高一上学期第二次月考试卷
- 格式:doc
- 大小:176.50 KB
- 文档页数:8
陕西省安康市高新中学2024-2025学年高一上学期第二次月考(10月)数学试题一、单选题1.已知集合{}{}2,3,5,1,4,5,7A B ==,则()A .A B =∅ B .A B ⊆C .A B A= D .5A B∈ 2.已知函数()()21,223,2f x x f x x x x ⎧->-=⎨+-≤-⎩则()()1f f =()A .5B .0C .-3D .-43.已知不等式210ax bx +->的解集为11,23⎛⎫-- ⎪⎝⎭,则不等式20x bx a --≥的解集为()A .(][),32,-∞--+∞ B .[]3,2--C .[]2,3D .][()–,23,∞+∞ 4.设,,a b c 为实数,且0a b <<,则下列不等式正确的是()A .11a b <B .22ac bc <C .b a a b>D .22a ab b >>5.已知幂函数()2()1mf x m m x =+-的图像与坐标轴没有公共点,则(2)f =()A .12BC .14D.6.已知()e ex x xf x a -=+是偶函数,则a =()A .2-B .1-C .1D .27.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为223y x =-,值域为{}1,5-的“孪生函数”共有()A .10个B .9个C .8个D .4个8.已知数2,0,()1,04,x x f x x x+≤⎧⎪=⎨<≤⎪⎩若m n <且()()f n f m =,则n m +的取值范围是()A .(1,2]B .90,4⎡⎤⎢⎥⎣⎦C .3,24⎛⎤ ⎥⎝⎦D .3,24⎛⎫⎪⎝⎭二、多选题9.下面命题正确的是()A .“1a >”是“11a<”的充分不必要条件B .命题“若1x <,则21x <”的是真命题C .设,x y ∈R ,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件10.定义在R 上的函数()f x ,对任意的1x ,2x ∈R ,都有()()()12121f x x f x f x +=+-,且当0x >时,()()0f x f >恒成立,则下列说法正确的是()A .()01f =B .函数()f x 的单调递增区间为()0,∞+C .函数()f x 为R 上的增函数D .函数()()1g x f x =-为奇函数11.设正实数m ,n 满足1m n +=,则()A .12m n+的最小值为3+B C的最大值为1D .22m n +的最小值为12三、填空题12.已知集合A ={1,3},B ={1,m },A ∪B =A ,则m =.13.已知函数()f x 的定义域是[]0,4,则函数y =的定义域是.14.已知函数()f x 是定义在R 上的奇函数,且()20f -=,若对任意的()12,,0x x ∈-∞,当12x x ≠时,都有()()1122120x f x x f x x x ⋅-⋅<-成立,则不等式()0f x >的解集为.四、解答题15.已知集合{}250A x x x =-≤,(){}24B x x a =->.(1)若0a =,求A B ;(2)若“x A ∈”是“x B ∈R ð”的必要条件,求实数a 的取值范围16.已知幂函数()f x 与一次函数()g x 的图象都经过点()4,2,且()()95f g =.(1)求()f x 与()g x 的解析式;(2)求函数()()()h x g x f x =-在[]0,1上的值域.17.已知函数()21x bf x x +=-是定义域()1,1-上的奇函数.(1)确定()f x 的解析式;(2)用定义证明:()f x 在区间()1,1-上是减函数;(3)解不等式()()10f t f t -+<.18.设函数()y f x =是定义在()0∞,+上的减函数,并且满足()()()f xy f x f y =+,112f ⎛⎫= ⎪⎝⎭(1)求()1f 和()2f 的值(2)如果()128x f f x ⎛⎫+-< ⎪⎝⎭,求x 的取值范围19.已知函数()311a f x x x ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭为偶函数.(1)证明:函数()f x 在()0,∞+上单调递增;(2)若不等式()()21f x m f x ->+对任意的(]0,2x ∈恒成立,求实数m 的取值范围.。
河南省周口市太康县第一高级中学2023-2024学年高一上学期第二次月考英语试卷学校:___________姓名:___________班级:___________考号:___________一、阅读理解This is shaping up to be a big year for US theme parks — and we’re not just talking about Disney. From coast to coast, theme parks are opening exciting new rides for people.Legoland New York ResortOver Memorial Day weekend, Legoland opened its newest attraction: a Lego-themed water playground where families can play water, slide and beat the heat. There is also a nearby changing area so you can take off your wet swimsuit when you’re ready to head for the park’s land-based attractions.Universal Studios HollywoodThough the land has only one ride, Super Nintendo World has more than enough to keep you busy after you race to the finish. Throughout the land, there are interactive challenges where you can collect digital coins and try to secure a top score. You will also find all the souvenirs and clothing you need to complete your experience.Busch Gardens Tampa BayThe Serengeti Flyer swing ride is currently the world’s tallest and fastest ride of its kind. You’ll rise rapidly above zebras, giraffes and other animals that reside in the park’s 65-acre Serengeti Plain. Because of its extreme nature, the ride has a 48-inch (英寸) minimum (最小的) height requirement.Busch Gardens WilliamsburgBusch Gardens Williamsburg’s newest coaster (过山车) will have guests racing through the dark while attempting to escape a castle. DarKoaster is a fully indoor coaster with ride vehicles designed to look like snowmobiles. You’ll need them to travel through the strange snowstorm inside the castle.1.What can visitors do at Legoland New York Resort?A.Play water.B.Collect digital coins.C.Experience a snowstorm.D.Take the world’s tallest ride.2.What is required for tourists to enjoy the Serengeti Flyer swing ride?A.Great love for animals.B.Wearing special clothes.C.The company of family.D.Being at least 48 inches in height. 3.Where will you go if you want to take a fully indoor coaster?A.Busch Gardens Tampa Bay.B.Busch Gardens Williamsburg.C.Legoland New York Resort.D.Universal Studios Hollywood.One day, King Sisyphus of Corinth was trying to solve the city’s fresh water problem. He happened to look up and saw Zeus fly by. The king of gods was carrying a lovely river spirit (小精灵) in his arms.“That Zeus,” sighed (叹气) King Sisyphus. “What a trouble-maker!”Soon after, the river god Asopus flew by. “Sisyphus! Have you seen my daughter?” he asked.“If you give my city a source of fresh water, I will tell you what I saw,” King Sisyphus shouted back. Immediately, a clear stream (水流) of fresh water appeared.“Zeus took her that way,” the king pointed.The king knew Zeus would be angry when he found out what he had done. But Corinth badly needed a source of fresh water. And finally, it had one.Sure enough, Zeus was very angry. He told his brother Hades (the god of the underworld) to take Sisyphus to the underworld immediately!“When they tell you I am dead, do not put a gold coin under my tongue,” King Sisyphus said quietly to his wife. As a good wife, she did exactly as the king had told her.Because Sisyphus was an important person, Hades himself met him at the River Styx, the entrance to the underworld. Because no gold coin was placed under his tongue(舌头), the king arrived as a poor beggar.“Where is your gold coin?” Hades asked. “How can you pay for a trip across the River Styx and arrive in the underworld?”King Sisyphus hung his head in shame. “I had a terrible wife. She didn’t give me anything after I had died.”“Go right back there and teach that woman some manners!” Hades raised his voice. He then sent Sisyphus back to Earth. The king became alive again.Sisyphus and his wife laughed when he told her about the experience. But he never told it to anyone else. You never know when the gods are listening!4.What was Sisyphus was doing when Zeus flew by with a river spirit?A.Rebuilding Corinth.B.Chatting with his wife.C.Asking Asopus for help.D.Looking for a source of water. 5.What did Zeus decide to do when he knew what Sisyphus had done?A.Zeus decided to destroy Corinth.B.Zeus decided to end Sisyphus’ life.C.Zeus decided to make Corinth drier.D.Zeus decided to kill Sisyphus’ wife. 6.What did one need in order to cross the River Styx, according to the article,?A.A good wife.B.A golden boat.C.Some money.D.Some water. 7.Which of the following statements is the most probable ending of the story?A.Sisyphus lived happily with his wife.B.Sisyphus taught his wife some manners.C.Sisyphus was sent to the underworld again.D.Sisyphus had to find a fresh water source again.The next time you have cheese, remember the French scientist Louis Pasteur who discovered that bad milk, and many diseases are caused by bacteria(细菌).Louis Pasteur is known as the father of microbiology. In his lifetime, he not only proved that bacteria are the cause of diseases, but also discovered the process of vaccination (接种疫苗) which has saved billions of lives.When Pasteur worked with chickens that were suffering from cholera(霍乱) during his experiments, he accidentally spread cholera to his chickens. Pasteur’s chickens became mildly sick but did not die. This was strange as every chicken that came near cholera earlier had died. He realized soon that the cholera had become weak. By the time he tried again, the chickens he had cured earlier did not get cholera anymore. He realized that a weak cholera helped his chickens develop an antibody against it.Later, Pasteur went on to try this on cows, pigs and dogs. All his research helped him develop different vaccines. We now know that the process of vaccination introduces a weakened kind of bacteria into our body. Our body reacts by creating antibodies to fight the bacteria. Now, when our body comes across the same bacteria which are much stronger, it can fight them off.Louis Pasteur received numerous awards for the advancement of biology, chemistry, and medicine. He founded the Pasteur Institute to study diseases. It was the first university to teach microbiology and today there are 32 institutes across 29 countries. For every childvaccinated against a deadly disease, we have Louis Pasteur to thank.8.What do we know about Louis Pasteur?A.His discoveries weren’t used at his time.B.He discovered the connection between bacteria and diseases.C.He was a professor at the Pasteur Institute.D.His discoveries brought many profits and awards to him.9.What can we learn from his experiment with chickens?A.Cholera was not a deadly disease then.B.Pasteur spread cholera to chickens on purpose.C.All chickens suffered from cholera died at last.D.The weakened cholera couldn’t kill the living creatures10.What is the function of the process of vaccination?A.It builds up people’s body.B.Without it, people will die.C.It improves people’s ability to avoid diseases.D.It can kill all the diseases and make the sick bealthy.11.Why does the author write the passage?A.Because he wants to honour Louis Pasteur and his contribution to the world.B.Because he wants to show the discoveries of the vaccination.C.Because be wants to call on children to learn from Louis PasteurD.Because he wants to introduce an important invention in microbiology.Tall, long-necked giraffes are famous for their spots which are believed to help the animals hide from their enemies. Just like no two humans have the same fingerprints, each giraffe has its own special pattern of spots. However, a Tennessee zoo made headlines recently after it welcomed one of the world’s most uncommon giraffes.On July 31, a baby giraffe was born at Brights Zoo with light brown fur which is a reticulated (网状的) giraffe, one of the four different kinds of giraffes. Unlike most giraffes, she was born without spots, a unique feature of the reticulated giraffe. At six feet tall, this baby giraffe is growing well under her mother’s care. She shows typical baby giraffe behavior, such as eating rocks.Experts said the young giraffe was the only single-colored reticulated giraffe livinganywhere on the planet. The last time this happened was 1972 in Japan. A giraffe’s pattern of spots is created when the animal is still growing inside its mother. That means that this giraffe will never have spots.“The new giraffe might not have survived if she had been born in the wild. Being single-colored, she may not be able to hide quite as well,” said Mr. David Bright, who runs the zoo, “It will easily be a key target for poachers (偷猎者) because she’s so unusual.”Brights Zoo stressed that reticulated giraffes had already become imperiled. In 2018, they were officially listed as “threatened”. Thirty-five years ago, there were 36,000 reticulated giraffes. Now, the number has been cut by more than 50%. Only about 16,000 reticulated giraffes remain.This brown giraffe’s birth is not only a rare and fascinating event, but also an opportunity to raise awareness about the challenges faced by giraffes in the wild. By supporting efforts like this, we can contribute to the conservation of these large creatures and ensure their survival for generations to come.12.What do we know about the spots of giraffes?A.They help protect giraffes.B.They are the same pattern.C.They look like giraffes’ footprints.D.They appear on giraffes occasionally. 13.What makes the young giraffe born at Brights Zoo special?A.Its extremely large size.B.Its light brown fur.C.Its unusual eating habit.D.Its absence of spots.14.What does the underlined word “imperiled” mean in paragraph 5?A.Recognized.B.Endangered.C.Doubled.D.Balanced. 15.Which word can best describe the birth of the young giraffe?A.Awkward.B.Worrying.C.Meaningful.D.Foreseeable.二、七选五V olunteering your time to support a cause you like is something you will never regret.better understand how you fit into the world around you.17 In fact, spending time enriching your community is a great way to broaden your perceptions of the world. By surrounding yourself with people who are dedicated tobettering the world, you can learn so much about how the world works. You can gain a unique sense of purpose by serving those around you, one of which often manifests (表明) in other areas of your life.It is statistically proven that people who volunteer regularly are healthier both physically and mentally. Individuals who have volunteered throughout their lifetime typically live longer and have better psychological well-being. In addition to the health benefits, volunteering given people a sense of purpose.18Giving back is also a great way to get to know your community and its citizens. 19 Working alongside individuals who also care about improving their surroundings will allow you to broaden your network of friends. Additionally, it will help you better understand the circumstances of other members of your community.Actually, whether you’re passionate about animal rights or helping the homeless, you can find a valuable way to donate your time. 20 They can be a great place to find opportunities to give back to the place you call home. Besides, you can check websites the Volunteer-Match or Idealist for volunteer opportunities that fit your interests and abilities.A.How can you get involved in your community?B.Many town s and ci ties have community centers.C.Volunteering may even help you discover a new passion or interest.D.When you volunteer, you have the opportunity to meet lots of new people.E.But why is it so important to find a cause you love and volunteer your time?F.It can not only enrich your life but also familiarize you with your community.G.In brief, the feeling of giving back and contributing to society is extremely great.三、完形填空area around, but a week after his 27 , Romero was nowhere to be found. That’s when the old man’s faithful dog, Palomo, was brought in as the last 28 .According to one member of the search team, the brown dog 29 them through hills and valleys and finally to the place in the desert where Romero had been 30 . His niece told the authorities that Romero sometimes had poor memory and that 31 his getting lost on his trip.The 32 weak man was rushed to the hospital where he spent two days getting back on his feet. One officer posted online that “Palomo 33 by the hospital door day and night waiting for the 34 of its beloved Romero. The unconditional love of his pet allowed Romero to be 35 with his family”. A photo of Palomo staying by Romero’s side after he carne back home was along with these words.21.A.promotion B.poverty C.survival D.identity 22.A.rescuers B.strangers C.fighters D.hunters 23.A.by turn B.at times C.in advance D.as usual 24.A.inspired B.concerned C.satisfied D.confused 25.A.reported B.exposed C.transported D.introduced 26.A.employ B.assess C.convince D.seek 27.A.disappearance B.competition C.graduation D.consumption 28.A.conclusion B.suggestion C.attempt D.defence 29.A.spotted B.dragged C.pointed D.guided 30.A.defeated B.trapped C.cheated D.permitted 31.A.accounted for B.made out C.cared about D.resulted from 32.A.strangely B.equally C.suddenly D.obviously 33.A.hesitated B.remained C.shouted D.whispered 34.A.responsibility B.cooperation C.recovery D.arrival 35.A.compared B.associated C.reunited D.pleased四、用单词的适当形式完成短文space began! Then, Alyssa 38 (start) to do all the things related to space!Alyssa’s goal is to help others understand the potential for human life in outer space. She also wants to be one of the first humans 39 (walk) on the planet Mars. She even imagines 40 (live) on Mars! And while doing so, Alyssa wants to inspire lots of other kids to learn more about space and science.She is studying astrobiology (天体生物学) at the Florida Institute of Technology. It is 41 only program in the USA focused on the potential for life on other planets. Whether you want to study the effects of space travel on humans, discover past or present life on Mars, or help develop 42 (way) to sustain (维持) life on the moon, you will be prepared at the Florida Institute of Technology.Alyssa is a(n) 43 (impress) example of a young person 44 focuses on her passion and becomes the best version of 45 (she). Her example also inspires other kids to do the same.五、申请信46.成都即将举办第31届世界大学生夏季运动会(31st Summer Universiade), 大运会主办单位现在面向社会招募大运会志愿者,假设你是高一学生李华,听闻此消息,现写一封申请信,申请当大运会的志愿者。
邢台一中2024-2025学年第一学期第二次月考高一年级数学试题考试范围:必修一第一章、第二章、第三章说明:1.本试卷共4页,满分150分.2.请将所有答案填写在答题卡上,答在试卷上无效.第Ⅰ卷(选择题 共58分)一、单选题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“”的否定是( )A .B .C .D .2.已知集合,则满足条件的集合的个数为( )A .5B .4C .3D .23.对于实数,“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数的定义域为,则)A .B .C .D .5.若“,使得不等式成立”是假命题,则实数的取值范围为( )A .B .C .D .6.若函数的部分图象如图所示,则( )2,220x x x ∃∈++≤R 2,220x x x ∀∈++>R 2,220x x x ∀∈++≤R 2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R {}{}*30,,40,A x x x B x x x =-≤∈=-≤∈N N A C B ⊆⊆C x 202xx+≥-2x ≤()y f x =[]1,4-y =31,2⎡⎫-⎪⎢⎣⎭31,2⎛⎤ ⎥⎝⎦(]1,935,2⎡⎤-⎢⎥⎣⎦x ∃∈R 23208kx kx ++≤k 03k ≤<03k <<30k -<≤30k -<<()22f x ax bx c=++()1f =A .B .C .D .7.已知函数,若,对均有成立,则实数的取值范围为( )A .B .C .D .8.记表示中最大的数.已知均为正实数,则的最小值为( )A.B .1C .2D .4二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的有( )A .函数在上是单调减函数B .函数与函数C .已知函数,则D .函数的单调增区间为10.二次函数是常数,且的自变量与函数值的部分对应值如下表: (012)……22…23-112-16-13-()221f x x x =-+[)2,x ∃∈+∞[]1,1a ∀∈-()22f x m am <-+m ()3,1-1,13⎛⎫- ⎪⎝⎭11,3⎛⎫- ⎪⎝⎭()1,3-{}max ,,x y z ,,x y z ,x y 2221max ,,4x y x y ⎧⎫+⎨⎬⎩⎭12()11f x x =-()(),11,-∞+∞ ()f t t =()g x =2211f x x x x⎛⎫-=+ ⎪⎝⎭()13f =y =[)1,+∞2(,,y ax bx c a b c =++0)a ≠x y x1-ymn且当时,对应的函数值.下列说法正确的有( )A .B .C .函数的对称轴为直线D .关于的方程一定有一正、一负两个实数根,且负实数根在和0之间11.若函数对定义域中的每一个都存在唯一的,使成立,则称为“影子函数”,以下说法正确的有( )A .“影子函数”可以是奇函数B .“影子函数”的值域可以是R C .函数是“影子函数”D .若都是“影子函数”,且定义域相同,则是“影子函数”第Ⅱ卷(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.当时,的最大值为______.13.已知幂函数图象经过点,若,则实数的取值范围是______;若,则______14.已知是定义域为的函数,且是奇函数,是偶函数,满足,若对任意的,都有成立,则实数的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)32x =0y <0abc >1009mn >12x =x 20ax bx c ++=12-()y f x =D 1x 2x D ∈()()121f x f x ⋅=()f x ()f x ()f x ()2(0)f x x x =>()(),y f x y g x ==()()y f x g x =⋅54x <14345y x x =-+-()f x x α=()4,2()()132f a f a +>-a 120x x <<()()122f x f x +122x x f +⎛⎫ ⎪⎝⎭()(),f x g x R ()f x ()g x ()()22f x g x ax x +=++1212x x <<<()()1225g x g x x ->--a设集合(1)是否存在实数,使是的充分不必要条件,若存在,求出实数的取值范围;若不存在,请说明理由;(2)若,求实数的取值范围.16.(15分)已知函数,对于任意,有.(1)求的解析式;(2)若函数在区间上的最小值为,求的值;(3)若成立,求的取值范围.17.(15分)丽水市某革命老区因地制宜发展生态农业,打造“生态特色水果示范区”.该地区某水果树的单株年产量(单位:千克)与单株施肥量(单位:千克)之间的关系为,且单株投入的年平均成本为元.若这种水果的市场售价为10元/千克,且水果销路畅通.记该水果树的单株年利润为(单位:元).(1)求函数的解析式;(2)求单株施肥量为多少千克时,该水果树的单株年利润最大?最大利润是多少?18.(17分)已知函数.(1)用单调性的定义证明函数在上为增函数;(2)是否存在实数,使得当的定义域为时,函数的值域为.若存在.求出的取值范围;若不存在说明理由.19.(17分)定义:对于定义域为的函数,若,有,则称为的不动点.已知函数.(1)当时,求函数的不动点;{}{}{}2212,40,A x a x a B x x x C y y x B=-≤≤+=-≤==∈a x B ∈x A ∈a A C C = a ()25f x ax bx =+-x ∈R ()()()22,27f x f x f -=+-=()f x ()f x [],3t t +8-t ()()()22,,(1)10x x m f x ∃∈+∞-≥+m ()x ϕx ()232,031645,36x x x x x ϕ⎧+≤≤⎪=⎨-<≤⎪⎩10x ()f x ()f x ()221x f x x-=()f x ()0,+∞λ()f x 11,(0,0)m n m n ⎡⎤>>⎢⎥⎣⎦()f x []2,2m n λλ--λD ()f x 0x D ∃∈()00f x x =0x ()f x ()()218,0f x ax b x b a =+-+-≠1,0a b ==()f x(2)若函数有两个不相等的不动点,求的取值范围;(3)设,若有两个不动点为,且,求实数的最小值.邢台一中2024-2025学年第一学期第二次月考答案1.A 2.B . 3.A 4.B 5.A 6.D 7.B 8.C 9.BC 10.BCD 11.AC12.答案:0 13. 14.15.解:(1)假定存在实数,使足的充分不必要条件,则,则或,解得或,因此,所以存在实数,使是的充分不必要条件,.(2)当时,,则,由,得,当,即时,,满足,符合题意,则;当,由,得,解得,因此,所以实数的取值范围是.16.解:(1)因为关于对称,即,又,则可解得,所以;(2)当,即时,,解得或(舍去);()221y x a x =-++12x x 、1221x x x x +()1,3a ∈()f x 12,x x ()121ax f x a =-b 23,32⎛⎤⎝⎦<5,4a ⎡⎫∈-+∞⎪⎢⎣⎭a x B ∈x A ∈B A Ü20124a a -≤⎧⎨+>⎩20124a a -<⎧⎨+≥⎩2a ≥2a >2a ≥a x B ∈x A ∈2a ≥04x ≤≤15≤≤{}15C x x =≤≤A C C = A C ⊆212a a ->+13a <A =∅A C ⊆13a <212a a -≤+A C ⊆12125a a ≤-≤+≤113a ≤≤1a ≤a 1a ≤()()()22,f x f x f x -=+2x =22ba-=()24257f a b -=--=1,4a b ==-()245f x x x =--32t +≤1t ≤-()()2min ()3(3)4358f x f t t t =+=+-+-=-2t =-0t =当,即时.,不符合题意;当时,,解得(舍去)或,综上,或.(3)由可得,因,依题意,,使成立.而,不妨设,因,则,设,因,则,当且仅当时等号成立,即当时,,故的最大值为2,依题意,,即的取值范围为.17.解:(1)当.时,,当时,,故;(2)当时,开口向上,其对称轴为,所以其最大值为,当当且仅当,即时,等结成立,综上,施肥量为3kg 时,单株年利润最大为380元.18.【详解】(1),设,且,则,因为,所以,所以,即,所以函数在上为增函数.23t t <<+12t -<<()man ()29f x f ==-2t ≥()2min ()458f x f t t t ==--=-1t =3t =2t =-3t =()()2(1)10x m f x -≥+()22(1)45x m x x -≥-+2245(2)10x x x -+=-+>()2,x ∃∈+∞22(1)45x m x x -≤-+22222(1)21241454545x x x x x x x x x x --+-==+-+-+-+2t x =-2x >220,451t x x t >-+=+()2221111t g t t t t=+=+++0t >12t t +≥1t =3x =max ()2g t =22(1)45x x x --+2m ≤m (],2-∞03x ≤≤()()223210101010320f x x x x x =+⨯-=-+36x <≤()1616045101045010f x x x x x ⎛⎫=-⨯-=- ⎪⎝⎭()21010320,0316045010,36x x x f x x x x ⎧-+≤≤⎪=⎨--<≤⎪⎩03x ≤≤()21010320f x x x =-+12x =()23103103320380f =⨯-⨯+=36x <≤16010x x=4x =()222111x f x x x -==-()12,0,x x ∀∈+∞12x x <()()()()22121212122222222212211212111111x x x x x x f x f x x x x x x x x x -+⎛⎫--=--=== ⎪⎝⎭120x x <<(221212120,0,0x x x x x x -+>()()120f x f x -<()()12f x f x <()f x ()0,+∞(2)由(1)可知,在上单调递增,呂存在使得的值域为,则,即,因为,所以存在两个不相等的正根,所以,解得,所以存在使得的定义域为时,值域为.19.【解析】(1)当时,,令,即,解得或,所以的不动点为或4.(2)依题意,有两个不相等的实数根,即方程有两个不相等的实数根,所以,解得,或,且,所以,因为函数对称轴为,当时,随的增大而减小,若,则;当吋,随的增大而增大,若,则;故,所以的取值范围为.(3)令,即,则,当时,由韦达定理得,由题意得,故,于是得,则,令,则,所以,()f x 11,m n ⎡⎤⎢⎥⎣⎦λ()f x []2,2m n λλ--22112112f m mm f n n n λλ⎧⎛⎫=-=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-=- ⎪⎪⎝⎭⎩221010m m n n λλ⎧-+=⎨-+=⎩0,0m n >>210x x λ-+=21212Δ40100x x x x λλ⎧=->⎪=>⎨⎪+=>⎩2λ>()2,λ∈+∞()f x 11,m n ⎡⎤⎢⎥⎣⎦[]2,2m n λλ--1,0a b ==()28f x x x =--()f x x =28x x x --=2x =-4x =()f x 2-()221x a x x -++=12x x 、()2310x a x -++=12x x 、22Δ(3)4650a a a =+-=++>5a <-1a >-12123,1x x a x x +=+=()22221212121221122(3)2x x x x x x x x a x x x x ++==+-=+-2(3)2y x =+-3x =-3x <-y x 5x <-2y >3x >-y x 1x >-2y >()2(3)22,a +-∈+∞1221x x x x +()2,+∞()f x x =()218ax b x b x +-+-=()2280,0ax b x b a +-+-=≠()1,3a ∈128b x x a -=()22f x x =()12121ax x x f x a ==-81b a a a -=-281a b a =+-1t a =-02,1t a t <<=+2(1)18101012t b t t t +=+=++≥+=当且仅当,即时取等号,所以实数的最小值为12.1t t=1,2t a ==b。
高一上学期第二次月考数 学一. 选择题(每小题5分,满分60分)1.已知集合{}2,1=A ,集合B 满足{}32,1,=B A ,则集合B 有A.4个B.3个C.2个D.1个 2.下列函数中与函数x y =相等的函数是A.2)(x y =B.2x y =C.x y 2log 2=D.x y 2log 2= 3.函数)1lg(24)(2+--=x x x f 的定义域为A. ]21,(-B.]22[,-C. ]2001,(),( -D. ]2002[,(), - 4.若1.02=a ,21.0=b ,1.0log 2=c ,则( )A.c b a >>B. c a b >>C. b a c >>D. a c b >> 5. 方程2=-x e x 在实数范围内的解有( )个A. 0B.1C.2D.36. 若偶函数)(x f 在[]2,4上为增函数,且有最大值0,则它在[]4,2--上 A .是减函数,有最小值0 B .是减函数,有最大值0 C .是增函数,有最小值0 D .是增函数,有最大值07. 设函数330()|log |0x x f x x x ⎧≤=⎨>⎩,,,则())1(-f f 的值为A.1-B.21C. 1D. 2 8. 已知函数()y f x x =+是偶函数,且(2)3f =,则(2)f -=( ) A .7- B .7 C .5- D .59. 若幂函数322)(--=a a x x f 在)0(∞+上为减函数,则实数a 的取值范围是( )A. ),3()1,(+∞--∞B.)3,1(-C. ),3[]1,(+∞--∞D. ]3,1[-10.235log 25log log 9⋅=( )A.6B. 5C.4D.3 11. 设函数()()0ln 31>-=x x x x f ,则()x f y = ( ) A .在区间( 1e ,1)、(1,e)内均有零点B .在区间( 1e,1)、(1,e)内均无零点C .在区间( 1e ,1)内有零点,在区间(1,e)内无零点D .在区间( 1e,1)内无零点,在区间(1,e)内有零点12. 若当R x ∈时,函数||)(x a x f =(0>a ,且1≠a ),满足1)(0≤<x f ,则函数|1|log xy a =的图象大致是二.填空题(每小题5分,满分20分) 13. 已知函数)10(,32)(1≠>+=-a a ax f x 且,则其图像一定过定点14. 函数3()2,f x x x n x R =-+∈为奇函数,则n 的值为 .15. 若定义在(-1,0)内的函数()()1log 2+=x x f a 满足()0>x f ,则a 的取值范围是________.16. 对于实数x ,符号[]x 表示不超过x 的最大整数,例如[][]208.1,31.3-=-=,[]22=,定义函数()[]x x x f -=,则下列命题中正确的是 .(填上你认为正确的所有结论的序号)①函数()x f 的最大值为1; ②函数()x f 最小值为0; ③函数()()21-=x f x G 有无数个零点; ④函数()x f 是增函数. 三.解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17. (本小题满分10分)已知集合{}{}m x x C x B x x x A x>=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛<=≤--=|,42121|,02|2.(I )求()B A C B A R ,; (II )若C C A = ,求实数m 的取值范围. 18. (本小题满分12分) 计算:(1) 2.5221log 6.25lgln(log (log 16)100+++; (2) 已知14,x x -+=求224x x -+-的值.19. (本小题满分12分)已知函数()⎪⎩⎪⎨⎧<+=>+-=0,0,00,222x mx x x x x x x f 为奇函数. (I )求()1-f 以及实数m 的值; (II )写出函数()x f 的单调递增区间; (III )若()1=a f ,求a 的值.20. (本小题满分12分)当x 满足2)3(log 21-≥-x 时,求函数()1241+-=--x xx f 的最值及相应的x 的值.21. (本小题满分12分)某所中学有一块矩形空地,学校要在这块空地上修建一个内接四边形的花坛(如图所示),该花坛的四个顶点分别落在矩形的四条边上,已知 AB=a (a >2),BC=2,且 AE=AH=CF=CG ,设 AE=x ,花坛面积为y .(1)写出y 关于x 的函数关系式,并指出这个函数的定义域; (2)当 AE 为何值时,花坛面积y 最大?22. (本小题满分12分)定义在(0,+∞)上的函数()x f ,对于任意的()+∞∈,0,n m ,都有()()()n f m f mn f +=成立,当1>x 时,()0<x f .(1)求证:1是函数()x f 的零点; (2)求证:()x f 是(0,+∞)上的减函数; (3)当()212=f 时,解不等式()14>+ax f .高一数学参考答案1-12ADCDC BCBDA DA13. 16 14. 0 15. 0<a <1216.17.解:(1121116633233232-=⨯⨯⨯⨯= 1111102633332323++-⨯=⨯=(2)原式=2lg5+23lg23+lg5×lg(10×2)+lg 22=2lg5+2lg2+lg5+lg5×lg2+lg 22=2(lg5+lg2)+lg5+lg2(lg5+lg2)=3.18. (1)3.5 (2) 1019.解:根据集合中元素的互异性, 0x ≠ 且0y ≠,则0xy ≠,又A=B,故lg()0xy =,即1xy =①,所以xy y =②或xy x =③,①②联立得1x y ==,与集合互异性矛盾舍去,①③联立得1x y ==(舍去),或者1x y ==-,符合题意,此时22881log ()log 23x y +==. 21. 解:(1)S △AEH =S △CFG =x 2,(1分)S △BEF =S △DGH =(a ﹣x )(2﹣x ).(2分)∴y=S ABCD ﹣2S △AEH ﹣2S △BEF =2a ﹣x 2﹣(a ﹣x )(2﹣x )=﹣2x 2+(a+2)x .(5分)由,得0<x≤2(6分)∴y=﹣2x 2+(a+2)x ,0<x≤2(7分) (2)当<2,即a <6时,则x=时,y 取最大值.(9分)当≥2,即a≥6时,y=﹣2x2+(a+2)x,在(0,2]上是增函数,则x=2时,y取最大值2a﹣4(11分)综上所述:当a<6时,AE=时,绿地面积取最大值;当a≥6时,AE=2时,绿地面积取最大值2a﹣4(12分).22.解:(1)对于任意的正实数m,n都有f(mn)=f(m)+f(n)成立,所以令m=n =1,则f(1)=2f(1).∴f(1)=0,即1是函数f(x)的零点.(2) 设0<x1<x2,∵f(mn)=f(m)+f(n),∴f(mn)-f(m)=f(n).∴f(x2)-f(x1)=f(x2x1).因0<x1<x2,则x2x1>1.而当x>1时,f(x)<0,从而f(x2)<f(x1).所以f(x)在(0,+∞)上是减函数.(3) 因为f(4)=f(2)+f(2)=1,所以不等式f(ax+4)>1可以转化为f(ax+4)>f(4).因为f(x)在(0,+∞)上是减函数,所以0<ax+4<4.当a=0时,解集为 ;当a>0时,-4<ax<0,即-4a<x<0,解集为{x|-4a<x<0};当a<0时,-4<ax<0,即0<x<-4a,解集为{x|0<x<-4a}.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第二次月考模拟卷(A卷)过关-2022-2023学年高一语文月考试卷分级模拟测试(统编版必修上册)一、课内诗歌鉴赏(85分)(一)阅读下面这首诗,完成下面小题(9分)。
短歌行曹操对酒当歌,人生几何?譬如朝露,去日苦多。
慨当以慷,忧思难忘。
何以解忧?惟有杜康。
青青子衿,悠悠我心。
但为君故,沉吟至今。
呦呦鹿鸣,食野之苹。
我有嘉宾,鼓瑟吹笙。
明明如月,何时可掇?忧从中来,不可断绝。
越陌度阡,枉用相存。
契阔谈䜩,心念旧恩。
月明星稀,乌鹊南飞。
绕树三匝,何枝可依?山不厌高,海不厌深。
周公吐哺,天下归心。
1.下列关于诗歌内容的表述,错误的一项是( )A.《短歌行》是乐府旧题,曹操这首《短歌行》的主题非常明确,其中之一就是希望有大量的人才来为自己所用,我们可以理解为这是一曲“求贤歌”。
高一英语必修二Unit1-Unit2 检测试卷本试卷共150分。
考试时间120分钟。
第一部分:听力(共两节,满分30分)第一节听力(每小题1.5分,满分30分)听下面5段对话。
每段对话后有一个小题,从题中所给的三个选项A、B、C中选出最佳选项,并标在试卷的相应位置。
听完每段对话后, 你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What is the woman looking for ?A.Her glass.B. A new glass.C. The man’s glass.2. What will the man do tonight ?A. Help the woman .B. See a movie.C. Study.3. What does the woman probably think of ?A. Disappointing.B. Too quiet.C. Funny.4. What should the woman do immediately?A. Go home.B. Call the bank.C. Buy a new cellphone.5. What are the speakers mainly talk about?A. A story .B. A teacher.C. An upcoming class.第二节听下面5段对话。
每段对话后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话读两遍。
听第六段材料,回答第6至第7题。
6. What kind of room does the man want?A. A non-smoking single room.B. A non-smoking double room.C. A smoking single room.7. Who is man speaking to?A. His secretary.B. A hotel clerk.C. A friend.听第七段材料,回答第8、9题。
陕西省咸阳市三原县南郊中学2022-2023学年高一上学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.与2022︒终边相同的角是()A .488-︒B .148-︒C .142︒D .222︒2.函数()22log f x x x =-+的零点所在的区间为()A .()01,B .()12,C .()23,D .()34,3.用二分法求方程383x x =-在()1,2内的近似解时,记()338x f x x =+-,若(1)0f <,(1.25)0f <,(1.5)0f >,(1.75)0f >,据此判断,方程的根应落在区间()A .(1,1.25)B .(1.25,1.5)C .(1.5,1.75)D .(1.75,2)4.函数2()ln(28)f x x x =--的单调递增区间是A .(,2)-∞-B .(,1)-∞C .(1,)+∞D .(4,)+∞5.设x ∈R ,则“0x <”是“()ln 10x +<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c<a<bD .b<c<a7.1614年苏格兰数学家纳皮尔在研究天文学的过程中为了简化计算而发明了对数方法;1637年法国数学家笛卡尔开始使用指数运算;1770年瑞士数学家欧拉发现了指数与对数的互逆关系,指出:对数源于指数,对数的发明先于指数.若52x =,lg 20.3010≈,则x 的值约为()A .0.431B .0.430C .0.429D .2.3228.已知01b a <<<,下列四个命题:①(0,)∀∈+∞x ,x x a b >,②(0,1)x ∀∈,log log a b x x >,③(0,1)x ∃∈,a b x x >,④(0,)x b ∃∈,log xa a x >.其中是真命题的有()二、多选题9.下列结论正确的是()A .7π6-是第三象限角B .若角α的终边过点(3,4)P -,则3cos 5α=-C .若圆心角为π3的扇形弧长为π,则该扇形面积为3π2D .3πcos()sin(π)2A A -=+10.若a <b <0,则下列不等式成立的是()A .11a b<B .01ab<<C .ab >b 2D .b a <a b11.下列函数中,与y =x 是同一个函数的是()A .y =B .y =C .ln e xy =D .lg 10x y =12.给出下列结论,其中正确的结论是().A .函数2112x y -+⎛⎫= ⎪⎝⎭的最大值为12B .已知函数()log 2a y ax =-(0a >且1a ≠)在()0,1上是减函数,则实数a 的取值范围是()1,2C .函数2x y =与函数2log y x =互为反函数D .已知定义在R 上的奇函数()f x 在(),0∞-内有1010个零点,则函数()f x 的零点个数为2021三、填空题13.已知tan 4α=-,则4sin 2cos 5cos 3sin αααα++的值为______.14.已知集合12112128,log ,,3248x A x B y y x x -⎧⎫⎧⎫⎡⎤=≤≤==∈⎨⎬⎨⎬⎢⎥⎩⎭⎣⎦⎩⎭∣∣,则集合A B = _____15.已知函数23(0 x y a a -=+>且1)a ≠的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则3log (3)f =______.16.已知定义域为R 的函数()11221x f x =-++则关于t 的不等式()()222210f t t f t +<--的解集为________.四、解答题17.求值:(1)0113410.027167-⎛⎫-+- ⎪⎝⎭;(2)ln 2145log 2lg 4lg e 2+++.18.已知3sin 5α=-,且α是第________象限角.从①一,②二,③三,④四,这四个选项中选择一个你认为恰当的选项填在上面的横线上,并根据你的选择,解答以下问题:(1)求cos ,tan αα的值;(2)化简求值:3sin()cos()sin 2cos(2020)tan(2020)πααπαπαπα⎛⎫--+ ⎪⎝⎭+-.19.已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,()24f x x x =+,函数()f x 在y轴左侧的图象如图所示,并根据图象:(1)画出()f x 在y 轴右侧的图象,并写出函数()f x ()R x ∈的单调递增区间;(2)写出函数()f x ()R x ∈的解析式;(3)已知()()g x f x a =-有三个零点,求a 的范围.20.已知函数()()()1122log 4log 4f x x x =--+(1)求函数的定义域,判断并证明函数()f x 的奇偶性;(2)求不等式()0f x <的解集.21.2020年新冠肺炎疫情在世界范围内爆发,疫情发生以后,佩戴口罩作为阻断传染最有效的措施,一度导致口罩供不应求.为缓解口罩供应紧张,某口罩厂日夜加班生产,为抗击疫情做贡献.已知生产口罩的固定成本为80万元,每生产x 万箱,需要另外投入的生产成本(单位:万元)为21485y x x =+,若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完.(1)求生产多少万箱时平均每万箱的成本最低,并求出最低成本;(2)当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大?22.已知()()423,R x xf x a a =+⋅+∈.(1)当4a =-且[0,2]x ∈时,求函数()f x 的取值范围;(2)若对任意的,()0x ∈+∞,()0f x >恒成立,求实数a 的取值范围.参考答案:1.D【分析】与α终边相同的角可表示为2,Z k k απ+∈.【详解】∵20225360222︒=⨯︒+︒,∴与2022︒终边相同的角是222︒.故选:D 2.B【分析】判断函数的单调性,计算区间端点处函数值,由局零点存在定理即可判断答案.【详解】函数()22log f x x x =-+,0x >是单调递增函数,当0x +→时,()f x →-∞,2(1)1,(2)10,(3)1log 30,(4)40f f f f =-=>=+>=>,故(1)(2)0f f ⋅<故函数的零点所在的区间为()12,,故选:B 3.B【分析】由零点存在定理及单调性可得()f x 在(1.25,1.5)上有唯一零点,从而得到方程的根应落在(1.25,1.5)上.【详解】因为3x y =与38y x =-在R 上单调递增,所以()338x f x x =+-在R 上单调递增,因为(1.25)0f <,(1.5)0f >,所以()f x 在(1.25,1.5)上有唯一零点0x ,即003380xx +-=,故00383xx =-,所以方程的根落在区间(1.25,1.5)上,且为0x x =,对于ACD ,易知选项中的区间与(1.25,1.5)没有交集,故0x 不在ACD 选项中的区间上,故ACD 错误;对于B ,显然满足题意,故B 正确.故选:B.4.D【详解】由228x x -->0得:x ∈(−∞,−2)∪(4,+∞),令t =228x x --,则y =ln t ,∵x ∈(−∞,−2)时,t =228x x --为减函数;x ∈(4,+∞)时,t =228x x --为增函数;y =ln t 为增函数,故函数f (x )=ln(228x x --)的单调递增区间是(4,+∞),故选D.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,() y f x =为外层函数.当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增;当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减;当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减;当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.5.B【分析】解出()ln 10x +<,然后判断即可【详解】因为()ln 10x +<,所以01110x x <+<⇒-<<由{|10}x x -<<为{|0}x x <的真子集,所以“0x <”是“()ln 10x +<”的必要不充分条件故选:B.6.B【分析】运用中间量0比较,a c ,运用中间量1比较,b c【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.7.A【分析】由指对互化原则可知5log 2x =,结合换底公式和对数运算性质计算即可.【详解】由52x =得:5lg 2lg 2lg 20.3010log 20.43110lg 51lg 210.3010lg 2x ====≈≈--.故选:A.8.C【分析】作商并结合单调性判断①;作差并结合对数函数性质、对数换底公式判断②;利用指数函数单调性比较判断③;在给定条件下,借助“媒介”数比较判断作答.【详解】对于①,由01b a <<<得:1>a b ,(0,)∀∈+∞x ,01xx x a a a b b b ⎛⎫⎛⎫=>= ⎪ ⎪⎝⎭⎝⎭,则x x a b >,①正确;对于②,(0,1)x ∀∈,log log log log 10x x x x aa b b-=<=,即0log log x x a b <<,则log log a b x x >,②正确;对于③,函数(01)x y m m =<<在(0,1)上为减函数,而01b a <<<,则a b m m <,即(0,1)x ∀∈,a b x x <,③错误;对于④,当(0,)x b ∈时,1x a <,log log log 1a a a x b a >>=,即log xa a x <,④错误,所以所给命题中,真命题的是①②.故选:C 9.BCD【分析】对于A :利用终边相同的角与象限角的概念即可判断;对于B :由任意角的三角函数的定义求出cos α的值即可判断;对于C :利用弧长和面积公式求解即可;对于D :利用诱导公式即可判断.【详解】对于A :7π5π2π66-=-,是第二象限角,故A 错误;对于B :角α的终边过点(3,4)P -,则||5r OP ==,所以cos 53x r α==-,故B 正确;对于C :由题意知:设圆心角为θ,扇形的弧长为l ,半径为r ,则π,π3l θ==,由θ=l r ,得3r =,所以该扇形面积为13π22lr =,故C 正确;对于D :π3πcos cos πcossin 222πA A A A⎡⎤⎛⎫⎛⎫⎛⎫-=+-=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,sin(π)sin A A +=-,则3πcos()sin(π)2A A -=+,故D 正确,故选:BCD .10.CD【分析】根据不等式的性质逐项分析.【详解】由于a b <,设2,1a b =-=-,对于A ,则11111,1,2a b a b=-=->,错误;对于B ,21ab=>,错误;对于C ,由于()220,0,0,a b b ab b b a b ab b -<<∴-=->>,正确;对于D ,由于()()0,0,0,0,0,b a b a b a b ab a b a ab aba b a b-+->+<>∴<-<<,正确;故选:CD.11.AC【分析】从函数的定义域是否相同及函数的解析式是否相同两个方面判断.【详解】y x =的定义域为x ∈R ,值域为R y ∈,对于A 选项,函数y x =的定义域为x ∈R ,故是同一函数;对于B 选项,函数0y x ==≥,与y x =解析式、值域均不同,故不是同一函数;对于C 选项,函数ln e x y x ==,且定义域为R ,故是同一函数;对于D 选项,lg 10x y x ==的定义域为()0,∞+,与函数y x =定义域不相同,故不是同一函数.故选:AC .12.CD【分析】对于A ,利用指数函数的性质进行判断;对于B ,利用对数函数的性质及复合函数单调性求参数值,注意端点值;对于C ,由指数函数2x y =与对数函数2log y x =互为反函数即可判断;对于D ,利用奇函数的性质进行判断.【详解】对于A ,因为211x -+≤,所以211122x -+⎛⎫≥ ⎪⎝⎭,因此2112x y -+⎛⎫= ⎪⎝⎭有最小值12,无最大值,故A 错误;对于B , 函数()log 2a y ax =-(0a >且1a ≠)在()0,1上是减函数,120a a >⎧∴⎨-≥⎩,解得12a <≤,故B 错误;对于C , 指数函数2x y =与对数函数2log y x =互为反函数,故C 正确;对于D ,定义在R 上的奇函数()f x 在(),0∞-内有1010个零点,()f x \在(0,)+∞内有1010个零点,又()00f =,∴函数()f x 的零点个数为2101012021⨯+=,故D 正确,故选:CD .13.2【分析】根据给定条件把正余弦的齐次式化成正切,再代入计算作答.【详解】因tan 4α=-,则4sin 2cos 4tan 24(4)225cos 3sin 53tan 53(4)αααααα++⨯-+===+++⨯-,所以4sin 2cos 5cos 3sin αααα++的值为2.故答案为:214.[]1,5-【分析】解不等式1121284x - 化简即可求得集合A ,求出21log ,,328y x x ⎡⎤=∈⎢⎥⎣⎦的值域即可求得集合B ,再进行集合运算即可得出结果.【详解】由1121284x - ,即217222x -- ,得:217x --,解得:18x - ,所以[]1,8A =-;当1,328x ⎡⎤∈⎢⎥⎣⎦时,2log [3,5]y x =∈-,所以[]3,5B =-,所以[]1,5A B =-∩.故答案为:[]1,5-.15.2【分析】根据指数函数过定点()0,1,求出函数23x y a -=+过定点()2,4.即可求出幂函数2()f x x =,代入3log (3)f 即可得出答案.【详解】函数23x y a -=+过定点()2,4.将()2,4代入幂函数()a f x x =,即(2)2=42a f a =⇒=.所以233log (3)log 3=2f =.故填:2.【点睛】本题考查指数型函数的定点、幂函数、对数恒等式,属于基础题.需要注意的是指数型函数的定点求法:令指数位置等于0.属于基础题.16.()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭.【分析】先判断出()f x 是奇函数且在R 上为减函数,利用单调性解不等式.【详解】函数()11221x f x =-++的定义域为R.因为()1112221221xx xf x --=-+=-+++,所以()()1111110221221x x f x f x -⎛⎫⎛⎫-+=-++-+=-+= ⎪++⎝⎭⎝⎭,所以()()f x f x -=-,即()f x 是奇函数.因为2x y =为增函数,所以121xy =+为减函数,所以()11221x f x =-++在R 上为减函数.所以()()222210f t t f t -+-<可化为()()()22222112f t t f t f t -<--=-.所以22212t t t ->-,解得:1t >或13t <-.故答案为:()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭.17.(1)53-(2)52【分析】(1)根据指数幂的运算性质即可求出.(2)根据对数的运算性质即可求得.【详解】(1)()()()0111113443434410.027160.32147--⎛⎫-+=-+- ⎪⎝⎭150.32143-=-+-=-(2)2ln 221245log 2lg 4lg e log 2lg 2lg5lg 222-+++=++-+152lg 2lg 5lg 2222=-++-+=18.(1)答案不唯一,具体见解析(2)1625【分析】(1)考虑α为第三象限或第四象限角两种情况,根据同角三角函数关系计算得到答案.(2)化简得到原式2cos α=,代入数据计算得到答案.【详解】(1)因为3sin 5α=-,所以α为第三象限或第四象限角;若选③,4sin 3cos ,tan 5cos 4αααα==-==;若选④,4sin 3cos ,tan 5cos 4αααα====-;(2)原式sin cos (cos )cos tan()ααααα-=-sin cos tan ααα-=-sin cos sin cos αααα=2cos α=2315⎛⎫=-- ⎪⎝⎭1625=.【点睛】本题考查了同角三角函数关系,诱导公式化简,意在考查学生的计算能力和转化能力.19.(1)答案见解析(2)()224,04,0x x x f x x x x ⎧+≤=⎨-+>⎩(3)44a -<<【分析】(1)利用奇函数的图象关于原点对称作出图象,由图象得单调递增区间;(2)根据奇函数的定义求解析式;(3)由题意可知()y f x =与y a =的图象有三个不同的交点,由图象即可得出结论.【详解】(1)函数()f x 是定义在R 上的奇函数,则函数()f x 的图象关于原点对称,则函数()f x 图象如图所示,故函数()f x 的单调递增区间为[]22-,.(2)令0x >,则0x -<,则()24f x x x-=-又函数()f x 是定义在R 上的奇函数,则()()24f x f x x x=--=-+所以()224,04,0x x x f x x x x ⎧+≤=⎨-+>⎩(3)已知()()g x f x a =-有三个零点,即()y f x =与y a =的图象有三个不同的交点,由图象可知:44a -<<.20.(1)答案见解析(2)()4,0-【分析】(1)由对数的真数大于零,解不等式组可求得定义域;利用奇偶性的定义即可判断并证明函数的奇偶性;(2)利用对数函数的性质直接解不等式即可.【详解】(1)由4040x x ->⎧⎨+>⎩,得44x -<<,所以函数()f x 的定义域为()4,4-,函数()f x 为奇函数,证明如下:因为函数()f x 的定义域为()4,4-,所以定义域关于原点对称,因为()()()()()11112222log 4log 4log 4log 4()f x x x x x f x ⎡⎤-=+--=---+=-⎢⎥⎣⎦,所以()f x 为奇函数.(2)由()0f x <,得()()1122log 4log 40x x --+<,所以()()1122log 4log 4x x -<+,因为12log y x =在()0,∞+上为减函数,所以404044x x x x ->⎧⎪+>⎨⎪->+⎩,解得40x -<<,所以不等式()0f x <的解集为()4,0-.21.(1)生产20万箱时,平均每万箱成本最低,为56万元;(2)130.【解析】(1)可得出平均每万箱的成本为80485x W x=++,再利用基本不等式可求;(2)可得利润为()2152805h x x x =-+-,利用二次函数的性质即可求解.【详解】(1)设生产x 万箱时平均每万箱的成本为W ,则218048805485x x x W x x++==+,因为0x >,所以8085x x +=≥,当且仅当805x x=,即20x =时等号成立.所以min 84856W =+=,当20x =时取到最小值,即生产20万箱时平均每万箱成本最低,最低成本为56万元.(2)设生产x 万箱时所获利润为()h x ,则()2110048805h x x x x ⎛⎫=-++ ⎪⎝⎭,即()2152805h x x x =-+-,()0x ≥,即()()2113033005h x x =--+,所以()()min 1303300h x h ==,所以生产130万箱时,所获利润最大为3300万元.22.(1)[1,3]-(2){a a >-【分析】(1)将4a =-代入,换元,令2x t =可得2(2)1y t =--,其中14t ≤≤,再利用二次函数的性质可得()f x 的取值范围;(2)令2x m =,()1,m ∞∈+,则问题等价于对任意的()1,m ∞∈+,230m am ++>恒成立,分离参变量得3a m m ⎛⎫>-+ ⎪⎝⎭,结合基本不等式即可得到答案.【详解】(1)当4a =-时,()4423x x f x =-⋅+,令2x t =,由[0,2]x ∈,得[1,4]t ∈,2243(2)1y t t t =-+=--,当2t =时,min 1y =-;当4t =时,max 3y =,所以函数()f x 的取值范围[1,3]-.(2)令2x m =,由,()0x ∈+∞,得()1,m ∞∈+,则23y m am =++,对任意的,()0x ∈+∞,()0f x >恒成立,即对任意的()1,m ∞∈+,230m am ++>恒成立,则对任意的()1,m ∞∈+,233m a m m m +⎛⎫>-=-+ ⎪⎝⎭恒成立,因为3m m +≥=m =则当m =3m m ⎛⎫-+ ⎪⎝⎭取最大值-,所以实数a 的取值范围{a a >-。
厦门六中2023—2024学年第一学期高一年第二阶段考试地理试卷一、单选题(30小题,每小题2分,共60分)三文鱼属冷水性鱼类。
我国近岸养殖三文鱼成活率低,长期以来主要依靠进口。
2018年,我国首个全潜式大型网箱“深蓝1号”在山东日照以东海城下水,并投放来自挪威的三文鱼苗。
该网箱可视水温调整潜水深度,实现了我国三文鱼规模化养殖的突破。
据此完成1~3题。
1.我国近岸养殖三文鱼成活率低,主要是因为()A.受洋流影响小B.海水温度高C.受海浪影响大D.海水盐度低2.夏季,深海网箱调节方向和原因分别为()A.向上,降低水温B.向上,提升水温C.向下,降低水温D.向下,提升水温3.与近岸养殖相比,深海养殖的三文鱼品质好,主要原因是深海养殖区()A.饵料来源丰富B.海水水质较好C.水域空间广阔D.海水密度较大花蛤适宜生长于海水温度23~28℃、海水盐度3~3.5%的环境。
每年3月后,中国北方的养殖户在潮间带投放花蛤苗种进行养殖。
2016年9月初,T市接连受到多个台风影响。
台风过境后,当地养殖的花蛤出现大面积死亡的现象。
据此完成4~5题。
4.中国北方养殖的花蛤苗种主要投放至图中的()A.I区域B.℃区域C.℃区域D.℃区域5.2016年9月初T市出现的花蛤死亡现象,主要是由于()A.海水盐度异常降低B.海水温度异常升高C.海水水质急剧恶化D.沿海风浪急剧增强筼筜湖位于厦门岛西南部,原来与海洋相通,后因筑起西堤而成为内湖,对城市排涝具有重要意义。
发生强降雨时,径流进入筼筜湖,经排洪泵站或通过西堤闸门利用潮汐排入附近海域。
2018年8月29日08:00,厦门出现强降雨,西堤闸门开启,此时赏筜湖水位维持较低;09:50,西堤闸门关闭,排涝泵站开始工作,此时筼筜湖水位快速上涨,据此完成6~7题。
6.推测2018年8月29日09:50关闭西堤闸门的主要原因是()A.降雨强度减弱B.排涝速度减缓C.恰逢天文大潮D.正值沿海涨潮7.推测近年来贫笃湖的蓄洪排涝压力增大主要是由于()A.附近海域顶托增强B.城市生活废水增多C.城区硬化地面增加D.海洋水汽输送增多北京某中学利用假期到甲地开展课外实践活动,途径一处石林景观,平地而起,形态各异,岩石多具有水平纹理。
河北省邢台市第一中学2023-2024学年高一上学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________六、作图题19.已知函数()f x 是定义在R 上的偶函数,且当0x £时,()22f x x x =+,现已画出函数()f x 在y 轴左侧的图象(如图所示),请根据图象解答下列问题.(1)作出0x>时,函数()f x的增区间;f x的图象,并写出函数()(2)写出当0x>时,()f x的解析式;(3)用定义法证明函数()f x在()-¥-上单调递减.,1七、解答题20.已知:a,b,c为ABCV的三边长,(1)当222V的形状,并证明你的结论;a b c ab ac bc++=++时,试判断ABC(2)判断代数式2222-+-值的符号.a b c ac值;若不存在,说明理由.由图可知,()f x 的增区间是()()1,0,1,-+¥.(2)∵()f x 是偶函数,∴()()f x f x -=,当0x >时,0x -<,22()()()22f x f x x x x x =-=--=-,所以,当0x >时,2()2f x x x =-.(3)当(),1x Î-¥-时,()22f x x x =+,设()121,,x x -¥-Î,且12x x <,222212112121212122()()()()2()()(2)22f x f x x x x x x x x x x x x x +--=-=+-=-+++,∵()121,,x x -¥-Î,且12x x <,∴12120,20x x x x -<++<,则12())0(f x f x ->,即12()()f x f x >,∴函数()f x 在(),1-¥-上单调递减.20.(1)等边三角形,证明见解析(2)符号为负【分析】借助完全平方公式整理可得()()()2220a b b c a c -+-+-=,进而得到a b c ==,从而求解;。
高一上册第二次月考试题高一上册第二次月考试题一、听力理解(共20小题,每小题1分,共20分)请听下面五段短对话,每段对话后有一小题。
从题中所给的A、B、C三个选项中选出最佳选项,读两遍。
1. What is Lisa going to do?A. Go shopping.B. Do homework.C. Watch TV.2. What does the man want to eat?A. Cake.B. Apple.C. Bread.3. What color is Peter’s jacket?A. Brown.B. Blue.C. Black.4. Where did the man see his friend?A. At school.B. At a party.C. At the park.5. How is Tom feeling now?A. Happy.B. Sad.C. Angry.请听下面两段对话,每段对话后有两个小题。
从题中所给的A、B、C三个选项中选出最佳选项,读两遍。
6. What is the girl doing now?A. Having dinner.B. Doing homework.C. Having a rest.7. Where does the woman live?A. In a small village.B. In a tall building.C. In a big house.8. Why doesn’t the man want to see the film?A. He doesn’t like the actors.B. He doesn’t like the d irector.C. He doesn’t like the story.9. What will the woman do first?A. Take a bath.B. Have dinner.C. Go shopping.10. What is the woman probably?A. A teacher.B. A nurse.C. A doctor.请听下面一段短对话,然后回答第11至13题。
江苏省连云港市赣榆第一中学2022—2023学年第一学期第二次月考高一数学试题一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( ){|13}A x x =≤≤{|24}B x x =<<A B = A. 3} B.{|2x x <≤{}|12x x ≤<C.D.}{}|14x x ≤<{|24x x ≤<2.命题“,”的否定是( )x R ∀∈20x ≥A. , B. 不存在,x R ∀∈2x <x ∈R 2x <C. ,D. ,0x R ∃∈200x ≥0x R ∃∈200x <3.如果,且,则是( )cos 0α<tan 0α<αA. 第一象限的角 B. 第二象限的角 C. 第三象限的角D. 第四象限的角4.函数的最小值是( )22812y x x =++A. 7B.C. 9D. 7-9-5.已知,则()20.30.3,2,2a b c ===A. B. b c a <<b a c <<C.D. c a b <<a b c<<6. 函数的零点个数是( ).226,0()log (2)2,0x x x f x x x ⎧+-≤=⎨+->⎩A. 1B. 2C. 3D. 47. 2000年我国国内生产总值(GDP)为89 442亿元,如果我国GDP 年均增长7.8%,那么按照这个增长速度,在2000年的基础上,我国GDP 要实现比2000年翻两番的目标,需要经过()(参考数据:lg2≈0.301 0,lg1.078≈0.032 6,结果保留整数)A. 17年B.18年C.19年D. 20年8.已知函数,若不等式(e 是自然对21()21x x f x -=+()()222180k f m m f m e -+-++>数的底数),对任意的恒成立,则整数k 的最小值是( )[]2,4m =-A .5B .4C .3D .2二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9. 设b >a >0,c ∈R ,则下列不等式中正确的是( )A . B.eq B.eq>C.eq> D .ac 3<bc 31122a b <1b ab 10. 下列函数中,在区间(0,1)上单调递减的是( )A .y =|x +1|B .y =2-xC .y =D .y =x 2-x +11x 11.将函数的图象向右平移个单位长度,再将图象上所有点的横坐标变为原()sin f x x=3π来的倍(纵坐标不变),得到的图象,则( )12()g x A .函数是偶函数B .x =-是函数的一个零点(3g x π-π6()g x C .函数在区间上单调递增D .函数的图象关于直线x =对称()g x [-5π12,π12]()g x π1212. 已知函数f (x )的定义域为R ,对任意x 都有f (2+x )=f (2-x ),且f (-x )=f (x ),则下列结论正确的是( )A .f (x )的图象关于直线x =2对称B .f (x )的图象关于点(2,0)对称C .f (x )的周期为4D .y =f (x +4)为偶函数三、填空题:本题共4小题,每小题5分,共20分.13.若,则的值为__________.tan 2θ=2sin cos 3sin 2cos θθθθ+-14.方程的解为___________.22log (3)log (21)x x =+15.若不等式的一个充分条件为,则实数a 的取值范围是__________.||x a <01x <<16. 某种动物的繁殖数量y (数量:只)与时间x (单位:年)的关系式为y =a log 2(x +1),若这种动物第1年有100只,则到第7年它们发展到________只.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合A={x|x 2-x-2=0},B={x|x 2+mx+m-1=0}.(1)当m=1时,求(∁R B )∩A ;(2)若(∁R A )∩B=⌀,求实数m 的取值.18. (1)已知,当是第三象限角,且sin()cos()()3cos 2f παπααπα-+=⎛⎫- ⎪⎝⎭α时,求的值.31cos 25πα⎛⎫-=⎪⎝⎭()f α(2)计算:.()2lg 2lg5lg 20lg 0.1+⨯+19. 已知函数.()4f x x -=(1)判断函数的奇偶性,并说明理由;()f x (2)用函数单调性的定义证明函数在上是减函数.()f x (0,)+∞20. 在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为的矩形区域(如图所示),按规划要求:在矩形内的四周安排宽的绿化,绿化造2200m 2m价为200元/,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/.设2m 2m 矩形的长为,总造价为(元).(m)x y(1)将表示为关于的函数;y x (2)当取何值时,总造价最低,并求出最低总造价.x 21.设m 为实数,.2(1)1y m x mx m =+-+-(1)若方程有实数根,求m 的取值范围;0y =(2)若不等式的解集为,求m 的取值范围;0y >∅(3)若不等式的解集为,求m 的取值范围.0y >R 22. 已知函数f (x )=A sin(ωx +φ)的部分图象如图所示.(A >0,ω>0,|φ|<π2)(1)求函数f (x )的解析式,并求f (x )的对称中心;(2)当x ∈[0,4]时,求f (x )的值域.答案1. A 【解析】.故选A.A B ={}|23x x <≤2.D 【解析】命题“,”的否定是:,.故选D.x R ∀∈20x ≥0x ∃∈R 200x <3. B 【解析】因为,则角是第二,第三象限角,,则角是第二,cos 0α<αt an 0α<α四象限角,综合得角是第二象限角.故选B.α4. C 【解析】,当且仅当时,即2281219y x x =+++≥=2282x x =时取等号.x =所以函数的最小值为.故选 C.95. D 【解析】因为,,,所22c ==2000.30.31a <=<=00.3112222b =<=<=以.故选D.a b c <<6. B 【解析】由题意,当时,令,解得或(舍去);当0x ≤260x x +-=3x =-2x =时,令,即,解得,所以函数有2个0x >2log (2)20x +-=2log (2)2x +=2x =()f x 零点.故选B.7. C 【解析】假设经过x 年实现GDP 比2000年翻两番的目标.根据题意,得89442×(1+7.8%)x =89 442×4,即1.078x =4,故x =log 1.0784=≈19.故约经过19年,我lg4lg1.078国GDP 就能实现比2000年翻两番的目标.故选C.8. B 【解析】因为函数的定义域为R ,关于原点对称,又21()21x xf x -=+2121()()2121x x x x f x f x -----==-=-++所以是奇函数,又在R 上是增函数,()f x 212122()1212121x x x x x f x +--===-+++所以对任意的恒成立,等价于:()()222180k f m m f m e -+-++>[]2,4m ∈-对任意的恒成立,()()22218k f m m f m e --+-<+[]2,4m ∈-即对任意的恒成立,()()22218k f m m f m e -+<+[]2,4m ∈-即对任意的恒成立,22218km m m e -+<+[]2,4m ∈-即对任意的恒成立,令,22101ke m m >-+[]2,4m ∈-22101t m m -=+因为,所以,所以,解得,所以整数k 的最小值是[]2,4m ∈-max 29t =29k e >ln 29k >4故选B9. ABC 【解析】函数在上单调递增,,则,A 正确;12y x =[0,)+∞0b a >>1122a b <因为y =在(0,+∞)上单调递减,所以>,B 正确;因,则,1x 1a 1b 0b a >>110b a a b ab --=>,即,,B ,C 正确;因,取,22202(2)a a b a b b b b +--=>++11a b >22a a b b +>+R c ∈0c =,D 不正确.故选:ABC33ac bc =10. BCD 【解析】解:函数,所以该函数在上单调递1,111,1x x y x x x +≥-⎧=+=⎨--<-⎩()0,1增,故A 不符合;函数在区间上单调递减,B 符合;2y x =-()0,1函数在区间上单调递减,C 符合;1y x =()0,1函数在上单调递减,在上单调递增,故D 不符2213124y x x x ⎛⎫=-+=-+ ⎪⎝⎭10,2⎛⎫ ⎪⎝⎭1,12⎛⎫ ⎪⎝⎭合;故选:BC.11. BCD 【解析】将函数的图象向左平移个单位长度,可得()sin f x x=3π,sin 3y x π=+()再将图象上所有点的横坐标变为原来的倍(纵坐标不变),可得,12()sin 3g x x π=+(2)对于A 选项,令,()ππππsin 2sin 23333h x g x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦则,,故函数不是偶函数,A 不正确;π06h ⎛⎫= ⎪⎝⎭π2πsin 063h ⎛⎫⎛⎫-=-≠ ⎪ ⎪⎝⎭⎝⎭π3g x ⎛⎫- ⎪⎝⎭对于B 选项,因为,故是函数的一个零点,B 正确;πsin 006g ⎛⎫-== ⎪⎝⎭π6x =-()g x 对于C 选项,当时,,所以函数在区间5,1212x ππ⎡⎤∈-⎢⎥⎣⎦2,322x πππ⎡⎤+∈-⎢⎥⎣⎦()g x 上单调递增,C 正确;5,1212ππ⎡⎤-⎢⎥⎣⎦对于D 选项,因为对称轴满足,解得,2π,Z32x k k ππ+=+∈ππ,Z 122k x k =+∈则时,,所以函数的图象关于直线对称,D 正确.0k =π12x =()g x π12x =故选:BCD .12. ACD 【解析】∵,则的图象关于直线对称,故A 正确,()()22f x f x +=-()f x 2x =B 错误;∵函数的图象关于直线对称,则,又,()f x 2x =()()4f x f x -=+()()f x f x -=∴,∴函数的周期为4,故C 正确;()()4f x f x =+()f x ∵函数,故()()()()()()4444424f x f x f x f x f x -+=--=-=-+⨯=+为偶函数,故D 正确.()4y f x =+故选:ACD.13. (或1.25)【解析】.故答案为(或1.25).542sin cos 2tan 153sin 2cos 3tan 24θθθθθθ++==--5414. 【解析】由得,且,解得1x =22log (3)log (21)x x =+321x x =+3>021>0x x +,,1x =检验:当,,所以方程的解为.1x =3>021>0x x +,22log (3)log (21)x x =+1x =15.【解析】由不等式,当时,不等式的解集为空集,显然不成[1,)+∞||x a <0a ≤||x a <立;当时,不等式,可得,要使得不等式的一个充分条件为0a >||x a <a x a -<<||x a <,则满足,所以,即实数a 的取值范围是01x <<{|01}{|}x x x a x a <<⊆-<<1a ≥.[1,)+∞16. 300【解析】由题意知100=a log 2(1+1)⇒a =100,当x =7时,可得y =100log 2(7+1)=300.17.【解析】解方程x 2-x-2=0,即(x+1)(x-2)=0,解得x=-1,或x=2.故A={-1,2}.(1)当m=1时,方程x 2+mx+m-1=0为x 2+x=0,解得x=-1,或x=0.故B={-1,0},∁R B={x|x ≠-1,且x ≠0}.所以(∁R B )∩A={2}.(2)由(∁R A )∩B=⌀可知,B ⊆A.方程x 2+mx+m-1=0的判别式Δ=m 2-4×1×(m-1)=(m-2)2≥0.①当Δ=0,即m=2时,方程x 2+mx+m-1=0为x 2+2x+1=0,解得x=-1,故B={-1}.此时满足B ⊆A.②当Δ>0,即m ≠2时,方程x 2+mx+m-1=0有两个不同的解,故集合B 中有两个元素.又因为B ⊆A ,且A={-1,2},所以A=B.故-1,2为方程x 2+mx+m-1=0的两个解,由根与系数之间的关系可得-(-1)2-1(-1)2m m =+⎧⎨=⨯⎩,,解得m=-1.综上,m 的取值为2或-1.18. 【解析】(1),即,是第三象限角,31cos sin 25παα⎛⎫-=-=⎪⎝⎭ 1sin 5α=- α,cos α∴==.()sin cos sin()cos()()cos 3sin cos 2f ααπαπαααπαα⋅--+====-⎛⎫- ⎪⎝⎭(2)原式()()()2lg 2lg 5lg 2101lg 2lg 2lg 5lg 211=+⨯⨯-=⨯++-.()lg 2lg 2lg 5lg 51lg 2lg 510=++-=+-=19. 【解析】(1)根据题意,函数为偶函数,()f x 证明:,其定义域为,441()f x x x -=={}0x x ≠有,则是偶函数;4411()()()f x f x x x -===-()f x (2)证明:设,120x x <<则,()()()()()()221212121244121211x x x x x x f x f x x x x x 4-++-=-=-又由,则,120x x <<()()221212120,0,0x x x x x x -<+>+>必有,()()120f x f x ->故在上是减函数.()f x (0,)+∞20. 【解析】(1)因为矩形区域的面积为,故矩形的宽为,2200m 200x 绿化的面积为,20080022224416x x x x ⎛⎫⨯⨯+⨯⨯-=+- ⎪⎝⎭中间区域硬化地面的面积为,()200800442164x x x x ⎛⎫--=--⎪⎝⎭故,8008004162002164100y x x x x ⎛⎫⎛⎫=+-⨯+--⨯ ⎪ ⎪⎝⎭⎝⎭整理得到,由可得,8000040018400y x x =++4020040x x ->⎧⎪⎨->⎪⎩050x <<故.8000040018400,050y x x x =++<<(2)由基本不等式可得,80000400184004001840018400x x ++≥⨯=当且仅当x =故当.x =18400+21. 【解析】(1)方程有实数根,即有实根,0y =2(1)10m x mx m +-+-=①当,即时,方程的根为,符合题意;10m +=1m =-2x =②当,即时,由题意,,解得10m +≠1m ≠-()()2(1)104m m m ∆-+-=≥-m ≤≤所以,且;m ≤≤1m ≠-综上,m 的取值范围是m ≤≤(2)①当,即时,,即,所以解集为,不符合题10m +=1m =-0y >20x ->()2,+∞意;②当时,由题意有,解得;10m +≠()()2104(1)10m m m m +<⎧⎪⎨∆=--+-≤⎪⎩m ≤综上,m 的取值范围是.m ≤(3)①当,即时,,即,所以解集为,不符合题10m +=1m =-0y >20x ->()2,+∞意;②当时,由题意有,解得;10m +≠()()2104(1)10m m m m +>⎧⎪⎨∆=--+-<⎪⎩m >综上,m 的取值范围是m >22.【解析】(1)由函数图像可知,2A =∵,∴,∴则37164T =-=28T πω==4πω=由图像可知,函数的经过点,()f x (1,2)∴,∴(1)2sin 24f πϕ⎛⎫=+= ⎪⎝⎭2,42k k Zππϕπ+=+∈∵∴,∴||2ϕπ<4πϕ=()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭令,得,44x k k Zπππ+=∈41x k =-所以函数的图像的对称中心为()f x (41,0),k k Z-∈(2)由(1)可知()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭∵,∴[0,4]x ∈5,4444x ππππ⎡⎤+∈⎢⎥⎣⎦由正弦函数的图像与性质可知当,即时,的最大值为2442x πππ+=1x =()f x 当,即时,的最小值为5444x πππ+=4x =()f x ∴的值域为()f x [2]。
清河中学2022-2023学年高一上学期12月第二次月考语文试卷一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:中国自古以来就被称为礼仪之邦,人情往来渗透于人们社会关系的方方面面,也常常被当作一种有形的或无形的资源进行呼唤。
人情一般都是在非等价交换的原则下进行的,并在这种非等价交换中反反复复,使得这种人情交换旷日持久地持续下去,村民之间依赖这种人情关系不断地形成自己的社会关系。
但市场经济不仅带来了开放和流动的社会环境。
使乡土村民社会关系的范围越来越大,同时,也使他们更深刻地意识到利益上的相互关系及其极端重要性。
虽然在日常的生产生活中,村民们的交往行为依旧按照人情的规则在互惠往来,但不可否认的是,现实交往活动中的经济利益交换成分却在逐渐增加。
费孝通认为,随着社会生活越来越发达,乡土社会关系之间的经济利益交往也会越来越频繁。
人和人之间单靠人情难以维持相互之间权利和义务的平衡,乡土社会关系也就会随之变得理性化、功利化,目的性增强,渐渐失去其本有的温情的一面。
(摘编自刘青《当代中国城市化进程中乡土社会关系的变迁》,《濮阳职业技术学院学报》2017年3月)材料二:(摘编来白罗芳菲《过个年预计花多少钱?人情支出成最大花费》,《民生周刊》2016年2月)材料三:乡土社会是一个典型的热人社会,因为封闭的经济环境决定了这个自给自足的社会是一个相对封闭的社会,以村落为生活单位的乡村社会,以乡情为纽带维系着它的正常运转。
乡村社会村落聚居的生存状态,使农民在这个相对狭小的环境中很易于彼此熟识,即使在血雨腥风的革命斗争中,乡土社会的乡情因素依然可以游刃有条地调和或者说超脱于这些纷争之中。
此外,以祠堂宗族为纽带的人际关系使这种关系迥异于现代社会的人际关系,一旦这种类似于乡情的社会关系受到冲击,农民们的社交关系也便面临者重大的变革,同时也意味着一旦失去有效的约束,乡村社会中人与人之间的关系即面临着信任缺失和秩序混乱的危险。
考试时间:120分钟满分:100分一、选择题(每小题2分,共20分)1. 下列词语中,字形、字音完全正确的一项是()A. 融会贯通蹉跎岁月B. 蹉跎岁月蹉跎岁月C. 融会贯通融会贯通D. 蹉跎岁月融会贯通2. 下列各句中,没有语病的一句是()A. 通过这次参观,使我对我国的航天事业有了更深的了解。
B. 为了提高学生的学习成绩,学校决定加强师资队伍建设。
C. 他的演讲虽然激昂,但缺乏事实依据,让人难以信服。
D. 他的画作风格独特,受到了很多艺术家的好评。
3. 下列各句中,表达得体的一项是()A. 你这篇文章写得真好,堪称佳作。
B. 你的发言太业余了,让人听起来很累。
C. 我觉得你的观点很有见地,值得我们学习。
D. 你的想法太天真了,还是不要发表意见为好。
4. 下列各句中,修辞手法使用正确的一项是()A. 那些树木像一把把绿色的伞,遮住了炎炎烈日。
B. 他的笑容如同春天的阳光,温暖了我们的心。
C. 这座城市犹如一颗璀璨的明珠,镶嵌在祖国的版图上。
D. 她的歌声如同一股清泉,流淌在我们的心田。
5. 下列各句中,标点符号使用正确的一项是()A. “今天,我们要去公园玩。
”他兴奋地说。
B. “这是什么?”我好奇地问,“那是图书馆。
”C. “我喜欢听音乐,你喜欢吗?”他问我。
D. “今天天气真好,我们去郊游吧!”我说。
6. 下列各句中,词语使用恰当的一项是()A. 他学习刻苦,成绩一直名列前茅。
B. 这个问题太复杂了,我一时无法解决。
C. 他的讲话引起了大家的共鸣,掌声经久不息。
D. 这篇文章的立意新颖,值得一读。
7. 下列各句中,句式变换正确的一项是()A. 原句:他不仅学习好,而且品德优秀。
变换后:他学习好,品德优秀。
B. 原句:我虽然年纪小,但做事认真负责。
变换后:年纪小,做事认真负责。
C. 原句:这个苹果又大又红。
变换后:这个苹果又大又圆。
D. 原句:他为了实现自己的梦想,付出了很多努力。
变换后:他实现自己的梦想,付出了很多努力。
高一年级上学期第二次月考数学试题卷时间:120分 总分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,.若,则( ){}1,2,4A ={}240x x x m B =-+={}1A B = B =A .B .C .D .{}1,3-{}1,0{}1,3{}1,52. 函数的定义域为( )()f x =A .(-1,2)B . C. D .[1,0)(0,2)- (1,0)(0,2]- (1,2]-3. 函数是奇函数,且其定义域为,则( )3()2f x ax bx a b =++-[34,]a a -()f a =A . B . C . D .43214.已知直线,则该直线的倾斜角为( )20x -=A .30° B .60°C .120°D .150°5. 已知两直线和 ,若且在轴上的截距1:80l mx y n ++=2:210l x my +-=12l l ⊥1l y 为-1,则的值分别为( ),m n A .2,7 B .0,8 C .-1,2 D .0,-86.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为 ( )A . 322πB .324πC . π24D .π)(424+7. 设为平面,为两条不同的直线,则下列叙述正确的是( )αβ,,a b A . B .//,//,//a b a b αα若则//,,a a b b αα⊥⊥若则C .D .//,,,//a b a bαβαβ⊂⊂若则,//,a a b b αα⊥⊥若则8.直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°9.若函数的两个零点分别在区间和上,则()()()2221f x m x mx m =-+++()1,0-()1,2的取值范围是( )m A. B. C. D.11,24⎛⎫- ⎪⎝⎭11,42⎛⎫- ⎪⎝⎭11,42⎛⎫ ⎪⎝⎭11,42⎡⎤⎢⎥⎣⎦10. 一个机器零件的三视图如图所示,其中侧视图是一个半圆与边长为的正方形,俯视2图是一个半圆内切于边长为的正方形,则该机器零件的体积为( )2A . B .34π+38π+C. D .π384+π388+11. 如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知△A ′ED 是△AED 绕DE 旋转过程中的一个图形,下列命题中错误的是( )A .恒有DE ⊥A ′FB .异面直线A ′E 与BD 不可能垂直C .恒有平面A ′GF ⊥平面BCEDD .动点A ′在平面ABC 上的射影在线段AF 上12. 设函数的定义域为D ,若函数满足条件:存在,使得在()f x ()f x [],a b D ⊆()f x 上的值域为,则称为“倍缩函数”.若函数为“倍[],a b ,22a b ⎡⎤⎢⎥⎣⎦()f x ()()2log 2x f x t =+缩函数”,则的取值范围是( )t A. B. C. D.10,4⎛⎫ ⎪⎝⎭1,4⎛⎫+∞ ⎪⎝⎭()0,110,2⎛⎤⎥⎝⎦二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13. 设,则的值为 .⎩⎨⎧≥-<=-2),1(log ,2,2)(231x x x e x f x ))2((f f 14. 用一个平行于正棱锥底面的平面截这个正棱锥,截得的正棱台上、下底面面积之比为1:9,截去的棱锥的高是2cm,则正棱台的高是 cm.15.如图,正方体中,交于,为线段上的一个动点,1111D C B A ABCD -AC BD O E 11D B 则下列结论中正确的有_______.①AC ⊥平面OBE②三棱锥E -ABC的体积为定值③B 1E ∥平面ABD ④B 1E ⊥BC 116. 已知函数若存在实数,满足32log ,03,()1108,3,33x x f x x x x ⎧<<⎪=⎨-+≥⎪⎩,,,a b c d ,其中,则的取值范围为 .()()()()f a f b f c f d ===0d c b a >>>>abcd 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分) 已知全集 ,,.UR =1242x A x⎧⎫=<<⎨⎬⎩⎭{}3log 2B x x =≤(1)求 ; A B (2)求.()U C A B 18. (本小题满分12分)(1)已知直线过点,且与两坐标轴的正半轴围成的三角形的面积是4,求直线的l (1,2)A l 方程.(2)求经过直线与的交点.且平行于直线1:2350l x y +-=2:71510l x y ++=的直线方程.230x y +-=19.(本小题满分12分)已知直线,.1:310l ax y ++=2:(2)0l x a y a +-+=(1)当l 1//l 2,求实数的值;a (2)直线l 2恒过定点M ,若M 到直线的距离为2,求实数的值.1l a20. (本小题满分12分) 如图,△中,,四边形是边长ABC AC BC AB ==ABED 为的正方形,平面⊥平面,若分别是的中点.a ABED ABC G F 、EC BD 、(1)求证:;//GF ABC 平面(2) BD EBC 求与平面所成角的大小21. (本小题满分12分) 如图,在四棱锥中,平面,底面ABCD P -⊥PD ABCD 是平行四边形,,为与ABCD BD AD PD AB BAD ====∠,,,3260 O AC 的交点,为棱上一点.BD E PB(1)证明:平面平面;⊥EAC PBD (2)若,求二面角的大小.EB PE 2=B AC E --22. (本小题满分12分) 对于函数与,记集合.()f x ()g x {}()()f g D x f x g x >=>(1)设,求集合;()2,()3f x x g x x ==+f g D >(2)设,若,求实数121()1,()(31,()03xx f x x f x a h x =-=+⋅+=12f h f h D D R >>⋃=的取值范围.a答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)C C B A B CD C C A B A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13. 2 14. 415. ①②③ 16.(21,24)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)解: , B {}12A x x =-<<{}09B x x =<≤·······················4分(1) ····································································6分{}02A B x x =<< (2) ,或 .·····10分{}19A B x x =-<≤ (){1U C A B x x =≤- 9}x >18. (本小题满分12分)(1)解析:解法一 设l :y -2=k (x -1)(k <0),令x =0,y =2-k .令y =0,x =1-,2k S =(2-k )=4,12(1-2k )即k 2+4k +4=0.∴k =-2,∴l :y -2=-2(x -1),即l :2x +y -4=0.···················6分解法二 设l :+=1(a >0,b >0),x a yb 则{12ab =4,1a+2b=1.)a 2-4a +4=0⇒a =2,∴b =4.直线l :+=1.x 2y4∴l :2x +y -4=0.(2)联立,解得.设平行于直线 x +2y ﹣3=0的直线方程为 x +2y +n=0.把代入上述方程可得:n=﹣.∴要求的直线方程为:9x +18y ﹣4=0.···········12分19.(本小题满分12分)(1)a=3,或a=-1(舍)··························4分(2)M(-2,-1)···································8分得a=4··················12分2=20. (本小题满分12分)(1)证明: 连接EA 交BD 于F ,∵F 是正方形ABED 对角线BD 的中点,∴F 是EA 的中点,∴FG ∥AC .又FG ⊄平面ABC ,AC ⊂平面ABC ,∴FG ∥平面ABC .··················6分(2)∵平面ABED ⊥平面ABC ,BE ⊥AB ,∴BE ⊥平面ABC .∴BE ⊥AC .又∵AC =BC =AB ,22∴BC ⊥AC ,又∵BE ∩BC =B ,∴AC ⊥平面EBC .由(1)知,FG ∥AC ,∴FG ⊥平面EBC ,∴∠FBG 就是线BD 与平面EBC 所成的角.又BF =BD =,FG =AC =,sin ∠FBG ==.122a 2122a 4FG BF 12∴∠FBG =30°.························12分21. (本小题满分12分)解:(1)∵平面,平面,∴.⊥PD ABCD ⊂AC ABCD PD AC ⊥∵,∴为正三角形,四边形是菱形,60,=∠=BAD BD AD ABD ∆ABCD ∴,又,∴平面,BD AC ⊥D BD PD = ⊥AC PBD 而平面,∴平面平面.·········································6分⊂AC EAC ⊥EAC PBD (2)如图,连接,又(1)可知,又,OE AC EO ⊥BD ⊥AC∴即为二面角的平面角,EOB ∠B AC E --过作,交于点,则,E PD EH ∥BD H BD EH ⊥又,31,33,3,2,2=====OH EH PD AB EB PE 在中,,∴,EHO RT ∆3tan ==∠OHEHEOH 60=∠EOH 即二面角的大小为.·································································12分B AC E --6022. (本小题满分12分)解:(1) 当得; ······················2分0≥x 3,32>∴+>x x x当 ················4分1320-<∴+>-<x x x x ,时,得··············5分()()∞+⋃-∞-=∴>,31,g f D(2) ······· 7分()⎭⎬⎫⎩⎨⎧>+⋅+=∞+=>>013)31(,121xxh f h f a x D D , ,R D D h f h f =⋃>>21 ∴(]1,2∞-⊇>h f D 即不等式在恒成立 (9)01331>+⋅+xxa (1≤x 分时,恒成立,∴1≤x ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛->x x a )31(91在时最大值为,··················11分⎥⎦⎤⎢⎣⎡+-=x x y 31()91( 1≤x 94-故 ·············12分94->a。
宾县第二中学2022-2023学年度上学期第二次月考高一数学试卷注意事项:1. 答题前填写好自己的姓名、班级、考号等信息;2. 请将答案规范填写在答题卡上。
一、单项选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 集合{}14A x x =-<≤,{}1,1,3B =-,则A B 等于( ) A. {}1,1,3- B. {}1,3 C. {}0,1,2,3,4D. (]1,4- 2. “02x <<”成立是“2x <”成立的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要3. 设全集U 是实数集R ,{}3M x x =≥,{}25N x x =≤≤都是U 的子集(如图所示),则阴影部分所表示的集合为( )A. {}23x x <<B. {}23x x ≤<C. {}23x x <≤D. {}25x x ≤≤ 4. 设2(2)7M a a =-+,(2)(3)N a a =--,则M 与N 的大小关系是( )A. M N >B. M N =C. M N <D. 无法确定5. 命题“1x ∀>,20x x ->”的否定为( )A. 1x ∀>,20x x -≤B. 1x ∃>,20x x -≤C. 1x ∀≤,20x x -≤D. 1x ∃≤,20x x -≤6. 无论x 取何值时,不等式2240x kx -+>恒成立,则k 的取值范围是( )A. (),2-∞-B. (),4-∞-C. ()4,4-D. ()2,2-7. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,语文组为了解我校学生阅读四大名著的阅读情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则在调查的100位同学中阅读过《西游记》的学生人数为( )A. 70B. 60C. 50D. 108. 已知实数x ,0y >,且211x y +=,若228x y m m +>-恒成立,则实数m 的取值范围为( ) A. ()9,1- B. ()1,9- C. []1,9- D. ()(),19,-∞-+∞二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的,没有错误选项的得2分.)9. 设计如图所示的四个电路图,p :“开关S 闭合”,q :“灯泡L 亮”,则p 是q 的充要条件的电路图是( )A. B.C. D.10. 已知a ,b ,c R ∈,下列命题为真命题的是( )A. 若0a b <<,则22a ab b <<B. 若a b >,则22ac bc ≥C. 若22ac bc >,则a b >D. 若1a b >>,则11b b a a +>+ 11. 下列说法中不正确的是( )A. 集合{}1,x x x N <∈为无限集B. 方程2(1)(2)0x x --=的解构成的集合的所有子集共4个C. (){}{},11x y x y y x y +==-=-D. {}{}2,4,y y n n Z x x k k Z =∈⊆=∈12. 下列判断错误的是( ) A. 1x x +的最小值为2 B. 若a b >,则33a b >C. 不等式230x x -≥的解集为[]0,3D. 如果0a b <<,那么2211a b < 三、填空题:(本题共4小题,每小题5分,共20分.)13. 已知集合{}22,2A m m m =++,3A ∈,则m 的值为_________.14. 若命题“0x R ∃∈,20020x x a --=”为假命题,则实数a 的取值范围是_________. 15. 关于x 的不等式2(1)0x a x a -++<的解集中恰有1个整数,则实数a 的取值范围是_________.16. 设集合{}32A x x =-≤≤,{}211B x k x k =-≤≤+且B A ⊆,则实数k 的取值范围_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知{}1,2,3,4,5,6,7U =,{}3,4,5A =,{}4,7B =.求:A B ,()U A C B ,()U C A B .18. 已知集合{}211A x m x m =-<<+,{}22B x x =-<<.(1)当2m =时,求A B ,A B ;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.19. 已知关于x 的不等式2260(0)kx x k k -+<≠.(1)若不等式的解集为{}32x x x <->-或,求k 的值.(2)关于x 的不等式2260kx x k -+<恒成立,求k 的取值范围.20. 已知命题p :12x ∀≤≤,20x a -≥,命题q :x R ∃∈,22220x ax a a +++=.(1)若命题p ⌝为真命题,求实数a 的取值范围;(2)若命题p 和q ⌝均为真命题,求实数a 的取值范围.21. 2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生活造成严重影响.在党和政府强有力的抗疫领导下,我国控制住疫情后,一方面防止境外疫情输入,另一方面逐步复工复产,减轻经济下降对企业和民众带来的损失.为降低疫情影响,某厂家拟在2020年举行某产品的促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(0m ≥)满足41k x m =-+(k 为常数),如果不搞促销活动,则该产品的年销售量只能是2万件.已知生产该产品的固定投入为8万元,每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(此处每件产品年平均成本按816x x+元来计算) (1)将2020年该产品的利润y 万元表示为年促销费用m 万元的函数;(2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?最大利润是多少?22. 已知二次函数2()22f x x ax =++.(1)若[]1,5x ∈时,不等式()3f x ax >恒成立,求实数a 的取值范围.(2)解关于x 的不等式2(1)()a x x f x ++>(其中a R ∈).高一数学参考答案1.B 【详解】解:{}14A x x =-<≤∣,{}1,1,3B =-,{}1,3A B ∴=.故选:B .2.A 【详解】解:“0<x<2”成立时,“2x <”一定成立,所以“0<x<2”成立是“2x <”成立的充分条件; “2x <”成立时,“0<x<2”不一定成立,所以“0<x<2”成立是“2x <”成立的非必要条件.所以“0<x <2”成立是“2x <”成立的充分不必要条件.故选:A3.B 【详解】题图中阴影部分表示集合(){}{}{}25323U N M x x x x x x ⋂=≤≤⋂<=≤<.故选:B4.A 【详解】解:因为()227M a a =-+,()()23N a a =--,所以()()222213247561024M N a a a a a a a ⎛⎫-=-+--+=++=++> ⎪⎝⎭,∴M N >,故选:A 5.B 【详解】命题“1x ∀>,20x x ->”的否定是:1x ∃>,20x x -≤,故选:B.6.D 【详解】解:因为无论x 取何值时,不等式2240x kx -+>恒成立,所以,24160k -<,解得22k -<<,所以,k 的取值范围是()2,2-故选:D7.A 【详解】因为阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,所以《西游记》与《红楼梦》两本书中只阅读了一本的学生共有906030-=位,因为阅读过《红楼梦》的学生共有80位,所以只阅读过《红楼梦》的学生共有806020-=位,所以只阅读过《西游记》的学生共有302010位,故阅读过《西游记》的学生人数为106070+=位,故选:A8.B 【详解】解:由题设,222(2)()55912y x y x x y x y x y +=+=+≥+++, 当且仅当3x y ==时等号成立,∴要使228x y m m +>-恒成立,只需289m m -<,∴289(9)(1)0m m m m --=-+<,∴19m -<<.故选:B.9.BD 【详解】由题知,A 中电路图,开关S 闭合,灯泡L 亮,而灯泡L 亮,开关S 不一定闭合,故A 中p 是q 的充分而不必要条件;B 中电路图,开关S 闭合,灯泡L 亮,且灯泡L 亮,则开关S 闭合,故B 中p 是q 的充要条件;C 中电路图,开关S 闭合,灯泡L 不一定亮,灯泡L 亮,则开关S 一定闭合,故C 中p 是q 的必要而不充分条件;D 中电路图,开关S 闭合,则灯泡L 亮,灯泡L 亮,则开关S 闭合,故D 中p 是q 的充要条件.故选:BD.10.BCD 【详解】对于选项A ,若0a b <<,则22a ab b >>,故A 错误;对于选项B ,若a b >,∵20c ,∴22ac bc ,故B 正确;对于选项C ,若22ac bc >,则20c >,故a b >,故C 正确;对于选项D ,若1a b >>,则(1)(1)ab a ab b a b b a +>+⇒+>+⇒11b b a a +>+,故D 正确. 故选:BCD.11.ACD 【详解】集合{}{}1,N 0x x x <∈=,不是无限集,故A 中说法不正确;方程2(1)(2)0x x --=的解构成的集合为{}1,2,其所有子集为∅,{}1,{}2,{}1,2,共4个,故B 中说法正确;集合(){},1x y x y +=的元素为直线1x y +=上的点,{}1R y x y -=-=,故(){}{},11x y x y y x y +=≠-=-,故C 中说法不正确; 因为{}{}2,Z ,8,6,4,2,0,2,4,6,8,y y n n =∈=⋅⋅⋅----⋅⋅⋅,{}{}4,Z ,8,4,0,4,8,x x k k =∈=⋅⋅⋅--⋅⋅⋅,所以{}{}2,Z 4,Z y y n n x x k k =∈⊇=∈,故D 中说法不正确.故选:ACD.12.AC 【详解】对于A ,0x <时,1x x+为负数,故A 错误, 对于B ,若a b >,则33a b >,故B 正确,对于C ,不等式230x x -≥的解集为][()03-∞⋃+∞,,,故C 错误, 对于D ,如果0a b <<,则0a b ->->,22a b >,那么2211a b <,故D 正确.故选:AC. 13.32-【详解】当23m +=,解得1m =,此时223m m +=,不满足集合的互异性,所以舍去;当223m m +=时,1m =(舍)或32m =-,当32m =-时,122m +=,满足集合的互异性故答案为:32-. 14.1a <-;【详解】命题“0x R ∃∈,20020x x a --=”为假命题,故220x x a -->恒成立.440a ∆=+<,故1a <-.故答案为:1a <-.15.[)(]1,02,3-⋃【详解】由()210x a x a -++<得()()10x x a --<,若1a =,则不等式无解;若1a >,则不等式的解为1x a <<,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为2x =,则23a <≤;若1a <,则不等式的解为1<<a x ,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为0x =,则10a -≤<.综上,满足条件的a 的取值范围是[)(]1,02,3-⋃.故答案为:[)(]1,02,3-⋃.16.11 2.k k ≤≤>-或解析 B A B B ⊆∴∅≠∅,=或.①B ∅=时,有2k -1>k +1,解得2k >.②B ≠∅时,有21121312k k k k -≤+⎧⎪-≥-⎨⎪+≤⎩解得11k ≤≤-.综上,11 2.k k ≤≤>-或17.【详解】,{3,A B ⋃=4,5,7},C {1,U A =2,6,7},{1,U C B =2,3,5,6}, (){}3,5U A B ⋂=,(){1,U A B ⋃=2,4,6,7}.18.(1)当2m =时,{}15A x x =<<,因为{}22B x x =-<<,所以{}25A B x x ⋃=-<<, {}12A B x x ⋂=<<;(2)因为x A ∈是x B ∈成立的充分不必要条件,所以集合A 是集合B 的真子集, 因为211m m -<+恒成立,所以集合A ≠∅,所以21212m m -≥-⎧⎨+≤⎩,解得11m -≤≤, 当1m =-时,()2,2A B ==-,不符合题意,故实数m 的取值范围(]1,1-19.(1)若不等式2260kx x k -+<的解集为{3xx <-∣或2}x >-,则13x =-和22x =-是方程2260kx x k -+=的两个实数根;由韦达定理可知:2(3)(2)k -+-=,解得25k =-. (2)关于x 的不等式2260kx x k -+<恒成立,则有0k <且2(2)460k k ∆=--⨯⨯<,解得:k <. 20.【详解】解:(1)根据题意,知当12x ≤≤时,214x ≤≤.2: 12,0p x x a ⌝∃≤≤-<,为真命题,1a ∴>.∴实数a 的取值范围是{}|1a a >.(2)由(1)知命题p 为真命题时,1a ≤.命题q 为真命题时,()224420a a a ∆=-+≥,解得0,a q ≤∴⌝为真命题时,0a >. 10a a ≤⎧∴⎨>⎩,解得01a <≤,即实数a 的取值范围为{}|01a a <≤. 21.(1)由题意知,当0m =时,2x =(万件),则24k =-,解得2k =,∴241x m =-+. 所以每件产品的销售价格为8161.5x x +⨯(元),∴2020年的利润816161.581636(0)1x y x x m m m x m +=⨯---=--≥+. (2)∵当0m ≥时,10m +>,∴16(1)81m m ++≥=+,当且仅当16(1)1m m =++即3m =时等号成立.∴83729y ≤-+=,即3m =万元时,max 29=y (万元).故该厂家2020年的促销费用投入3万元时,厂家的利润最大为29万元. 22.(1)不等式()3f x ax >即为:220x ax -+>,当[1x ∈,5]时,可变形为:222x a x x x+<=+,即min 2a x x ⎛⎫<+ ⎪⎝⎭,又222x x x x +⋅=当且仅当2x x =,即[1,5]x 时,等号成立,∴min 2x x ⎛⎫+=⎪⎝⎭, 即a <∴实数a 的取值范围是:a <(2)不等式2(1)()a x x f x ++>,即22(1)22a x x x ax ++>++,等价于2(12)20ax a x +-->,即(2)(1)0x ax -+>,①当0a =时,不等式整理为20x ->,解得:2x >;当0a ≠时,方程(2)(1)0x ax -+=的两根为:11x a =-,22x =, ②当0a >时,可得102a -<<,解不等式(2)(1)0x ax -+>得:1x a<-或2x >; ③当102a -<<时,因为12a ->,解不等式(2)(1)0x ax -+>得:12x a<<-; ④当12a =-时,因为12a-=,不等式(2)(1)0x ax -+>的解集为∅; ⑤当12a <-时,因为12a -<,解不等式(2)(1)0x ax -+>得:12x a-<<; 综上所述,不等式的解集为:①当0a =时,不等式解集为(2,)+∞;②当0a >时,不等式解集为()1,2,a ∞∞⎛⎫--⋃+ ⎪⎝⎭; ③当102a -<<时,不等式解集为1(2,)a-; ④当12a =-时,不等式解集为∅; ⑤当12a <-时,不等式解集为1(,2)a -.。
2022-2023学年上期高一年级月考2语文试卷(满分:150分考试时间:150分钟)一、现代文阅读(共29分)(一)现代文阅读I(本题共3小题,13分)阅读下面的文字,完成下列各题。
材料一:西洋的社会有些像我们在田里捆柴,几根稻草束成一把,几把束成一扎,几扎束成一捆,几捆束成一挑。
每一根柴在整个挑里都属于一定的捆、扎、把。
每一根柴也可以找到同把、同扎、同捆的柴,分扎得清楚不会乱的。
在社会,这些单位就是团体。
我说西洋社会组织像捆柴就是想指明:他们常常由若干人组成一个个的团体。
团体是有一定界限的,谁是团体里的人,谁是团体外的人,不能模糊,一定分得清楚。
在团体里的人是一伙,对于团体的关系是相同的,如果同一团体中有组别或等级的分别,那也是先规定的。
我用这譬喻是在想具体一些使我们看到社会生活中人和人的关系的一种格局。
我们不妨称之为“团体格局”。
家庭在西洋是一种界线分明的团体。
如果有一位朋友写信给你说他将要“带了他的家庭”一起来看你,他很知道要和他一同来的是哪几个人。
在中国,这句话是模糊得很。
在英美,家庭包括他和他的妻以及未成年的孩子。
如果他只和他太太一起来,就不会用“家庭”。
在我们中国“阖第光临”虽则常见,但是很少人能说得出这个“第”字究竟应当包括些什么人。
为什么我们这个最基本的社会单位的名词会这样不清不楚呢?在我看来,这却表示了我们的社会结构本身和西洋的格局不相同的,我们的格局不是一捆一捆扎清楚的柴,而是好像把一块石头丢在水面上所发生的一圈圈推出去的波纹。
我们社会中最重要的亲属关系就是根据生育和婚姻事实所发生的社会关系。
从生育和婚姻所结成的网络,可以一直推出去包括无穷的人,过去的、现在的和未来的人物。
这个网络像个蜘蛛的网,有一个中心,就是自己。
以“己”为中心,像石子一般投入水中,和别人所联系成的社会关系,像水的波纹一般,一圈圈推出去,愈推愈远,也愈推愈薄。
在这里我们遇到了中国社会结构的基本特性了。
我们儒家最考究的是人伦,“伦”是什么呢?我的解释就是从自己推出去的和自己发生社会关系的那一群人里所发生的一轮轮波纹的差序。
安徽省六安市高一上学期语文第二次月考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共3题;共3分)1. (1分)下列各句中划线的词语使用恰当的一句是()A . 国家机关工作人员因事久假不归的,应教育说服本人返回原单位工作:如经说服无效,本人仍坚持离职的原单位可按自动离职处理,不发退职金.B . 伴着落日的余晖,诗人缓步登上江南历史名楼一一太白楼,极止远眺,晚霞尽染,鸿雁南飞,江河日下,此情此景,让人心诗意油然而生。
C . 中央出台多项政策,与地方政府上下其手,使房价回落,我们应该清醒认识到调控取得的成果还是初步的,房地产价格合理回落的基础仍不稳固.D . 《新华字典》应该尽可能地保留精华,去其糟粕,“变” 绝对是主流方向.这一点不容置疑.因为一昧地抱残守缺只会让《新华字典》走入死路。
2. (1分) (2019高三上·浙江模拟) 下列各句中,没有语病的一项是()A . “嫦娥四号”翩然降落月背的消息震惊世界。
有媒体说中国的登月技术已领先美国,也有媒体说登月技术美国裱然是老大,美国宇航局对此不以为然。
B . 在江歌被害后的这一年里,这位失去独生女的母亲在国内和日本多次奔走,征集希望日本法庭可以通过判处凶手陈世峰死刑的决定,并获得了国内众多网民的同情和支持。
C . 面对新一轮购房潮,我国近期出台了“认房又认贷”的楼市调控政策,旨在以有效抑制投机投资需求为目的,稳定市场预期,确保房地产市场平稳健康发展。
D . 被采访的代表委员们认为,家长的焦虑心态客观上助推了课外辅导热,而人们收入水平的提高及对知识、技术的强烈需求则是校外培训行业快速发展的重要原因。
3. (1分)古人对话或交流中,常使用尊称或谦称,以表示礼貌或谦虚,下列句子加线的词与其它不同的一项是()A . 太史公牛马走司马迁再拜言B . 少卿足下C . 仆非敢如此也D . 虽在下愚,知其不可[来二、现代文阅读 (共3题;共9分)4. (3分) (2016高一上·湖北月考) 阅读下面的文字,完成问题。
伊川高中2009——2010学年高一上学期第二次月考物理试卷
一、选择题(每小题3分,共48分.在每小题给出的选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得3分,选不全的得2分,有选错或不答的得0分)
1.下列有关力的说法中正确的是()
A.力是物体对物体的作用,所以只有直接接触的物体间才有力的作用B.因为有一定距离的磁铁间有相互作用力,所以力可以离开物体而独立存在
C.力不能脱离物体而单独存在
D.运动物体在运动方向上一定受到力的作用
2.被运动员踢出后的足球沿水平面滚动,速度越来越小,不计空气阻力,此过程中对足球施力的物体是()
A.只有地面B.只有地球
C.地球和地面D.运动员、地球和地面
3.关于重心,下列说法中正确的是( )
A.重心就是物体上最重的点B.重心就是物体的几何中心
C.直铁丝变曲后,重心便不在中点,但一定还在铁丝上
D.重心是物体的各部分所受重力的合力的作用点
4.把一根直木棒放在水平桌面上,当它的中点被推出桌边时()A.直木棒一定翻倒B.直木棒不一定翻倒
C.在直木棒中点没有推出桌边时,就有可能翻倒
D.以上说法均不正确
5.下面的叙述中正确的是()
A.挂在电线下的电灯,受重力作用拉紧电线,使电线发生形变,对电灯产生向上的拉力
B.电灯挂在电线下,电灯和电线同时发生形变,电灯受到向上的拉力是由于电灯发生了形变
C.电灯挂在电线下,电灯对电线的拉力是由于电灯形变有向下恢复原状的趋势产生的
D.挂在电线下的电灯对电线的拉力就是电灯受到的重力
6.下列有关弹力和摩擦力的叙述中正确的是()
A.静止的物体所受静摩擦力一定为零
B.物体所受的弹力方向和静摩擦力方向一定垂直
C.静摩擦力的方向可能与物体运动方向相同,也可能与物体运动方向相反D.滑动摩擦力的方向一定与物体运动方向相反
7.汽车以大小为20m/s的速度做匀速直线运动,刹车时获得的加速度大小
为5m/s2,那么刹车后2s内与刹车后6s内汽车通过的位移之比为()A.1:1 B.1:3 C.4:3 D.3:4
8.在某高处竖直向上抛出一物体,5s内通过的路程为65m,若不计空气阻力,该物体上抛的速度不可能是g取10m/s2()
A.20m/s B.30m/s C.40m/s D.60m/s
9.一个已知力F=10N,把F分解为F1和F2两个分力,已知分力F1与F 夹角为300,则F2的大小()
A.一定小于10N B.可能等于10N
C.可能大于10N D.最小等于5N
10.如图1所示,一重为G的物体沿倾角为θ的粗糙斜面匀速下滑,F1、F2为重力G的两个分力,下列说法正确的是()
A.F1就是物体受到的摩擦力B.F2就是物体对斜面的压力
C.斜面对物体的作用力方向竖直向上
D.物体受G、弹力、摩擦力、F1、F2五个力的作用
11.如图2所示,b为一长木板,A端靠在光滑墙壁上,AB面上又放置一物体a,整个系统处于静止状态,则b物体所受力的个数为()A.3 B.4 C.5 D.6
12.将某均匀的长方体锯成如图3所示的A、B两块后,放在水平桌面上并对放在一起,现用水平力F推B物体,使A、B整体保持矩形沿F方向匀速运动,则()
A.物体A在水平方向上受两个力的作用,且合力为零
B.物体A在水平方向上受三两个力的作用,且合力为零
C.B对A的作用力方向与F方向相同
D.B对A的压力等于桌面对A的摩擦力
13.两个共点力的大小都是50N,如果要使这两个力的合力也是50N,这两个力的夹角应为()
A.600 B.450 C.900 D.1200
14.如图4所示,重为G的物体M在沿斜面向上的力F作用下,处于静止状态,则斜面作用于物块的静摩擦力的()
A .大小可能等于零
B .摩擦力一定沿斜面向下,大小等于F
C .方向可能沿斜面向下,大小等于Gsin θ—F
D .方向可能沿斜面向上,大小等于F —Gsin θ 15.如图5所示,一定质量的物块用两根轻绳悬在空中,其中绳OA 固定
不动,绳OB 在竖直平面内由水平方向向上转动,则在绳OB 由水平转至
竖直过程中,绳OB 的张力大小将( ) A .一直变大 B .一直变小 C .先变大后变小 D .先变小后变大
16.如图6所示,C 是水平地面,A 、B 是两长方体物块,F 是作用在物块
B 上沿水平方向的力,物块A 和B 以相同的速度运动。
由此可知,A 、B
间摩擦力F 1和B 、C 间摩擦力F 2的值为(
A .F 1=0,F 2=0
B .F
1=F ,F 2=0 C .F 1=0,F 2=F D .F 1≠0,F 2≠0
二、实验题(共3小题,16分) 17.(6分)在“探究小车速度随时间的变化规律”实验中,得到一条纸带如
下图所示,A .B .C .D .E .F .G 为相邻的7个计数点(每两个计数点
之间还有4个点,所用电源频率50Hz ),利用图中标明的数据(单位:cm )
可得小车的加速度为__________m/s 2,在打点计时器打出D 点时,小车的
瞬时速度为
__________m/s .
18.(6分)如图所示,一物体沿固定的粗糙斜
面向上滑动.在图中作出物体上滑过程中的受
力图,并注明每一个力的名称及符号(物体可看
作质点).
19.(4分)在验证平行四边形定则实验中,采取下列哪些方法和步骤可减
小实验误差( )
A .两个分力F 1、F 2间的夹角要尽可能大
B .两个分力F 1、F 2的大小要适当大些 图4
图6
C .拉橡皮条的细绳要稍长一些
D .实验前先把两个弹簧秤的钩子互相钩住,平放在桌子上,向相反方向
拉动,检查读数是否相同
三.计算题(本题共3小题,共36分。
解答各小题时,应写出必要的文
字说明、表达式和重要步骤,只写出最后答案的不得分。
有数值计算的题,
答案中必须明确数值和单位)
20.(9分)如图所示,物体A 重40N ,物体B
重20N ,A 与B ,B 与地的动摩擦因数相同,物
体B 用细绳系住,当水平力F= 32N 时,才能将A
匀速拉出,求接触面间的动摩擦因数.
21.(9分)如图所示,一个不计重力的小滑轮,用一
段轻绳OA 悬挂在天花板上的O 点另有一段轻绳跨
过该定滑轮一端连接一个重为20N 的物体,在轻绳
的另一端施加一水平拉力F ,使物体处于静止状态
时,求:
1)轻绳OA 对滑轮的拉力多大? 2)轻绳OA 与竖直方向的夹角a 多大?
22.(9分)如图所示,一质点沿AD 直线做匀加速直线运动,测得它在
AB 、BC 、CD 三段的时间均为t ,测得位移AC=L 1,BD=L 2,试求质点运
动的加速度?
23.(9分)如图所示,一个重G=100N 的粗细均匀
的圆柱体,放在600的V 形槽上,其角平分线沿竖
直方向,若圆柱体与两接触面的动摩擦因数µ=0.25,
则,沿圆柱体轴线方向的水平拉力F 为多少时,圆
柱体沿槽做匀速运动?
A B C D
伊川高中2009——2010学年高一上学期第二次月考
物理试卷答题卷
二、实验题
17.__________ m/s 2,__________m/s .
18. 19.__________
三、计算题
20.
21.
22.
A B C D 23.
答案
17.1.60m/s 2,4.56m/s
18.
每个力画正确且有符号给2分 19.BCD (全选对的给4分,选不全的2分) 20.对B 受力分析,B 处于平衡状态 水平方向:F NAB =G B 。
①
竖直方向:T=F fAB 。
②
又:F fAB =µF NAB 。
③
对A 受力分析,A 处于平衡状态
水平方向:F= F fBA + F f 地A 。
④
竖直方向:F N 地A = F NBA +G A 。
⑤
又:F f 地A =µF N 地A 。
⑥
由①②③④⑤⑥联立代人数据可得:µ=0.4 F fAB
T G B F NAB
F G A F N 地A F fBA
F N B A
F f 地A
①②③④⑤⑥受力分析图及结果每个1分。
21.滑轮受力如图所示,F=G ,F 与G 的合力与OA
绳的拉力F ’是一对平衡力,由几何关系知:045,3.282'===αN G F
受力分析图2分,结果每个2分,平衡关系3分。
22.物体作匀变速直线运动,在两个相邻相等时间间隔内的位移之差为一定值2at x =∆。
①
即:L 2-L 1=2at 2。
② 可得:2
122t L L a -=。
③ 每个关系3分
23.将圆柱体的重力分解为与斜槽垂直的两个分力F N1
和F N2,受力分析图如图所示。
圆柱体对两斜槽的压力
为F 1,F 2则:F 1= F N1,F 2= F N2。
①
由几何关系可得:F N1= F N2=Gsin300。
②
要使圆柱体沿槽匀速运动则圆柱体沿槽方向所受拉力
应等于圆柱体所受摩擦力,即F=F f 。
③
又:F f =2µF N 。
④
代入数据可得:F=25N 。
⑤
①②③⑤各1分④3分受力分析图2分。
G。