风力摆控制系统方案
- 格式:docx
- 大小:11.40 KB
- 文档页数:2
风力摆是什么
风力摆系统是一种利用风力作为动力对物体进行位置控制的摆动装置控制系统。
在我国虽然目前还没有系统的成品的销售与应用,但这种控制理论已经应用于方方面面。
目前的普遍问题是风力摆系统的自动控制水平不高。
风力摆系统由单片机控制模块、姿态采集模块、风力摆模块、显示模块、独立按键以及风力摆机械结构组成的。
本文将简单介绍一下风力摆的机械结构以及风机的选择及组合方式。
风机组合
1、使用两个直流风机:直接将两个直流风机固定在摆杆的下方,两个直流风机成十字交叉状如下图所示。
这种方式的优点在于负载轻、操作简单,可以直接由两个直流风机分别负责两个轴上的摆动,不过风力摆的状态微调和快速制动不易实现。
2、使用四个直流风机:用两个矩形塑料板组成十字形,分别将四个直流风机放置在四个点上如下图所示。
每个轴上由两个直流风机控制风力摆。
新能源风力发电智能控制系统的设计与优化随着社会经济的飞速发展,人们对清洁能源的需求越来越迫切。
作为一种环保、可再生的能源,风力发电在近年来得到了越来越广泛的应用。
然而,传统的风力发电系统存在诸多问题,如风场资源的不稳定性、功率输出的不可控性等,这些问题直接影响到风力发电系统的效率和稳定性。
针对这些问题,设计一套智能控制系统来优化风力发电系统的运行至关重要。
一、风力发电系统的原理风力发电系统利用风能驱动风力发电机转动发电,将机械能转化为电能。
风力发电机是核心部件,是通过风轮叶片的受力转动发电机转子以实现电能输出。
而智能控制系统则可以监测风场风速并实时调整叶片的角度、转速等参数,以最大程度地提高风力发电系统的风能利用率。
二、风力发电系统的挑战然而,由于风速的不稳定性和不可控性,传统风力发电系统存在发电效率低下、维护成本高等问题。
而传统的固定式风力发电机难以适应复杂多变的风场环境,因此如何设计一套智能控制系统,以提高风力发电系统的稳定性和效率成为亟待解决的问题。
三、智能控制系统的设计目标针对风力发电系统存在的问题,智能控制系统的设计目标主要包括:提高系统的发电效率、降低系统的维护成本、提高系统对复杂多变风场环境的适应能力。
通过优化设计智能控制系统,可以实现风力发电系统的智能化运行,从而更好地利用风能资源。
四、智能控制系统的关键技术为了实现智能化控制风力发电系统,需要运用现代控制理论与技术,如传感器技术、信号处理技术、信息传输技术等。
传感器技术可以实时采集风场环境变量信息,信号处理技术可以分析处理这些信息,从而实现智能控制系统对风力发电系统的监测与调控。
五、智能控制系统的应用领域智能控制系统在风力发电系统中的应用领域包括:对风场环境变量的实时监测、对风力发电机的转速、叶片角度等参数的实时调整、对发电效率的优化调控等。
通过智能控制系统的运用,可以提高风力发电系统的稳定性和效率,降低维护成本,实现风力发电系统的智能化运行。
风力发电偏航控制系统的研究0 引言风能是一种清洁能源,在人类实现可持续发展中有着重要作用,由于它的作用大,故此吸引的许多人的开发,风力发电更是受到广大的青睐。
其可靠优秀可靠优秀也被更多人认识。
本文主要是对风力偏航控制系统的组成和原理做一个简单的了解,偏航系统主要是由偏航控制机构和偏航驱动机构两大部分组成,控制机构包括风向传感器,偏航控制器,解缆传感器组成,而驱动机构是由偏航轴承,偏航驱动装置,偏航制动器组成。
本课题也是在了解了风力发电的一些基本原理的前提下面,进一步对偏航做一个更好的认识,了解简单的控制流程。
同样就风力在全世界的快速发展,因此带动了一大批产业的崛起,它对世界经济的上升带来了不可忽视的重大作用。
1 风力发电概况1.1国外风力发电的发电根据全国风能理事会发布的全球风电市场装机数据,2011年,全球新增风电装机达到237669MW。
这一数据表明全球累计装机实现了21%的年增长,新装数据达到6%。
到目前,全球75个过国家有商业运营的风电装机,其中22个国家的装机容量超过1000MW。
1996~2011年全球风电发展情况如图1-1和图1-2。
图1-1 1996~2011年全球风电每年新增装机容量图1-2 1996~2011年全球风电每年累计装机容量1.2国风力发电的发展风电行业在2011年仍然保持了较快的发展,根据不完全统计,截止到2011年12月末,中国风电累计装机容量达6580.21万千瓦(包括已经并网发电和等待并网发电),分布在31个省、直辖市、自治区和特别行政区。
其中,和在2011年填补了无风电的空白。
累计风电装机超过200万千瓦的省级地区有10个,其中风电装机容量以1853.63万千瓦位居第一,与分别位居第二和第三。
累计风电装机容量前10位省级地区的合计装机容量达到5671.45万千瓦,占全国累计风电装机容量的86.19% 如图1-3。
图1-3 2011年底中国升级地区累计风电装机容量前十位2 偏航系统2.1 偏航系统概述偏航系统是水平轴式风力发电机组不可缺少的组成之一。
基于单片机的风力摆系统设计风力摆是一种通过风机作为唯一动力驱动的装置。
为了更科学合理地运用风力摆,设计并制作了一套基于单摆物理模型的实物系统,为系统预设了定角度直线运动和圆周运动两种主要形式。
由此提出双向稳定结构的风力摆机械设计模型,由四风机构成稳定驱动装置,以stm15单片机为控制核心,MPU6050为姿态传感器,HMI串口屏实时显示,核心控制模块的定时器中断方式,以闭环控制减小系统误差,从而形成一个完整的控制系统。
标签:简谐运动;PID算法;轨迹控制;IAP 15W4K58S41 引言风力摆是一种通过风机作为唯一动力驱动系统,在规定时间内完成规定轨迹的控制系统,且在风力摆启动后不得以任何人为方式影响其运动。
风力摆控制系统作为一个控制装置,其形象十分直观,结构较为简单;而将其作为一个被控对象,它又显得相当复杂。
就本身而言,风力摆是一个稳定性随着时间与外部环境变化较为复杂的非线性系统,所以在对风力摆的控制中必须采取行之有效的方法,它才能稳定工作。
风力摆控制系统的稳定效果十分明显,对它的度量可以通过直接观测其响应速度、轨迹重合度以及线性误差来判断,一目了然。
2 系统总体设计风力摆控制系统本质为一套伺服随动控制系统,以四个对称布置的风机作为动力源,提供风力摆在四个方向的推力。
角度传感器实时采集风力摆的姿态。
MCU主控单元获取角度并与目标值比较,经运算后得出控制量,送给风机执行,从而完成预设的定角度直线摆动和圆周运动。
为调试方便,系统加入PID调节模块。
3 电路设计3.1主控单片机的选型系统选取STC公司出品的增强型51单片机工IAP 15W4K58S4作为主控芯片,可受益于ST C公司提供的STC一ISP上位机辅助软件,大大提高开发效率。
利用其自带的6路PWM发生器中的4路作为四个电机的PWM控制;串口2负责与MPU6050通信,实时采集角度信息;串口3负责与USART-HMI串口屏通信,刷新关键参数的显示;串口1负责与PC上位机通信,来在线调整PID参数。
风力发电原理(控制)一、风力发电的基本原理风力发电是指利用风能转换成电力的一种清洁能源,其基本原理是将风能转化为机械能,再由发电机将机械能转化为电能。
因此,风力发电系统主要包括风能转化系统和发电系统两大部分。
风能转化系统风能转化系统一般由风轮、变桨机构和转速限制器组成。
具体来说,风轮是通过风能驱动旋转,变桨机构可以改变风轮叶片的角度以便控制风轮的旋转速度和转向,而转速限制器则可以限制风轮的旋转速度,以防风轮过快损坏风力发电系统。
发电系统发电系统由发电机、变流器和电子控制系统组成。
发电机将机械能转化为电能并输出到电网中,变流器则将交流电转化为直流电,并控制电能输出的电压和频率。
电子控制系统则可以实现对风力发电系统的监控和维护。
二、风力发电的控制风力发电系统的控制方案主要分为以下几种:1. 恒功率控制恒功率控制是指在风速超过额定风速时,通过调节风轮的旋转速度来控制风力发电系统的输出功率,以便让发电机输出恒定的电功率。
这种控制方式可以保证风力发电系统的稳定运行,但是当风速超过一定限制时,风轮的旋转速度会超过允许范围,从而导致发电系统的停机或受损。
2. 变桨控制变桨控制是指通过改变风轮叶片的角度来控制风力发电系统的输出功率。
当风速超过额定风速时,风力发电系统会自动调节叶片角度,以减小叶片受到的风力,从而控制风力发电系统的输出功率。
这种控制方式可以确保风力发电系统的安全运行,但是其控制精度相对较低,且需要涉及到大量的机械运动部件,容易受到外部环境的影响。
3. 惯性控制惯性控制是指通过测量风轮旋转速度和转向来控制发电机的输出功率。
当风速超过额定风速时,惯性控制系统会立即闸掉风轮,以避免风力发电系统受到损坏。
这种控制方式可以使风力发电系统的响应速度更快,但是需要消耗大量的电能,不太适合长期运行。
三、风力发电系统的优点相比于传统的化石能源和核能发电技术,风力发电有以下几个优点:1.清洁能源。
风力发电不会产生任何污染物,对环境更加友好。
风力发电机组的控制系统风力发电作为一种清洁、可再生的能源,越来越得到人们的重视和使用。
而风力发电最核心的部分就是风力发电机组控制系统。
本文将深入探讨风力发电机组控制系统的相关知识。
一、风力发电机组的基本组成部分风力发电机组通常由3个主要部分组成:风力涡轮、变速器和发电机。
其中变速器是为了将风力涡轮的旋转速度转变成适合发电机的速度,同时保证风力涡轮在各种风速下都能正常转动。
而发电机则是将机械能转变为电能。
二、风力发电机组的控制系统的分类根据控制对象的不同,风力发电机组控制系统可以分为风力涡轮控制系统和整机控制系统。
1. 风力涡轮控制系统风力涡轮控制系统主要由风速测量仪、方向传感器、转矩信号传感器、角度传感器、变桨控制器等部分组成。
其主要作用是对风速和转矩进行检测和获取,然后根据这些数据控制机组桨叶的角度,调节风力涡轮的输出功率,以适应不同的风速和负载要求。
当遭遇大风或预期外部异常情况时,风力涡轮控制系统还可以自动停机。
2. 整机控制系统整机控制系统主要由仪表、控制器、通信模块、电动机传动机构、机械部分等部分组成。
整机控制系统起到了协调、控制各部分工作的作用,可以实现以最佳的效率输出电能。
其主要作用是监控发电机组的运转状态,通过检测各项参数实时调整变速器的转速,并及时进行告警和自动停机。
三、风力发电机组控制系统的关键技术1. 风力涡轮桨叶轴系统的控制风力涡轮桨叶轴系统的控制是风力发电机组控制系统的核心部分之一,也是解决风机输出功率波动和抖动问题的重要技术。
目前常见的调节方式包括机械调节和电动调节两种。
机械调节方式主要采用伺服驱动的伸缩臂与桨叶之间的连杆机构实现,而电动调节则利用变速器的电动油门、电子液压伺服系统或液压拉杆控制桨毂角度。
其中,电动调节方式更加智能化、精准化。
2. 整机控制系统的优化算法整机控制系统的优化算法是风力发电机组控制系统技术的另一个重要方向。
通过对风能、转速、功率、角度等数据进行分析,整机控制系统可通过智能算法,实现最大效率的输出电能。
一种风力摆系统的设计作者:唐晨光来源:《无线互联科技》2016年第03期摘要:文章介绍了风力摆控制系统的设计与制作。
系统以STM32为主控芯片,通过角度传感器MPU6050将三维数据传给单片机,单片机输出相应的PWM方波,通过电机驱动模块BTN7961控制轴流风机的风力大小,从而实现对风力摆控制系统的控制。
根据风力摆的数学模型分析,确定了万向节和摆杆之间的PID控制算法,并在实验中优化控制参数。
经反复试验,证明该系统实现了设计的要求。
关键词:STM32F103RCT6;角度传感器;电机驱动模块BTN7961;轴流风机1 总体设计方案1.1 系统总体设计本系统硬件包括主控芯片STM32、角度传感器MPU6050、电机驱动模块BTN7961、摆杆、万向节及支架。
该系统采用STM32开发板作为主控模块,STM32单片机通过读取角度传感器MPU8060的三维角度数据从而判断摆杆的偏摆方向和角度,通过PID控制算法计算后,输出相应的PWM控制信号给电机驱动模块,控制轴流风机风速,从而使摆杆达到相应的运动状态和位置。
1.2 主控芯片的选择方案1:采用入门级51或者AVR、PIC等流行已久的8位MCU作主控。
价格低廉,资料众多,但功能有限,计算能力有限。
方案2:采用STM32系列的STM32F103RCT6。
风力摆控制系统要求处理器具有足够的内存、闪存和快速的信号采集能力,因此,本文选用手头现有的集成仿真器,方便软件仿真调试,板上为STM32F103RCT6单片机,该单片机超低功耗,运算速度快,性价比高。
1.3 电机驱动器的选择本设计采用BTN796IB集成专用驱动模块。
BTS7960是专门针对电机驱动的,具有大电流输出的半桥式驱动芯片,它内部自带一个P型的高边MOSFET,同时自带N型的低边MOSFET,外加一个独立驱动的集成芯片。
P型的MOSFET因为自带开关而省略了电荷泵电路,故大幅度减小了EMI。
内部自带的驱动电路具有电流诊断、逻辑电平输入、死区产生电路、斜率调整电路,同时具备过温度、过电压、欠电压、过电流和故障短路保护的功能。
2015年全国大学生电子设计竞赛风力摆控制系统(B题)参赛队号:20152015年8月15日风力摆控制系统(B题)【本科组】摘要针对题目各项要求,采用软硬件结合方法设计风力摆控制系统。
以STM32单片机为主控制芯片、MPU6050传感器检测摆杆姿态角、利用PID算法调节电机驱动芯片输出合适的PWM波形驱动风机,通过OLED显示屏显示相关参数,按键输入数据等;机械结构满足设计要求,风力摆能够实现画直线、任意角度悬停、画圆等动作,在受外界干扰后能够自动恢复预定姿态。
具有良好的人机交互界面,各参数可动态调整,基本实现风力摆系统的自动控制。
关键词:风力摆、单片机、姿态角、PID算法目录一、系统方案 (1)1、系统控制方案的论证与选择 (1)2、控制芯片的论证与选择 (1)3、电源方案的论证与选择 (2)4、控制算法的选择 (2)二、系统理论分析与计算 (3)1、PID算法的分析 (3)2、风力摆的角度、加速度计算 (4)3、电机转速与风力摆控制分析 (4)三、电路与程序设计 (4)1、电路的设计 (4)(1)系统总体框图 (4)(2)电机驱动电路图 (4)(3)电源 (5)2、程序的设计 (5)(1)程序功能描述与设计思路 (5)(2)程序流程图 (6)四、测试方案与测试结果 (6)1、测试方案 (6)(1)硬件测试 (6)(2)硬件软件联和调试 (6)2、测试条件与仪器 (7)3、测试结果及分析 (7)(1)画直固定直线测试 (7)(2) 画不同长度直线测试,如表2所示。
(7)(3)画圆测试 (7)(4)测试分析与结论 (7)五、结论与心得 (8)六、参考文献 (8)附录1:电路原理图 (9)附录2:源程序 (10)一、系统方案本系统主要有STM32F103最小系统、电机驱动模块、陀螺仪加速度计传感器MPU6050、轴流风机、显示屏、机械结构、电源模块构成。
通过传感器实时的检测角度,通过PID算法根据角度是单片机输出合适的PWM波形,驱动电机驱动芯片带动轴流风机实现轴流风机转速的变化;轴流风机的注定在摆动轴的底部,有多个风机实现、风力摆的画直线、任意角度控制、围绕中心轴画圆等,在OLED显示屏屏上实现数据参数的实时显示,参数的实时调整。
风力发电机的风向控制系统说明书一、引言风力发电机作为一种清洁、可再生的能源发电设备,受到了越来越多的关注和应用。
风向控制系统是风力发电机中至关重要的一个部分,它能够将风能转化为电能的效率最大化。
本说明书旨在提供风向控制系统的详细说明和操作指南,确保用户能够正确安装、调试和操作系统。
二、系统组成风向控制系统由以下几个主要组成部分构成:1. 风向传感器:通过感知风的方向,将信号传递给控制系统;2. 控制器:接收风向传感器传来的信号,根据设定参数进行计算和控制;3. 驱动系统:根据控制器的指令控制风力发电机的倾斜角度,使其朝向风的方向;4. 电力输出系统:将通过风力发电机转化的机械能转化为电能并输出。
三、系统安装与调试1. 安装:a. 风向传感器:应安装在风力发电机的最高点,确保能够准确感知风的方向;b. 控制器:根据用户需求,选择合适的位置进行安装,建议防止暴雨和阳光直射;c. 驱动系统:根据风力发电机的设计结构,选择合适的方式安装;d. 电力输出系统:根据风力发电机的设计要求,连接输出设备。
2. 调试:a. 风向传感器:通过检测风向传感器输出的信号,确认其准确性;b. 控制器:根据用户需求,进行参数设置和校准,确保控制器的正常运行;c. 驱动系统:根据控制器的指令,调整风力发电机的倾斜角度,观察是否与风向传感器的信号一致;d. 电力输出系统:确认电力输出的稳定性和输出功率符合预期。
四、系统操作与维护1. 操作:a. 启动系统:确保风力发电机与电力输出系统连接正常后,按照操作指南启动系统;b. 监控系统:定期监测风力发电机的运行状态和电力输出情况,及时处理异常情况。
2. 维护:a. 定期检查风向传感器和控制器的连接是否牢固,如有松动及时紧固;b. 清洁风向传感器和控制器,确保其表面干净,避免灰尘和水分影响正常工作;c. 定期检查驱动系统的润滑情况,确保其部件间的摩擦减小,延长使用寿命;d. 维护电力输出系统的电缆、绝缘体等相关设备,确保其安全可靠。
课程设计说明书风力发电机组控制系统设计-最大功率点跟踪控制专业新能源科学与工程学生姓名喻绸绢班级能源121学号1210604122指导教师薛迎成完成日期2015年12月14日目录1。
控制功能设计要求 01。
1任务 02.设计 (2)2.1 介绍对象(风力发电系统的最大功率点跟踪控制技术研究)22.2控制系统方案 (2)2。
2.1风力机最大功率点跟踪原理 (2)2。
2.2风力机发电系统 (5)2.2.3风速变化时的系统跟踪过程 (10)3。
硬件设计 (12)4.软件设计 (15)5。
仿真或调试 (16)参考文献 (18)1。
控制功能设计要求1。
1任务能源与环境是当今人类生存和发展所要解决的紧迫问题而传统能源已被过度消耗,因此,可再生能源的开发利用越来越受到重视和关注,其中风能具有分布广、储量大、利用方便、无污染等优点是最具大规模开发利用前景的新能源之一.目前,变速恒频风力发电系统已经广泛用于实际风机中,在低于额定风速的情况下根据风速变化的情况调节风机转速,使其运行于最优功率点,从而捕获最大风能;在高于额定风速时,通过对桨距角的调节,使风机以额定功率输出。
常用最大功率捕获方法主要有功率反馈法、模糊控制法、混合控制法等。
为了充分利用风能,提高风电机组的发电总量,本文分析风机特性及最大功率点跟踪(maximum pow er point tracking MPPT)工作原理.众多的MPPT实现方法各有千秋,对于不同的应用场所各有所长,对于多种方案,需要进行大量细致的实验工作和数据分析.风能是一种具有随机性、不稳定性特征的能源,风能的获取不仅与风力发电机的机械特性有关,还与其采用的控制方法有关。
在某一风机转速情况下,风速越大时风力机的输出功率越大,而对某一风速而言,总有一最大功率点存在.只有当风力发电机工作在最佳叶尖速比时,才能输出最大功率.好的控制方法可使风轮的转速迅速跟踪风速变化,使风力发电机始终保持在最佳叶尖速比上运行,从而最大限度地获得风能.要保证最大限度地将捕获到的风能转化为电能,目前一般采用最大功率点追踪控制(MPPT)控制策略.最大功率点跟踪(MPPT)是在可变风速条件下提高风力机能量转换效率的有效方法. 变速风电系统目前一般采用最大功率点追踪(Maximum Power Point Tracking,MPPT)的控制策略.2。
风力发电—发电机控制系统风力发电机由多个部分组成,而控制系统贯穿到每个部分,相当于风电系统的神经。
因此控制系统的好坏直接关系到风力发电机的工作状态、发电量的多少以及设备的安全。
目前风力发电亟待研究解决的的两个问题:发电效率和发电质量都和风电控制系统密切相关。
对此国内外学者进行了大量的研究,取得了一定进展,随着现代控制技术和电力电子技术的发展,为风电控制系统的研究提供了技术基础。
控制系统的组成风力发电控制系统的基本目标分为三个层次:这就是保证风力发电机组安全可靠运行,获取最大能量,提供良好的电力质量。
控制系统组成主要包括各种传感器、变距系统、运行主控制器、功率输出单元、无功补偿单元、并网控制单元、安全保护单元、通讯接口电路、监控单元。
具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、自动最大功率点跟踪控制、功率因数控制、偏航控制、自动解缆、并网和解列控制、停机制动控制、安全保护系统、就地监控、远程监控。
当然对于不同类型的风力发电机控制单元会不相同。
控制系统结构示意图如下:针对上述结构,目前绝大多数风力发电机组的控制系统都采用集散型或称分布式控制系统(DCS)工业控制计算机。
采用分布式控制最大优点是许多控制功能模块可以直接布置在控制对象的位置。
就地进行采集、控制、处理。
避免了各类传感器、信号线与主控制器之间的连接。
同时DCS现场适应性强,便于控制程序现场调试及在机组运行时可随时修改控制参数。
并与其他功能模块保持通信,发出各种控制指令。
目前计算机技术突飞猛进,更多新的技术被应用到了DCS之中。
PLC是一种针对顺序逻辑控制发展起来的电子设备,目前功能上有较大提高。
很多厂家也开始采用PLC构成控制系统。
现场总线技术(FCS)在进入九十年代中期以后发展也十分迅猛,以至于有些人已做出预测:基于现场总线的FCS将取代DCS成为控制系统的主角。
风力发电机控制系统(二)控制系统技术风力发电系统中的控制技术和伺服传动技术是其中的关键技术,这是因为自然风速的大小和方向是随机变化的,风力发电机组的并网和退出电网、输入功率的限制、风轮的主动对风以及对运行过程中故障的检测和保护必须能够自动控制。
风力发电机组的控制系统设计与实现1. 引言风力发电作为一种清洁、可再生的能源形式,越来越受到人们的关注。
风力发电机组是将风能转化为电能的重要设备。
为了能够高效、稳定地转化风能,风力发电机组需要一个可靠的控制系统来确保其正常运行。
本文将详细介绍风力发电机组的控制系统的设计与实现。
2. 控制系统的功能需求风力发电机组的控制系统具有以下功能需求:- 风向监测与控制:通过传感器感知风向,并根据风向的变化调整发电机组的朝向,以最大程度地捕捉风能。
- 自动生成桨叶角度控制:根据风速的变化,自动调整桨叶的角度,以使得风力发电机组在不同风速下都能够高效地运转。
- 防风控制:在强风或风暴天气下,及时调整桨叶角度,限制风力发电机组的风速以确保安全运行。
- 发电量监测与控制:实时监测风力发电机组的发电量,并根据需求调整转速和负荷以最大化发电效率。
- 故障检测与保护:监测风力发电机组的工作状态,及时发现并保护机组免受损坏。
3. 控制系统的硬件设计与实现控制系统的硬件设计与实现包括以下几个方面:- 中央处理器:选择高性能的中央处理器,能够实时处理传感器数据和监测信号,并进行控制算法的计算与决策。
- 传感器与执行器:选择合适的风速传感器、风向传感器以及桨叶角度调整执行器,确保传感器的准确度和执行器的可靠性。
- 电力电子设备:包括变频器、整流器等设备,用于将风力发电机组的产生的交流电转换为直流电,并提供给电网或储能设备。
- 通信模块:用于与监测系统或远程控制中心进行通信,实现远程监测和控制。
4. 控制系统的软件设计与实现控制系统的软件设计与实现包括以下几个方面:- 数据采集与处理:通过传感器获取风速、风向等数据,并进行实时处理与滤波,确保数据的准确性和稳定性。
- 控制算法设计:根据风能转化的特点,设计合适的控制算法,如PID控制算法、模糊控制算法等,用于调整发电机组的朝向和转速。
- 报警与保护机制:设置合理的报警和保护机制,如在强风天气下及时发出警报并调整桨叶的角度,防止机组受损。
本栏目责任编辑:梁书计算机工程应用技术一种高精度风力摆控制系统胡雄风(武昌工学院,湖北武汉430065)摘要:风力摆控制系统主要由单片机STM32F 系统控制模块、电机驱动模块、风机姿态采集模块MPU6050、小型轴流风机摆动模块、电源模块、人机交互系统组成。
本系统实现了风力摆在仅受直流风机动力在特定时间内完成快速起摆、画线、恢复静止,并能准确画圆,且受风力影响后能够快速恢复画圆状态,具有很好的线性特征。
关键词:PID 算法;STM32单片机;L298N 驱动;MPU6050;三维角度传感器中图分类号:TP391文献标识码:A文章编号:1009-3044(2017)05-0190-02A Wind Pendulum Control System with High Precision HU Xiong-feng(Wuchang Institute of Technology,Wuhan 430065,China)Abstract :This topic is to design control system of wind pendulum,mainly by the STM32F microcontroller ,system control mod-ule,motor drive module,acquisition module of fan attitude data ,small axial flow fan oscillating module,power supply module,human-computer interaction system.This system realizes drawing a line,resting again within a specified time by only DC fan power ,and can accurately draw a circle,and fast recovery of the circle after the influence of the wind ,which has a good linear structure.Key words:PID algorithm;STM32microcontroller;L298N driver;MPU6050;three-dimensional angle sensor现代社会中依靠风力驱动的装置已经越来越普遍,在新能源行业有这广泛的应用,而最常用的是对风力进行自行控制。
风力发电机组运行安全与控制方案分析风力发电机组是利用风能转换为电能的设备,具有清洁、可再生的特点,在能源领域具有重要的意义。
风力发电机组的运行安全与控制方案是风电运营中必须重视的问题,本文将针对这一问题进行分析。
风力发电机组的运行安全是保障风电运营的首要条件。
在风力发电机组运行中,安全问题需要从多个方面考虑。
1. 结构安全性:风力发电机组的机械结构承受着风能转换和机械工作的巨大力量,因此需要在设计阶段进行合理的结构设计和力学分析,确保组件的强度和刚度满足运行要求。
定期进行结构检测和维护,及时发现和排除隐患,可以保证风力发电机组的结构安全性。
2. 电气安全性:风力发电机组的电气系统是将风能转化为电能的关键环节,需要采取必要的措施保障电气安全。
使用符合国家标准的电缆、绝缘子等电器设备,严格控制电器设备的放置和接线方式,防止发生电弧、短路等安全事故。
3. 运行安全性:风力发电机组的运行过程中需要保障操作人员的安全。
为了降低操作人员的风险,可以通过远程监控系统对风力发电机组进行实时监测和控制,减少人工介入的机会。
制定详细的操作规程和安全操作指南,提高操作人员的安全意识和技能,也是确保运行安全的重要手段。
风力发电机组的控制方案也对运行安全起到关键作用。
控制方案需要确保风力发电机组在各种工况下都能稳定运行,并能够自动适应外部环境的变化。
1. 风速控制:控制风力发电机组的风速是保证其稳定运行的重要手段。
在设计控制方案时,需要考虑风速的实时监测和预测,调整转子叶片的角度和转速,以使风力发电机组在不同的风速下都能够有效转换风能。
2. 电网功率控制:风力发电机组需要将转换后的电能注入电网中,因此控制方案还需要根据电网的负荷需求,调整发电机组的输出功率。
这需要精确测量电网的电压和频率,对发电机组的发电功率进行调整和控制。
3. 故障保护:风力发电机组在运行过程中可能会遇到各种故障,如电气故障、机械故障等。
控制方案需要包含故障保护策略,及时发现和处理故障,防止故障扩大,确保风力发电机组的安全运行。
基于PLC的风力发电控制系统设计基于PLC(可编程逻辑控制器)的风力发电控制系统是一种能够自动控制风力发电机组运行的系统。
PLC作为控制器,通过输入和输出模块与其他设备进行通信,根据预设的逻辑程序对风力发电机进行控制,实现对发电机的监测、控制和保护。
下面将针对该系统进行详细设计。
首先,整个风力发电控制系统的架构可以分为四个主要的功能模块:风速检测模块、温度检测模块、发电机控制模块和报警保护模块。
这些模块通过PLC进行数据采集、处理和输出。
1.风速检测模块:风力发电的效率受到环境因素的影响,风速是其中最主要的因素之一、风速检测模块通过风速传感器实时测量风速,并将数据传输给PLC进行处理。
PLC可以根据预设的控制策略调整风力发电机组的转速,以使风力发电机组能够在不同的风速下运行。
2.温度检测模块:风力发电机组在运行过程中会产生一定的热量,温度检测模块通过温度传感器实时监测发电机组的温度情况,并将数据传输给PLC进行处理。
PLC可以根据温度数据进行控制,以保证发电机组的正常运行和防止过热。
3.发电机控制模块:发电机的控制是风力发电控制系统的核心,也是最复杂的模块之一、在这个模块中,PLC通过输出控制信号来调整发电机的功率输出和运行状态。
根据预设的控制逻辑,PLC可以根据风速、温度和其他相关参数,实时调整发电机的控制参数,确保发电机始终在最佳工作状态下工作。
4.报警保护模块:在风力发电过程中,可能会发生多种异常情况,如风速过大、温度过高等,这些异常情况可能对发电机组造成损坏。
因此,系统需要具备报警和保护功能。
报警保护模块通过输入模块监测各种传感器的数据,当一些参数超出设定值范围时,PLC会触发相应的报警信号并采取相应的保护措施,如停机、降低功率输出等,以保证发电机组的安全运行。
设计风力发电控制系统需要注意以下几点:1.系统的可靠性和稳定性是设计的关键,因此要选择具有高稳定性和可靠性的PLC设备,并确保各个模块之间的通信准确可靠。
风力摆控制系统方案
1. 方案背景和目标
随着可持续能源的需求日益增加,风力发电作为一种清洁、可再生的能源形式受到了广泛关注。
然而,由于风能的不稳定性和不可控性,风力发电系统的稳定性和可靠性成为限制其发展的一个关键因素。
为了解决这个问题,风力发电系统必须配备一个可靠的风力摆控制系统。
本文将介绍一种风力摆控制系统的方案,以帮助优化风力发电系统的性能。
2. 系统原理和组成部分
风力摆控制系统的主要原理是通过控制摆角,调节风轮的旋转速率,以实现稳定的输出功率。
该系统由以下几个主要组成部分构成:
2.1. 风轮
风轮是风力发电系统的核心部件,它由多个叶片组成。
当风吹过叶片时,风轮开始旋转,并转化风能为机械能。
2.2. 摆角传感器
摆角传感器用于监测风轮的偏移角度,并将这些数据反馈给控制器。
基于传感器的反馈,控制器可以调整风轮的旋转速度,从而在风能不稳定的情况下维持系统的稳定性。
2.3. 控制器
控制器是风力摆控制系统的大脑,它接收来自摆角传感器的数据,并根据事先设定的控制算法进行计算。
通过对风轮的速度和角度进行调节,控制器确保系统能够自动适应不同风速和风向的变化。
2.4. 储能装置
储能装置用于存储风能,以便在风力不足时提供稳定的电能输出。
常见的储能装置包括电池组、超级电容器等。
2.5. 电力输出
风力摆控制系统最终的目标是通过电力输出将风能转化为可用的电能。
电力输出模块将经过控制器调节过的风轮旋转速度转化为电能,并将其连接到电网或其他电力设备。
3. 工作流程和控制算法
风力摆控制系统的工作流程如下:
1.摆角传感器检测风轮的摆角,并将数据发送给控制器。
2.控制器根据传感器数据和预设的控制算法进行计算。
3.控制器通过调节风轮的旋转速度,使风轮保持在适当的角度。
4.如果风速增加,控制器将增加风轮的旋转速度以提高系统的输出功率;
如果风速减小,控制器将降低风轮的旋转速度以避免过载。
5.当风力不足时,储能装置将提供额外的电能,以维持系统的稳定性。
6.通过电力输出模块,转化后的电能将被连接到电网或其他电力设备上,
以供使用。
4. 系统优势和应用前景
风力摆控制系统具有以下几个优势:
•提高风力发电系统的稳定性和可靠性,减少系统的停机时间和故障率。
•提高系统的能量转化效率,最大限度地利用风能资源。
•可适应不同的风速和风向变化,实现自动化调节和优化。
•减少对传统能源的依赖,推动可持续能源的发展。
由于其优越的性能和广泛的应用前景,风力摆控制系统在风力发电行业得到了
广泛应用,并成为风力发电系统的重要组成部分。
5. 总结
本文介绍了一种风力摆控制系统的方案,该系统通过控制风轮的摆角和旋转速度,实现了风力发电系统的稳定性和可靠性。
该系统由风轮、摆角传感器、控制器、储能装置和电力输出模块等组成。
控制器基于传感器的反馈数据和预设的控制算法进行计算和调节,使系统能够适应不同风速和风向的变化。
风力摆控制系统具有提高稳定性、提高能量转化效率和推动可持续能源发展等优势,因此在风力发电行业有着广泛的应用前景。