊥BM ,ED ⊥BM ,GF ⊥BM ,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB 的长度.18. (2016·重庆市A 卷·12分)在△ABC 中,∠B =45°,∠C =30°,点D 是BC 上一点,连接AD ,过点A 作AG ⊥AD ,在AG 上取点F ,连接DF .延长DA 至E ,使AE =AF ,连接EG ,DG ,且GE =DF .(1)若AB =2,求BC 的长;(2)如图1,当点G 在AC 上时,求证:BD =CG ;(3)如图2,当点G 在AC 的垂直平分线上时,直接写出的值.【知识归纳答案】(一)1.成比例线段在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段.2.比例线段的基本性质若a b =c d,则ad =bc ;当b =c 时,b 2=ad ,那么b 是a ,d 的比例中项. 3.线段的黄金分割点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果AC 是线段AB 和BC 的比例中项,且AC AB =BC AC =5-12≈0.618,则C 点叫做线段AB 的黄金分割点. 4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。
24.2 直角三角形的性质教学目标:1、以直角三角形为载体,继续学习几何证明.2、掌握直角三角形的两个锐角互余。
3、通过图形的运动来比较一般三角形与直角三角形中线的性质。
4、在图形的运动中培养学生学习几何的兴趣。
难点与重点:1、直角三角形斜边上的中线等于斜边的一半性质定理的证明思想方法。
2、直角三角形斜边上的中线性质定理的应用。
教学过程:一、1、复习提问:在三角形ABC中,∠C=90°那么,△ABC为什么三角形?2、∠A+∠B=?通过几何画板的演示,在图形不断运动中∠A+∠B=90°3、三边之间有什么关系呢?4、学生归纳出:(1)在直角三角形中,两个锐角互余。
(2)直角三角形中,两条直角边的平方和等于斜边的平方(勾股定理)。
二、观察:1、已知:△ABC以及AB边上的中线CD,2、任意三角形一边上的中线与这边之间有什么关系?3、让学生在图形的变化过程中观察到CD/AB的值不是一个定值,学生不难发现任意三角形一边中线与这边之间没有规律可循。
4、请同学们继续观察,我们今天所研究的直角三角形斜边上的中线与斜边的长度之间有什么系?(1)CD= BA,CD/BA=0.5。
(2)通过几何画板的演示,Rt△ABC 的形状在不断的变化,CD、AD、DB的长度也在变,但这三条线段之间的长度始终相等。
让学生归纳出:(3)直角三角形斜边上的中线等于斜边的一半。
三、仅仅通过观察和操作是不够的,那么对于任何一个直角三角形是否也具备此性质,我们要通过逻辑推理的方法加以证明。
(1)、根据题义作出图形,并标上必要的字母和符号。
(2)、根据题设和结论,结合图形写出“已知”和“求证”。
(3)、通过分析写出证明过程。
已知:在Rt△ABC中,∠ACB=90°CD是斜边AB上的中线。
求证:CD=AB提问设计:1、如果不能直接证明,怎么办?(添辅助线)2、三角形中,如果遇到中线问题应如何添加辅助线。
(中线加倍延长法)那么CD= CE3、CD延长后要证CD= AB,只要证 CE=AB4、如何证CE=AB?(把CE、AB放到两个三角形中,证△ABC≌△CEA。
Presented by Csuzzy,All Rights Reserved.8直角三角形存在§8-1直角作法已知两个定点A 、B 连成的线段AB ,要找到第三点C ,使得△ABC 为直角三角形,且C 为直角顶点,应该如何确定C 点位置?此时要想到圆的知识,想到三角形的外接圆,想到三角形斜边上的中点等于斜边一半这条定理。
所以,以线段AB 为直角三角形的斜边,要确定直角顶点C ,只需以AB 中点O 为圆心,AB 一半长为半径画圆,圆上的任意一点都可以满足△ABC 成为直角三角形。
如图,一次函数1y k x b =+的图象经过()0,2A -,()1,0B 两点,与反比例函数2k y x =的图象在第一象限内的交点为M ,若OBM △的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x 轴上是否存在点P ,使AM MP ⊥?若存在,求出点P 的坐标;若不存在,说明理由.1直角作法A B C 1C 2C 3C 4O ·Presented by Csuzzy ,All Rights Reserved.如图,已知点()8,0A -、()2,0B ,点C 在直线344y x =-+上,则使ABC △是直角三角形的点C 的个数为A.1B.2C.3D.4如图,已知抛物线()20y ax bx c a =++≠的对称轴为直线1x =-,且抛物线经过()1,0A ,()0,3C 两点,与x 轴交于点B .(1)若直线y mx n =+经过B ,C 两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴直线1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴直线1x =-上的一个动点,求使BPC △为直角三角形的点P 的坐标.2直线上动在平面直角坐标系中,抛物线()21y x k x k =+--与直线1y kx =+交于A ,B 两点,点A 在点B 的左侧.(1)如图1,当1k =时,直接写出A ,B两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出ABP △面积的最大值及此时点P 的坐标;(3)如图2,抛物线()21y x k x k =+--(0k >)与x 轴交于C ,D 两点(点C 在点D 的左侧).在直线1y kx =+上是否存在唯一一点Q ,使得90OQC ∠= ?若存在,请求出此时k的值;若不存在,请说明理由.3Presented by Csuzzy,All Rights Reserved.(2018成都)如图,在平面直角坐标系中,以直线对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.(1)求抛物线的函数表达式;(2)设直线与抛物线的对称轴的交点为是抛物线上位于对称轴右侧的一点,若,且与面积相等,求点的坐标;(3)若在轴上有且仅有一点,使,求的值.如图,在平面直角坐标系中,已知抛物线2y x bx c =++过A ,B ,C 三点,点A 的坐标是()3,0,点C 的坐标是()0,3-,动点P 在抛物线上.(1)b =,c =,点B 的坐标为;(直接填写结果)(2)是否存在点P ,使得ACP △是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)过动点P 作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标.抛物线上动4Presented by Csuzzy ,All Rights Reserved.如图,抛物线213222y x x =-++与x 轴交于点A 、点B ,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上一动点,设点P 的坐标为(),0m ,过点P 作x 轴的垂线l 交抛物线于点Q .(1)求直线BD 的解析式.(2)当点P 在线段OB 上运动时,直线l 交BD 于点M ,试探究m 为何值时四边形CQMD 是平行四边形.(3)点P 在运动过程中,是否存在点Q ,使BDQ △是以BD 为直角边的直角三角形?若存在,求出点Q 坐标;若不存在,说明理由.§8-2直角综合一定两动的情形一般是等腰直角三角形存在问题,不仅要求直角,还要求有相等线段。
2019-2020学年中考数学一轮复习直角三角形导学案通过观察、操作、归纳等活动,掌握直角三角形的性质和判定.
组向展讲人声音宏亮,语言流畅,运用彩笔分析图形,板书必要的步骤。
及展讲的问题,回扣目标,反思你有哪些
.同伴之间互相讲述自己的个性目标,并互相补充、监督使目标更明确。
时要分层差、中、好各有一个能将本节课的目标补充完整)
教师行为:①对小组交流进行指导督促(最好督促学科长在组内展讲一次)
引领。
鼓励每个学生都能发表自己的见解,使自己小组的方案更完备,提醒学生要有集体
展讲指导
相似三角形有哪些判定方法?涉及到的图形有哪些?请你画下来
1.68
C=8,对
合作评价1.任务:认真完成训练单中的测试题
2.要求:合上课本,独立完成,认真书写,规范答题
3.巡视、批阅各组数学学科长的训练单,并用红笔作出评价。
课题:§7.1正切执笔:朱清华审核:初三数学备课组[学习目标]1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。
2、了解计算一个锐角的正切值的方法。
[学习重点与难点]你计算一个锐角的正切值的方法[学习过程]一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。
下列图中的两个台阶哪个更陡?你是怎么判断的?图(1)图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图的台阶更陡,理由二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?1 可通过测量BC与AC的长度,再算出它们的比,来说明台阶的倾斜程度。
(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________________________________.②讨论:你还可以用其它什么方法?能说出你的理由吗?答:_________________________________________.2、思考与探索二:(1)如图,一般地,如果锐角A的大小已确定,我们可以作出无数个相似的RtAB1C1,RtAB2C2,RtAB3C3……,那么有:Rt△AB1C1∽________∽________……根据相似三角形的性质,得:=_________=_________=……斜边cB3( 2 )由上可知:如果直角三角形的一个锐角的大小已确定,那么这个锐角的对边与这个角的邻边的比值也 _________ 。
3、正切的定义如图,在Rt△ABC中,∠C=90°,a、b分别是∠A的对边和邻边。
我们将∠A的对边a与邻边b的比叫做∠A_______,记作______。
即:tanA=________=__________4、牛刀小试1根据下列图中所给条件分别求出下列图中∠ A 、∠ B 的正切值。
5B(通过上述计算,你有什么发现?_____________________________________.)5、思考与探索三:θtanθ10°20°30°45°55°65° 2.14怎样计算任意一个锐角的正切值呢?(1)例如,根据书本P39图7—5,我们可以这样来确定tan65°的近似值:当一个点从点O出发沿着65°线移动到点P时,这个点向右水平方向前进了1个单位,那么在垂直方向上升了约2.14个单位。
CA B D 课题:《24.2直角三角形的性质》教学目标:1.掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用2.巩固利用添辅助线证明有关几何问题的方法.3.掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.教学重点及难点:1、直角三角形斜边上的中线性质定理的证明思想方法.2、直角三角形斜边上的中线性质定理的应用.教学过程:一、复习引入1、什么叫直角三角形?2、直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?(1)___________________________;(2)_____________________________.引出课题:直角三角形的性质并板书课题二、自主学习(一)如图:∠A 与∠B 有何关系?为什么?巩固练习: (1)在直角三角形中,有一个锐角为520,那么另一个锐角度数为 ;(2)在Rt △ABC 中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= ;(3)如图,在Rt △ABC 中,∠ACB=900,CD 是斜边AB 上的高,那么,与∠B 互余的角有 ,与∠A 互余的角有 ,与∠B 相等的角有 ,∠A 相等的角有 .三、合作探究想一想 如果在练习(3)中添加∠A=45o 的条件,那么各个锐角是多少度?各个线段之间有什么等量关系?猜一猜 量一量直角三角形斜边上的中线等于斜边的一半吗?证一证命题:直角三角形斜边上的中线等于斜边的一半.已知:在Rt △ABC 中,∠ACB=900,CD 是斜边AB 的中线.求证:CD=21AB (论证过程参照书本)归纳总结定理1:__________________________________.定理2:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.引导学生得出定理2的3种证明方法,培养学生的思维能力。
(1)(2)(3)D CA B E F 四、展示点评五、当堂训练△ABC 中,∠C=900, ∠B=600,BC=7,则∠A = ----------,AB=----------△ABC 中,∠A: ∠B: ∠C=1:2:3,若AB=10,则BC=----------3、如图Rt △ABC 中,CD 是斜边AB 上的高,若∠A=300,BD=1cm,那么∠BCD=_____, BC=_____.4、如图所示,已知△ABC 中,∠ACB=900,CD ⊥AB 于D, ∠A=300,且AB=8cm,则BC= ---------- , ∠BCD=----------, BD= ---------- ,AD= ---------- .5、在直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为________.6、如图,在△ABC 中,AD ⊥BC ,E 、F 分别是AB 、AC 的中点,且DE=DF. 求证:AB=AC 练习:P 104 1、2、3六、小结反思(学生谈收获、体会)1、这节课主要讲了直角三角形的那两条性质定理?2、在解决具体问题中你有哪些收获?七、课后反思A BD。
2016-2017学年江苏省苏州市石牌中学七年级(上)期末数学复习试卷(3)一、选择题1.在数0,2,﹣3,﹣1.2中,属于负整数的是()A.0 B.2 C.﹣3 D.﹣1.22.多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3 B.2,﹣3 C.5,﹣3 D.2,33.把如图中的三棱柱展开,所得到的展开图是()A.B.C.D.4.用激光测距仪测得两物体间的距离为14000000m,将14000000用科学记数法表示为()A.14×107B.1.4×106C.1.4×107D.0.14×1085.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元6.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是()A.M=mn B.M=n(m+1)C.M=mn+1 D.M=mn+m7.如图,∠AOB=120°,射线OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=60°D.∠BOE=2∠COD8.由n个相同的小正方体堆成的几何体,其视图如图所示,则n的最大值是()A.18 B.19 C.20 D.219.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A.135 B.170 C.209 D.252二、填空题11.若超出标准质量0.05克记作+0.05克,则低于标准质量0.03克记作克.12.单项式﹣5x3y的系数是.13.观察下列各数:,,,,,…,它们是按一定规律排列的,则这列数的第8个数是.14.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为.15.某商店压了一批商品,为尽快售出,该商店采取如下销售方案:将原来每件m元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%.经过两次降价后的价格为元(结果用含m的代数式表示)16.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价元.17.已知m2﹣m=6,则1﹣2m2+2m=.18.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015=.19.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有只,兔有只.20.如图所示,下列图案均是由完全相同的“太阳型”图标按一定的规律拼搭而成:第1个图案需要2个图标,第2个图案需要4个图标,第3个图案需要7个图标,…,按此规律,第n个图案需要图标的个数是.三、解答题(共60分)21.作图题:下列物体是由六个小正方体搭成的,请在下列网格中分别画出从正面、左面、上面看到的立体图形的形状.22.计算:(1)4×;(2)(﹣1)2015×(﹣12)÷[(﹣4)2+2×(﹣5)].23.解方程:(1)=1﹣(2)=.24.先化简,再求值:﹣3(x2﹣2x)+2,其中x=﹣4;(2)已知y=1是方程2﹣13(m﹣y)=2y的解,求关于x的方程m(x﹣3)﹣2=m(2x﹣5)的解.25.如图,在三角形ABC中,先按要求画图,再回答问题:(1)过点A画∠BAC的平分线交BC于点D;过点D画AC的平行线交AB于点E;过点D画AB的垂线,垂足为F.(2)度量AE、ED的长度,它们有怎样的数量关系?(3)比较DF、DE的大小,并说明理由.26.如图,已知直线AB与CD相交于点O,OE是∠BOD的平分线,∠EOF=90°,若∠BOD=58°,求∠COF的度数.27.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥CD.(1)图中除直角外,还有相等的角吗?请写出两对:①;②.(2)如果∠AOD=40°.①那么根据,可得∠BOC=度.②因为OP是∠BOC的平分线,所以∠COP=∠=度.③求∠BOF的度数.28.一个车队共有n(n为正整数)辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,行驶时车与车的间隔均为5.4米,甲停在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为4.87米.(1)求n的值;(2)若乙在街道一侧的人行道上与车队同向而行,速度为v米/秒,当车队的第一辆车的车头从他身边经过了15秒钟时,为了躲避一只小狗,他突然以3v米/秒的速度向前跑,这样从第一辆车的车头到最后一辆车的车尾经过他身边共用了35秒,求v的值.29.(1)如图,已知点C在线段AB上,线段AC=12,BC=8.点M,N分别是AC,BC的中点,求线段MN的长度;(2)根据(1)中的计算结果,设AC+BC=a,你能猜想出MN的长度吗?请用一句简洁的语言表述你的发现;(3)请以“角的平分线”为背景出一道与(1)相同性质的题目.并直接写待求的结果(要求画出相关的图形)(4)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其它条件均不变,求线段MN的长度.2016-2017学年江苏省苏州市石牌中学七年级(上)期末数学复习试卷(3)参考答案与试题解析一、选择题1.在数0,2,﹣3,﹣1.2中,属于负整数的是()A.0 B.2 C.﹣3 D.﹣1.2【考点】有理数.【分析】先在这些数0,2,﹣3,﹣1.2中,找出属于负数的数,然后在这些负数的数中再找出属于负整数的数即可.【解答】解:在这些数0,2,﹣3,﹣1.2中,属于负数的有﹣3,﹣1.2,则属于负整数的是﹣3;故选:C.【点评】此题考查了有理数,根据实数的相关概念及其分类方法进行解答,然后判断出属于负整数的数即可.2.多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3 B.2,﹣3 C.5,﹣3 D.2,3【考点】多项式.【分析】根据多项式中次数最高的项的次数叫做多项式的次数可得此多项式为3次,最高次项是﹣3xy2,系数是数字因数,故为﹣3.【解答】解:多项式1+2xy﹣3xy2的次数是3,最高次项是﹣3xy2,系数是﹣3;故选:A.【点评】此题主要考查了多项式,关键是掌握多项式次数的计算方法与单项式的区别.3.把如图中的三棱柱展开,所得到的展开图是()A.B.C.D.【考点】几何体的展开图.【分析】根据三棱柱的概念和定义以及展开图解题.【解答】解:根据两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱.把图中的三棱柱展开,所得到的展开图是B.故选:B.【点评】此题主要考查了几何体的展开图,根据三棱柱三个侧面和上下两个底面组成,两个底面分别在侧面的两侧进而得出是解题关键.4.用激光测距仪测得两物体间的距离为14000000m,将14000000用科学记数法表示为()A.14×107B.1.4×106C.1.4×107D.0.14×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.【解答】解:将14000000用科学记数法表示为1.4×107,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.6.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是()A.M=mn B.M=n(m+1)C.M=mn+1 D.M=mn+m【考点】规律型:数字的变化类.【专题】规律型.【分析】观察数据不难发现,右下角的数等于上边与左下角的数的乘积加上上边的数.【解答】解:∵3=2×1,15=4×3+3,35=6×5+5,∴M=mn+m.故选D.【点评】本题是对数字变化规律的考查,观察出右下角的数与另外两个数的关系是解题的关键.7.如图,∠AOB=120°,射线OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=60°D.∠BOE=2∠COD【考点】角的计算.【分析】根据角的平分线的定义以及角的和差即可判断.【解答】解:∵OD,OE分别是∠AOC,∠BOC的角平分线∴∠COD=∠AOC,∠EOC=∠BOC,∴∠DOE=∠COD+∠EOC=∠AOC+∠BOC=(∠AOC+∠BOC)=∠AOB=×120°=60°.故C正确;而OC是∠AOB内部任意一条射线,则∠BOC和∠AOC的大小无法确定,则A、B、D错误.故选C.【点评】本题考查了角的平分线的定义以及角的和差关系,正确理解∠DOE=∠AOB是关键.8.由n个相同的小正方体堆成的几何体,其视图如图所示,则n的最大值是()A.18 B.19 C.20 D.21【考点】由三视图判断几何体.【专题】压轴题.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:综合主视图和俯视图,底面最多有2+3+2=7个,第二层最多有2+3+2=7个,第三层最多有2+0+2=4个,那么n的最大值是7+7+4=18.故选A.【点评】本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽.要注意题目中问的是最大值.9.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°【考点】平行线的性质.【分析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.【解答】解:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选:C.【点评】本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A.135 B.170 C.209 D.252【考点】规律型:数字的变化类.【专题】规律型.【分析】首先根据图示,可得第n个表格的左上角的数等于n,左下角的数等于n+1;然后根据4﹣1=3,6﹣2=4,8﹣3=5,10﹣4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3、4、5、…,n+2,据此求出a的值是多少;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x的值是多少即可.【解答】解:∵a+(a+2)=20,∴a=9,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选:C.【点评】此题主要考查了探寻数字规律问题,注意观察总结出规律,并能正确的应用规律.二、填空题11.若超出标准质量0.05克记作+0.05克,则低于标准质量0.03克记作﹣0.03克.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:超出标准质量0.05克记作+0.05克,则低于标准质量0.03克记作﹣0.03克.故答案为:﹣0.03.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.单项式﹣5x3y的系数是﹣5.【考点】单项式.【分析】根据单项式系数的概念求解.【解答】解:单项式﹣5x3y的系数是﹣5.故答案为:﹣5.【点评】本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数.13.观察下列各数:,,,,,…,它们是按一定规律排列的,则这列数的第8个数是.【考点】规律型:数字的变化类.【分析】设第n个数为a n,根据部分a n的变化找出变化规律“a n=(n为正整数)”,依此规律即可得出结论.【解答】解:设第n个数为a n,观察,发现规律:a1=,a2=,a3=,a4=,…,∴a n=(n为正整数),∴a8==.故答案为:.【点评】本题考查了规律型中数字的变化类,根据数的变化找出变化规律“a n=(n为正整数)”是解题的关键.14.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672.【考点】代数式求值;数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.【点评】本题主要考查的是求代数式的值,依据绝对值的意义列出关于a、b的方程组是解题的关键.15.某商店压了一批商品,为尽快售出,该商店采取如下销售方案:将原来每件m元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%.经过两次降价后的价格为0.945m元(结果用含m的代数式表示)【考点】列代数式.【分析】先算出加价50%以后的价格,再求第一次降价30%的价格,最后求出第二次降价10%的价格,从而得出答案.【解答】解:根据题意得:m(1+50%)(1﹣30%)(1﹣10%)=0.945m(元);故答案为:0.945m元.【点评】此题考查了列代数式,解决问题的关键是读懂题意,列出代数式,是一道基础题.16.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价2750元.【考点】一元一次方程的应用.【分析】设空调的标价为x元,根据销售问题的数量关系利润=售价﹣进价=进价×利润率建立方程求出其解就可以了.【解答】解:设空调的标价为x元,由题意,得80%x﹣2000=2000×10%,解得:x=2750.故答案为:2750.【点评】本题是一道关于销售问题的运用题,考查了利润=售价﹣进价=进价×利润率在实际问题中的运用,解答时根据销售问题的数量关系建立方程是关键.17.已知m2﹣m=6,则1﹣2m2+2m=﹣11.【考点】代数式求值.【专题】整体思想.【分析】把m2﹣m看作一个整体,代入代数式进行计算即可得解.【解答】解:∵m2﹣m=6,∴1﹣2m2+2m=1﹣2(m2﹣m)=1﹣2×6=﹣11.故答案为:﹣11.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.18.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015=1.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得:a﹣2=1,b+1=3,解方程即可求得a、b的值,再代入(a﹣b)2015即可求解.【解答】解:由同类项的定义可知a﹣2=1,解得a=3,b+1=3,解得b=2,所以(a﹣b)2015=1.故答案为:1.【点评】考查了同类项,要求代数式的值,首先要求出代数式中的字母的值,然后代入求解即可.19.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有22只,兔有11只.【考点】二元一次方程组的应用.【分析】设鸡有x只,兔有y只,就有x+y=33,2x+4y=88,将这两个方程构成方程组求出其解即可.【解答】解:设鸡有x只,兔有y只,由题意,得:,解得:,∴鸡有22只,兔有11只.故答案为:22,11.【点评】本题考查了列二元一次方程解生活实际问题的运用,二元一次方程的解法的运用,根据条件找到反映全题题意的等量关系建立方程是关键.20.如图所示,下列图案均是由完全相同的“太阳型”图标按一定的规律拼搭而成:第1个图案需要2个图标,第2个图案需要4个图标,第3个图案需要7个图标,…,按此规律,第n个图案需要图标的个数是n+2n﹣1.【考点】规律型:图形的变化类.【分析】两层图标放在一起不好找规律,可将其分开寻找规律,根据图形的变化找到“第一层:每次增加1个图标;第二层:后面一个图形的图标为前面一个图形图标的2倍”,结合规律即可得出结论.【解答】解:将上面图案分两层研究:第一层:1,2,3,4,…,每次增加1个图标;第二层:1,2,4,8,…,后面一个图形的图标为前面一个图形图标的2倍,即20,21,22,23,….结合规律可知:第n个图案需要图标的个数=n+2n﹣1.故答案为:n+2n﹣1.【点评】本题考查了图形的变化,解题的关键是找到“第一层:每次增加1个图标;第二层:后面一个图形的图标为前面一个图形图标的2倍”这一规律.本题属于基础题,难度不大,只要在做题中想到将图形分两层考虑,该题即可得以解决.三、解答题(共60分)21.作图题:下列物体是由六个小正方体搭成的,请在下列网格中分别画出从正面、左面、上面看到的立体图形的形状.【考点】作图-三视图.【分析】根据主视图、左视图以及俯视图的观察角度,进而得出视图即可.【解答】解:如图所示:【点评】此题主要考查了几何体三视图的画法,正确得出物体形状是解题关键.22.计算:(1)4×;(2)(﹣1)2015×(﹣12)÷[(﹣4)2+2×(﹣5)].【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式利用乘法法则计算,再利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果.【解答】解:(1)原式=12×(﹣﹣+2.5)=﹣6﹣9+30=﹣15+30=15;(2)原式=12÷(16﹣10)=12÷6=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.解方程:(1)=1﹣(2)=.【考点】解一元一次方程.【专题】计算题.【分析】两方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)去分母得:6x﹣3=6﹣x﹣2,移项合并得:7x=7,解得:x=1;(2)方程变形得:=,去分母得:4x﹣2=9x+15,移项合并得:﹣5x=17,解得:x=﹣.【点评】此题考查解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.24.(1)先化简,再求值:﹣3(x2﹣2x)+2,其中x=﹣4;(2)已知y=1是方程2﹣13(m﹣y)=2y的解,求关于x的方程m(x﹣3)﹣2=m(2x﹣5)的解.【考点】整式的加减—化简求值;一元一次方程的解.【专题】计算题.【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)把y=1代入已知方程求出m的值,将m的值代入所求方程求出解即可.【解答】解:(1)原式﹣3x2+6x+3x2﹣4x﹣1=2x﹣1,当x=﹣4时,原式=﹣9;(2)把y=1代入方程得:2﹣13(m﹣1)=2,解得:m=1,代入所求方程得:x﹣3﹣2=2x﹣5,解得:x=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.25.如图,在三角形ABC中,先按要求画图,再回答问题:(1)过点A画∠BAC的平分线交BC于点D;过点D画AC的平行线交AB于点E;过点D画AB的垂线,垂足为F.(2)度量AE、ED的长度,它们有怎样的数量关系?(3)比较DF、DE的大小,并说明理由.【考点】作图—基本作图;比较线段的长短;垂线段最短.【分析】(1)根据角平分线的做法画出∠BAC的平分线,再根据同位角相等,两直线平行画∠EDB=∠C,最后利用直角三角板过点D画AB的垂线;(2)利用直尺测量可得答案;(3)根据垂线段最短可得答案.【解答】解:(1)如图所示:(2)经过测量AE=ED;(3)DF<DE,理由:直线外一点和直线上各点连接的所有线段中,垂线段最短.【点评】此题主要考查了基本作图,关键是掌握作一个角等于已知角的方法,以及角平分线的画法.26.如图,已知直线AB与CD相交于点O,OE是∠BOD的平分线,∠EOF=90°,若∠BOD=58°,求∠COF的度数.【考点】对顶角、邻补角;角平分线的定义.【分析】根据角平分线的定义求出∠DOE,再求出∠DOF,然后根据邻补角的定义列式计算即可得解.【解答】解:∵OE是∠BOD的平分线,∠BOD=58°,∴∠DOE=∠BOD=×58°=29°,∵∠EOF=90°,∴∠DOF=∠EOF﹣∠DOE=90°﹣29°=61°,∴∠COF=180°﹣∠DOF=180°﹣61°=119°.【点评】本题考查了角平分线的定义,邻补角的两个角的和等于180°,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.27.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥CD.(1)图中除直角外,还有相等的角吗?请写出两对:①∠COE=∠BOF;②∠COP=∠BOP.(2)如果∠AOD=40°.①那么根据对顶角相等,可得∠BOC=40度.②因为OP是∠BOC的平分线,所以∠COP=∠BOC=20度.③求∠BOF的度数.【考点】垂线.【专题】推理填空题.【分析】(1)根据同角的余角相等可知∠COE=∠BOF,利用角平分线的性质可得∠COP=∠BOP,对顶角相等的性质得∠COB=∠AOD.(2)①根据对顶角相等可得.②利用角平分线的性质得.③利用互余的关系可得.【解答】解:(1)∠COE=∠BOF、∠COP=∠BOP、∠COB=∠AOD(写出任意两个即可);(2)①对顶角相等,40度;②∠COP=∠BOC=20°;③∵∠AOD=40°,∴∠BOF=90°﹣40°=50°.【点评】结合图形找出各角之间的关系,利用角平分线的概念,余角的定义以及对顶角相等的性质进行计算.28.一个车队共有n(n为正整数)辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,行驶时车与车的间隔均为5.4米,甲停在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为4.87米.(1)求n的值;(2)若乙在街道一侧的人行道上与车队同向而行,速度为v米/秒,当车队的第一辆车的车头从他身边经过了15秒钟时,为了躲避一只小狗,他突然以3v米/秒的速度向前跑,这样从第一辆车的车头到最后一辆车的车尾经过他身边共用了35秒,求v的值.【考点】一元一次方程的应用.【分析】(1)首先统一单位,由题意得等量关系:n(n为正整数)辆小轿车的总长+20辆车之间的车距=20秒×车的行驶速度,根据等量关系列出方程,再解即可;(2)计算出车对的总长度,再利用总路程为200m得出等式求出答案.【解答】解:(1)36千米/时=10米/秒,则4.87n+5.4(n﹣1)=20×10,解得:n=20;(2)车队总长度:20×4.87+5.4×19=200(米),由题意得:(10﹣v)×15+(10﹣3v)×(35﹣15)=200,解得:v=2,答:v的值是2.【点评】此题主要考查了一元一次方程的应用,利用路程、速度、时间之间的关系得出方程是解题关键.29.(1)如图,已知点C在线段AB上,线段AC=12,BC=8.点M,N分别是AC,BC的中点,求线段MN的长度;(2)根据(1)中的计算结果,设AC+BC=a,你能猜想出MN的长度吗?请用一句简洁的语言表述你的发现;(3)请以“角的平分线”为背景出一道与(1)相同性质的题目.并直接写待求的结果(要求画出相关的图形)(4)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其它条件均不变,求线段MN的长度.【考点】角的计算;两点间的距离.【分析】(1)先根据点M、N分别是AC、BC的中点求出MC及CN的长,再根据MN=MC+CN即可得出结论;(2)由(1)的计算方法得出规律即可;(3)类比于线段的中点,以“角的平分线”在角的内部写出题目解答即可;(4)分两种情况探讨答案:在线段AB上;在线段AB的延长线上.资料内容仅供您学习参考,如有不当之处,请联系改正或者删除【解答】解:(1)MN=MC+NC=MN=AC+BC=(AC+BC )=×(12+8)=10;(2)MN=MC+NC═AC+BC=(AC+BC)=a;规律:线段上任意一点把线段分成二部分的中点之间的距离等于原线段长度的一半;(3)已知:如图所示,射线OC在∠AOB的内部,∠AOC=α,∠BOC=β,OD平分∠AOC,OE平分∠BOC,求∠DOE的度数;结果:∠DOE=(α+β),(4)分二种情况:如果在线段AB上,MN=MC+NC=MN=AC+BC=(AC+BC)=×(12+8)=10;如果在线段AB的延长线上,MN=MC﹣NC=AC﹣BC=(AC﹣BC)=×(12﹣8)=2.【点评】本题考查了线段中点定义和两点间的距离的应用,主要考查学生的计算能力,同时渗透类比思想.----完整版学习资料分享----。
当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。
这些资料因为用的比较少,所以在全网范围内,都不易被找到。
您看到的资料,制作于2021年,是根据最新版课本编辑而成。
我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。
本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。
本作品为珍贵资源,如果您现在不用,请您收藏一下吧。
因为下次再搜索到我的机会不多哦!课题 直角三角形全章复习(二)本课(章节)需 10 课时 ,本节课为第10课时,为本学期总第10课时教学目标 知识与技能:1.系统了解本章的知识体系及知识内容;2在熟练掌握直角三角形相关概念的基础上,进一步熟悉掌握直角三角形性质与判定的应用;3.在掌握角平分线性质及其逆定理的基础上将知识融汇贯通,进行一些提高训练;4、培养对知识综合掌握、综合运用的能力。
过程与方法:通过典型例题及课本复习题讲解和对应练习,使学生对本章知识达标和提高。
情感态度与价值观:主动参与、积极探索、合作交流,发挥学习中主人翁意识,感受成功的乐趣,激发学生的学习兴趣,培养学生的动手操作能力和解决问题的能力。
重点 勾股定理及其逆定理、直角三角形的性质和判定、角平分线性质与判定在解决实际问题中的作用难点 综合掌握、综合运用直角三角形相关知识教学方法 课型 练习 教具教学过程:一、典型例题解析1.在△ABC 中若∠A=25°,∠B=65°,此三角形为 三角形2.直角三角形中,两锐角的平分线相交所成的角的度数是_____________。
3.若∠A :∠B:∠C=2:3:5,则△ABC 是_____________三角形4.已知如左下图,△ABC 中,AB=AC,AD 平分∠BAC,点E 为AC 的中点,请你写一个正确的结论:________________5.如右上图,AC ∥BD, ∠A 和∠B 的平分线的平分线相交于E,个案修改 E A C B D C D A B E则∠AEB等于多少度?为什么?6.如图,已知,AC, BD相交于点O, AC=BD, ∠A=∠D=90°,那么OB=OC吗?为什么?7.如图,,DG=EH, DG⊥DE, EH⊥HG, 求证:DE=HG6题 7题8.在△ABC中,∠A: ∠B: ∠C=1:2:3,最短的边长为5,则最长的边长为______9.如图,在Rt△ABC中,∠C=90°,∠CBA=60°,BD是△ABC的角平分线,如果CD=3 ,则AC的长为________10、如图,∠ACB=90°,CD⊥AB于D,AB=2BC,如果,CD=2,求AC的长。
第19讲. 直角三角形和勾股定理姓名:______ 一、前测1.在△ABC中,∠A=90°,∠B=3∠C,则∠B=___°,∠C___°. 2。
如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=1.5,D为斜边AB的中点,连结CD.则AC=________,CD=___.3.如图,以△ABC的每一条边为边作三个正方形.已知这三个正方形构成的图形中,深色阴影部分的面积与浅色阴影部分的面积相等,则△ABC是____三角形.4.如图,台阶阶梯每一层高20 cm,宽40 cm,长50 cm.一只蚂蚁从点A爬到点B,最短路程为____cm.5.如图,已知在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°,则四边形ABCD的面积为___.二、课中导学类型一直角三角形的性质的运用[2021·宁波]如图,在△ABC中,∠B=45°,∠C=60°,AD⊥BC于点D,BD= 3.若E,F分别为AB,BC的中点,则EF的长为()A.33 B.32C.1 D.62归纳总结在含30°角的直角三角形中,30°角所对的直角边是斜边的一半;在含45°角的直角三角形中,斜边是直角边的2倍.跟踪训练1-1 [2021·新疆]如图,已知在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4,CD⊥AB于点D,E是AB的中点,则DE的长为()跟踪训练1-1图A.1 B.2 C.3 D.4跟踪训练1-2 如图,在△ABC中,点D在边BC上,AB=AD,E,F分别是AC,BD的中点,EF=2.5,则AC的长为___.跟踪训练1-2图跟踪训练1-3 [2021·滨江区二模]已知在Rt△ABC中,∠BAC=90°,点G是△ABC的重心.若AG=8,则BC的长为_ __________.类型二勾股定理及其应用[2021·岳阳]《九章算术》是我国古代数学名著,书中有下列问题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少?(1丈=10尺,1尺=10寸)如图,设门高AB为x尺,根据题意可列方程为_______________________.跟踪训练2-1 如图是一块长、宽、高分别是6 cm,4 cm和3 cm的长方体木块.若一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和点A 相对的顶点B处吃食物,则它需要爬行的最短路程为()跟踪训练2-1图A.109 cmB.97 cmC.85 cm D.11 cm方法技巧在求几何体表面上两点之间的最短距离时,可以通过把立体图形展开成平面图形,利用勾股定理求出展开图上相应两点之间的距离来解决.跟踪训练2-2 [2021·长沙]如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至点E,使得CE=CA,连结AE.(1)求证:∠B=∠ACB.(2)若AB=5,AD=4,求△ABE的周长和面积.类型三勾股定理的面积关系如图,数字代表所在正方形的面积,则A所代表的正方形的面积为_________.跟踪训练3 勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两个正方形按图2的方式放置在最大的正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和类型四勾股定理的逆定理我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田的面积有多大?题中“里”是我国市制长度单位,1里=500 m,则该沙田的面积为()A.7.5 km2B.15 km2C.75 km2D.750 km2已知a,b,c是△ABC的三边长,且满足关系式c2-a2-b2+|a-b|=0,则△ABC的形状为____.。
2019年中考数学专题练习19《直角三角形》【知识归纳】1.直角三角形的定义有一个角是的三角形叫做直角三角形2.直角三角形的性质(1)直角三角形的两个锐角;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的;(3)在直角三角形中,斜边上的中线等于斜边的3.直角三角形的判定(1)两个内角的三角形是直角三角形;(2)一边上的中线等于这条边的的三角形是直角三角形4.勾股定理及逆定理勾股定理:如果直角三角形两条直角边分别为a,b,斜边为c,那么逆定理:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是三角形【基础检测】1.(2019·广西百色·3分)如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6 C.6 D.122.(2019·贵州安顺·3分)如图,在格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC 的正切值是()A.2 B. C. D.3.(2019广西南宁3分)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米4.(2019海南3分)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E 的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.35. (2019·四川南充)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为()A.1 B.2 C.D.1+6. (2019·浙江省湖州市·4分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是.7. (2019·湖北随州·3分)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= .8.(2019·湖北荆州·10分)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【达标检测】一.选择题1.(2019•毕节市)(第5题)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,, B. 1,, C. 6,7,8 D. 2,3,42.(2019•青岛,第4题3分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B. 2 C.3 D. +23. 如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个4.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是A.5 B.10 C.12 D.135.(2019·湖北荆门·3分)如图,△ABC 中,AB=AC ,AD 是∠BAC 的平分线.已知AB=5,AD=3,则BC 的长为( )A .5B .6C .8D .106. 在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A .120° B.90° C.60° D.30°7. 已知等腰三角形ABC 中,腰AB=8,底BC=5,则这个三角形的周长为( )A. 21B. 20C. 19D. 188.(2019·四川宜宾)如图,在△ABC 中,∠C=90°,AC=4,BC=3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为( )A. B .2 C .3 D .29.(2019·湖北荆州·3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则图中∠ABC 的余弦值是( )A .2B .C .D .二.填空题10.(2019湖北省鄂州市,15,3分)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两EDC BA(第题图)端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.11.(2019·四川宜宾)在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是.12. (2019·四川内江)如图4,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=______.13. (2019·湖北武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则BD的长为_______.14. 如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1=1.41,).DO CEBA图415. (2019·江西·3分)如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是 .三.解答题16.(2019江西,23,10分)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: ●操作发现:在等腰△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,如图1所示,其中DF ⊥AB 于点F ,EG ⊥AC 于点G ,M 是BC 的中点,连接MD 和ME ,则下列结论正确的是 (填序号即可) ①AF=AG=21AB ;②MD=ME ;③整个图形是轴对称图形;④∠DAB=∠DMB . ●数学思考:在任意△ABC 中,分别以AB 和AC 为斜边,向△ABC 的外侧..作等腰直角三角形,如图2所示,M 是BC 的中点,连接MD 和ME ,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程; ●类比探索:在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,如图3所示,M 是BC 的中点,连接MD 和ME ,试判断△MED 的形状. 答: .17.(2019·湖北咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.【知识归纳答案】1.直角三角形的定义有一个角是 90°的三角形叫做直角三角形2.直角三角形的性质(1)直角三角形的两个锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半3.直角三角形的判定(1)两个内角和为90°的三角形是直角三角形;(2)一边上的中线等于这条边的一半的三角形是直角三角形4.勾股定理及逆定理勾股定理:如果直角三角形两条直角边分别为a,b,斜边为c,那么a2+b2=c2逆定理:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形【基础检测答案】1.(2019·广西百色·3分)如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6C.6D.12【考点】含30度角的直角三角形.【分析】根据30°所对的直角边等于斜边的一半求解.【解答】解:∵∠C=90°,∠A=30°,AB=12,∴BC=12sin30°=12×=6,故答选A.2.(2019·贵州安顺)如图,在格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B. C. D.【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.3.(2019广西南宁3分)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD 的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.4.(2019海南3分)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E 的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.3【考点】翻折变换(折叠问题).【分析】根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.【解答】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴BE=BD=×3=3,故选D.【点评】本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等腰直角三角形的性质求解.5. (2019·四川南充)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为()A.1 B.2 C.D.1+【分析】由“30度角所对的直角边等于斜边的一半”求得AB=2BC=2.然后根据三角形中位线定理求得DE=AB.【解答】解:如图,∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2.又∵点D、E分别是AC、BC的中点,∴DE是△ACB的中位线,∴DE=0.5 AB=1.故选:A.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.6. (2019·浙江省湖州市·4分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是 5 .【考点】作图—基本作图;直角三角形斜边上的中线;勾股定理.【分析】首先说明AD=DB,利用直角三角形斜边中线等于斜边一半,即可解决问题.【解答】解:由题意EF是线段AB的垂直平分线,∴AD=DB,Rt△ABC中,∵∠ACB=90°,BC=6,AC=8,∴AB===10,∵AD=DB,∠ACB=90°,∴CD=AB=5.故答案为5.7. (2019·湖北随州·3分)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= 3 .【考点】三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定与性质.【分析】连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,证明四边形DCMN是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=AB=3,等量代换即可.【解答】解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.8.(2019·湖北荆州·10分)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.【点评】本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.【达标检测答案】一.选择题1.(2019•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,, B. 1,, C. 6,7,8 D. 2,3,4【解析】勾股定理的逆定理..知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.(2019•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B. 2 C.3 D. +2【解析】含30度角的直角三角形.根据角平分线的性质即可求得CD 的长,然后在直角△BDE 中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD 长,则BC 即可求得.故选C .【点评】本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.3. 如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A .2个B .3个C .4个D .5个【答案】D【解析】在△ABC 中,∠A=36°,AB=AC ,求得∠ABC=∠C=72°,且△ABC 是等腰三角形.因为BD 是△ABC 的角平分线 所以∠ABD=∠DBC=36° 所以△ABD 是等腰三角形.在△BDC 中有三角形的内角和求出∠BDC=72° 所以△BDC 是等腰三角形.所以BD=BC=BE所以△BDE 是等腰三角形.所以∠BDE=72°, 所以∠ADE=36°, 所以△ADE 是等腰三角形.共5个. 故选D .4.如图,在△ABC 中,∠C=90°,AB 的垂直平分线交AB 于D ,交BC 于E ,连接AE ,若CE=5,AC=12,则BE 的长是A .5B .10C .12D .13【解答】解:∵AD 是△ABC 的角平分线,DE ⊥AB ,∠C=90°,∴CD=DE=1,又∵直角△BDE 中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.【答案】D.【解析】在Rt △CAE 中,CE=5,AC=12,由勾股定理得:13AE ==又DE 是AB 的垂直平分线,∴BE=AE=13.故选D.5.(2019·湖北荆门·3分)如图,△ABC 中,AB=AC ,AD 是∠BAC 的平分线.已知AB=5,AD=3,则BC 的长为( )A .5B .6C .8D .10【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质得到AD ⊥BC ,BD=CD ,根据勾股定理即可得到结论.【解答】解:∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BD=CD ,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C .6. 在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A .120° B.90° C.60° D.30°【答案】D .【解析】根据直角三角形两锐角互余列式计算即可得解:∵直角三角形中,一个锐角等于60°,∴另一个锐角的度数=90°﹣60°=30°.故选D .7. 已知等腰三角形ABC 中,腰AB=8,底BC=5,则这个三角形的周长为( ) A. 21 B. 20 C. 19 D. 18 EDCB A(第题图)【答案】A.【解析】由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解:∵8+8+5=21.∴这个三角形的周长为21.故选A.8.(2019·四川宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C 落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2C.3 D.2【考点】旋转的性质.【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.9.(2019·湖北荆州·3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B. C. D.【分析】先根据勾股定理的逆定理判断出△ABC的形状,再由锐角三角函数的定义即可得出结论.【解答】解:∵由图可知,AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,且∠ACB=90°,∴cos∠ABC==.故选D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.二.填空题10.(2019湖北省鄂州市,15,3分)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.【解析】直角三角形斜边上的中线.【解答】连接OP,根据直角三角形斜边上的中线等于斜边的一半可得OP的长,画出的圆的半径就是OP 长.【点评】解:连接OP,∵△AOB是直角三角形,P为斜边AB的中点,∴OP=AB,∵AB=20cm,∴OP=10cm,故答案为:10.11.(2019·四川宜宾)在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是(0,3),(0,﹣1).【考点】坐标与图形性质.【分析】在平面直角坐标系中,根据勾股定理先求出直角三角形的另外一个直角边,再根据点P的坐标即可得出答案.【解答】解:以(1,1)为圆心,为半径画圆,与y轴相交,构成直角三角形,用勾股定理计算得另一直角边的长为2,则与y轴交点坐标为(0,3)或(0,﹣1).故答案为:(0,3),(0,﹣1).12. (2019·四川内江)如图4,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=______.[答案]12 5[考点]菱形的性质,勾股定理,三角形面积公式。
2017年中考数学专题练习17《全等三角形》【知识归纳】1.能够完全重合的两个图形就是.能够完全重合的两个三角形就是.2.全等三角形的对应边,对应角.3.全等三角形的对应线段(对应边上的中线、对应边上的高、对应角的平分线) ,周长相等,面积相等.4.三角形全等的判定定理:(1)边角边定理:(可简写成“”或“”)(2)角边角定理:(可简写成“”或“”)(3)边边边定理:(可简写成“”或“”)。
5.直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):(可简写成“”或“”)【基础检测】1.(2016•新疆)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF2.(2016•怀化)如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD3.(2016•湖州)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B. 6 C.4 D.24.(2015•宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个5.(2016·山东省济宁市·3分)如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.6. (2016·辽宁丹东·3分)如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P 与点O不重合),则点P的坐标为.7.(2016·云南省昆明市)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.【达标检测】一、选择题:1.(2013贵州安顺)如图,已知AE=CF,∠AFD=∠CEB,那么添加一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC2.(2015•海南)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB3.(2015•六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD4.(2016•淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN 的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.605.(2013浙江台州,10,4分)已知△A1B1C1与△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误 B.①错误,②正确C.①,②都错误 D.①,②都正确二、填空题:6.(2013白银)如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为.(答案不唯一,只需填一个)7.(2013湖南郴州)如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是(只写一个条件即可).三、解答题:8. (2016·重庆市A卷·7分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.9.(2016·四川泸州)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.10.(2016·四川南充)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.11(2013山东德州)(1)如图1,已知△ABC,以AB、AC为边向△ABC外做等边△ABD和等边△ACE,连接BE,CD。
2017年中考数学一轮复习第19讲《直角三角形》【考点解析】知识点一:直角三角形的性质【例题】(2016·青海西宁·2分)如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA 于点D,PC=4,则PD=2.【考点】角平分线的性质;含30度角的直角三角形.【分析】作PE⊥OA于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得P D.【解答】解:作PE⊥OA于E,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD(角平分线上的点到角两边的距离相等),∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ACP=∠AOB=30°,∴在Rt△PCE中,PE=PC=×4=2(在直角三角形中,30°角所对的直角边等于斜边的一半),∴PD=PE=2,故答案是:2.【变式】(2013·泰安,23,3分)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC 于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.【解析】含30度角的直角三角形;线段垂直平分线的性质.根据同角的余角相等、等腰△ABE 的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.【解答】解:∵∠ACB=90°,FD⊥AB,∴∠∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.【点评】本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.知识点二:直角三角形的判定【例题】(2013·潍坊,9,3分)一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A 与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近.同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()10海里/小时B.30海里/小时A.3C .320海里/小时D .330海里/小时 答案:D考点:方向角,直角三角形的判定和勾股定理.点评;理解方向角的含义,证明出三角形ABC 是直角三角形是解决本题的关键. 【变式】(3分)(2015•桂林)(第8题)下列各组线段能构成直角三角形的一组是( ) A . 30,40,50 B . 7,12,13 C . 5,9,12D . 3,4,6考点: 勾股定理的逆定理.分析: 根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解答: 解:A 、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B 、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C 、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D 、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; 故选A .点评: 本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.知识点三勾股定理及其逆定理的应用【例题】(2016·山东省东营市·3分)在△ABC 中,AB =10,AC =210,BC 边上的高AD =6,则另一边BC 等于( )A .10B .8C .6或10D .8或10 【解析】勾股定理、分类讨论思想,在图①中,由勾股定理,得BD =AB 2-AD 2=102-62=8;CD =AC 2-AD 2=(210)2-62=2; ∴BC =BD +CD =8+2=10. 在图②中,由勾股定理,得BD =AB 2-AD 2=102-62=8;CD =AC 2-AD 2=(210)2-62=2;∴BC =BD ―CD =8―2=6. 故选择C .第9题答案图②第9题答案图①DDACAC BB【点拨】本题考查分类思想和勾股定理,要分两种情况考虑,分别在两个图形中利用勾股定理求出BD 和CD ,从而可求出BC 的长. 【变式】(2016·陕西·3分)如图,在△ABC 中,∠ABC =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△ABC的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .10【考点】三角形中位线定理;等腰三角形的判定与性质;勾股定理.【分析】根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC =EF =AC ,由此即可解决问题.【解答】解:在RT △ABC 中,∵∠ABC =90°,AB=8,BC =6, ∴AC ===10,∵DE是△ABC 的中位线, ∴DF ∥BM ,DE =BC =3, ∴∠EFC =∠FCM , ∵∠FCE =∠FCM ,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.知识点四:直角三角形的综合应用【例题】(2016·四川眉山·3分)把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A.B.6 C.D.【分析】由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.【解答】解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴B′C=3﹣3,在等腰Rt△OBC′中,OB=BC′=3﹣3,在直角三角形OBC′中,OC=(3﹣3)=6﹣3,∴OD′=3﹣OC′=3﹣3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6.故选:A.【点评】本题考查了旋转的性质、正方形的性质以及等腰直角三角形的性质.此题难度适中,注意连接BC′构造等腰Rt△OBC′是解题的关键,注意旋转中的对应关系.【变式】(2013四川巴中,29,10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.【解析】(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC;(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.【解答】(1)证明:∵▱ABCD,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DE C.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∴△ADF∽△DE C.(2)解:∵▱ABCD ,∴CD =AB =8. 由(1)知△ADF ∽△DEC , ∴,∴DE ===12.在Rt △ADE 中,由勾股定理得:AE ===6.【点评】本题主要考查了相似三角形的判定与性质、平行四边形的性质和勾股定理三个知识点.题目难度不大,注意仔细分析题意,认真计算,避免出错. 【典例解析】【例题1】(2016·四川内江)已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( ) ABC .32D .不能确定[答案]B[考点]勾股定理,三角形面积公式,应用数学知识解决问题的能力。
[解析]如图,△ABC 是等边三角形,AB =3,点P 是三角形内任意一点,过点P 分别向三边AB ,BC ,CA 作垂线,垂足依次为D ,E ,F ,过点A 作AH ⊥BC 于H .则 BH =32,AH.连接P A ,PB ,PC ,则S △P AB +S △PBC +S △PCA =S △AB C . ∴12AB ·PD +12BC ·PE +12CA ·PF =12BC ·AH . ∴PD +PE +PF =AH.故选B .【例题2】(2016·四川内江)如图12所示,已知点C (1,0),直线y =-x +7与两坐标轴分别交于A ,B 两点,D ,E 分别是AB ,OA 上的动点,则△CDE 周长的最小值是______. [答案]10P B A D E F 答案图C H[考点]勾股定理,对称问题。
[解析]作点C关于y轴的对称点C1(-1,0),点C关于x轴的对称点C2,连接C1C2交OA 于点E,交AB于点D,则此时△CDE的周长最小,且最小值等于C1C2的长.∵OA=OB=7,∴CB=6,∠ABC=45°.∵AB垂直平分CC2,∴∠CBC2=90°,C2的坐标为(7,6).在Rt△C1BC2中,C1C2=10.即△CDE周长的最小值是10.故答案为:10.【例题3】4.(2016·黑龙江龙东·6分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1,点B 的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.【考点】作图-旋转变换;作图-平移变换.【分析】(1)由B点坐标和B1的坐标得到△ABC向右平移5个单位,再向上平移1个单位得到△A1B1C1,则根据点平移的规律写出A1和C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点A1的对应点为点A2,点B1的对应点为点B2,点C1的对应点为点C2,从而得到△A2B2C2;(3)先利用勾股定理计算平移的距离,再计算以OA1为半径,圆心角为90°的弧长,然后把它们相加即可得到这两次变换过程中,点A经过点A1到达A2的路径总长.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)OA==4,点A经过点A1到达A2的路径总长=+=+2π.【中考热点】【热点1】(2016·福建龙岩·12分)图1是某公交公司1路车从起点站A站途经B站和C站,最终到达终点站D站的格点站路线图.(8×8的格点图是由边长为1的小正方形组成)(1)求1路车从A站到D站所走的路程(精确到0.1);(2)在图2、图3和图4的网格中各画出一种从A站到D站的路线图.(要求:①与图1路线不同、路程相同;②途中必须经过两个格点站;③所画路线图不重复)【考点】作图—应用与设计作图;勾股定理的应用.【分析】(1)先根据网格求得AB、BC、CD三条线段的长,再相加求得所走的路程的近似值;(2)根据轴对称、平移或中心对称等图形的变换进行作图即可.【解答】解:(1)根据图1可得:,,CD=3∴A站到B站的路程=≈9.7;(2)从A站到D站的路线图如下:【热点2】(2016·四川南充)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC 于点O,OC=1,以点O为圆心OC为半径作半圆.(1)求证:AB为⊙O的切线;(2)如果tan∠CAO=,求cosB的值.【分析】(1)如图作OM⊥AB于M,根据角平分线性质定理,可以证明OM=OC,由此即可证明.(2)设BM=x,OB=y,列方程组即可解决问题.【解答】解:(1)如图作OM⊥AB于M,∵OA平分∠CAB,OC⊥AC,OM⊥AB,∴OC=OM,∴AB是⊙O的切线,(2)设BM=x,OB=y,则y2﹣x2=1 ①,∵cosB==,∴=,∴x2+3x=y2+y②,由①②可以得到:y=3x﹣1,∴(3x﹣1)2﹣x2=1,∴x=2.75,y=1.25,∴cosB=0.6.【点评】本题考查切线的判定、勾股定理、三角函数等知识,解题的关键是记住圆心到直线的距离等于半径,这条直线就是圆的切线,学会设未知数列方程组解决问题,属于中考常考题型.【热点3】(2016·湖北随州·10分)爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AN⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.【特例探究】(1)如图1,当tan∠P AB=1,c=4时,a=4,b=4;如图2,当∠P AB=30°,c=2时,a=,b=;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.【考点】四边形综合题.【分析】(1)①首先证明△APB,△PEF都是等腰直角三角形,求出P A、PB、PE、PF,再利用勾股定理即可解决问题.②连接EF,在RT△P AB,RT△PEF中,利用30°性质求出P A、PB、PE、PF,再利用勾股定理即可解决问题.(2)结论a2+b2=5c2.设MP=x,NP=y,则AP=2x,BP=2y,利用勾股定理分别求出a2、b2、c2即可解决问题.(3)取AB中点H,连接FH并且延长交DA的延长线于P点,首先证明△ABF是中垂三角形,利用(2)中结论列出方程即可解决问题.【解答】(1)解:如图1中,∵CE=AE,CF=BF,∴EF∥AB,EF=AB=2,∵tan∠P AB=1,∴∠P AB=∠PBA=∠PEF=∠PFE=45°,∴PF=PE=2,PB=P A=4,∴AE=BF==2.∴b=AC=2AE=4,a=BC=4.故答案为4,4.如图2中,连接EF,,∵CE=AE,CF=BF,∴EF∥AB,EF=AB=1,∵∠P AB=30°,∴PB=1,P A=,在RT△EFP中,∵∠EFP=∠P AB=30°,∴PE=,PF=,∴AE==,BF==,∴a=BC=2BF=,b=AC=2AE=,故答案分别为,.(2)结论a2+b2=5c2.证明:如图3中,连接EF.∵AF、BE是中线,∴EF∥AB,EF=AB,∴△FPE∽△APB,∴==,设FP=x,EP=y,则AP=2x,BP=2y,∴a2=BC2=4BF2=4(FP2+BP2)=4x2+16y2,b2=AC2=4AE2=4(PE2+AP2)=4y2+16x2,c2=AB2=AP2+BP2=4x2+4y2,∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2.(3)解:如图4中,在△AGE和△FGB中,,∴△AGE≌△FGB,∴BG=FG,取AB中点H,连接FH并且延长交DA的延长线于P点,同理可证△APH≌△BFH,∴AP=BF,PE=CF=2BF,即PE∥CF,PE=CF,∴四边形CEPF是平行四边形,∴FP∥CE,∵BE⊥CE,∴FP⊥BE,即FH⊥BG,∴△ABF是中垂三角形,由(2)可知AB2+AF2=5BF2,∵AB=3,BF=AD=,∴9+AF2=5×()2,∴AF=4.。