2019-2020学年广东省联考联盟高二上学期质量检测数学试题及答案
- 格式:doc
- 大小:1.09 MB
- 文档页数:19
2022-2023学年广东省珠海市高二上册期末数学质量检测试题一、单选题1.等差数列{}n a 的前n 项和为n S ,若23a =,525S =,则7a =()A .16B .15C .14D .13【正确答案】D【分析】先求得等差数列{}n a 的公差,从而求得7a .【详解】15353325552225,5a S a aa a +=⨯=⨯===,设等差数列{}n a 的公差为d ,则322d a a =-=,所以72535213a a d =+=+⨯=.故选:D2.已知空间向量()()1,2,,,2,3n a m a == ,且n m ⊥,则n m -= ()A .B C .20D .【正确答案】D【分析】根据向量垂直列方程,求得a ,进而求得n m -.【详解】由于n m ⊥,所以43440,1n m a a a a ⋅=++=+==- ,所以()()()1,2,11,2,32,0,4n m -=---=-== 故选:D3.古代《九章算术》记载:“今有五人分五钱,令上二人所得与下三人等,问各得几何”其意思为:“今有5人分5钱,各人所得钱数依次成等差数列,其中前2人所得之和与后3人所得之和相等,问各得多少钱”.由此可知第一人分得的钱数是()A .43B .1C .23D .13【正确答案】A【分析】设第()15,N n n n *≤≤∈分到n a 钱,由题意可得出关于1a 、d 的方程组,解出1a 的值即可.【详解】设第()15,N n n n *≤≤∈分到n a 钱,设数列{}()15,N n a n n *≤≤∈的公差为d ,由题意可得1234512345++++=5+=++a a a a a a a a a a ⎧⎨⎩,所以,121315+=2+=2=+2=1a a a d a a d ⎧⎪⎨⎪⎩,解得143a =.故选:A.4.已知圆1C :22(5)(3)9x y -+-=,圆2C :224290x y x y +-+-=,则两圆的位置关系为()A .外离B .外切C .相交D .内切【正确答案】C【分析】求出两圆的圆心和半径,根据圆心距与半径和与差的关系,判断圆与圆的位置关系.【详解】圆1C :22(5)(3)9x y -+-=的圆心为1(5,3)C ,半径13r =,圆2C :224290x y x y +-+-=,即22(2)(1)14x y -++=,圆心1(2,1)C -,半径2r =,两圆的圆心距125C C =,353-<<+,即211221r r C C r r -<<+,所以圆1C 与圆2C 相交.故选:C5.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A .12B .24C .30D .32【正确答案】D【分析】根据已知条件求得q 的值,再由()5678123a a a q a a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q ++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q ++=++=++==.故选:D.本题主要考查等比数列基本量的计算,属于基础题.6.过点()21P ,作圆221:+=O x y 的切线l ,则切线l 的方程为()A .3450x y --=B .4350x y --=C .1y =或4350x y --=D .1y =或3450x y --=【正确答案】C【分析】设切线l 为1(2)y k x -=-,即120kx y k -+-=,由l 与圆221:+=O x y 相切,得1d =,即可解决.【详解】由题知,圆221:+=O x y ,圆心为(0,0),半径为1,因为()21P ,在圆外,所以设切线l 为1(2)y k x -=-,即120kx y k -+-=,因为l 与圆221:+=O x y 相切,所以1d ==,解得0k =或43k =,所以切线l 的方程为1y =,或4350x y --=,故选:C7.已知直线1l :20x ay -+=与直线2l :()()240a x a y a ++-+=平行,则a 的值是()A .4-B .1C .4-或1D .4或1-【正确答案】B【分析】根据给定条件列出关于a 的等式,求解并验证即可作答.【详解】因直线1l :20x ay -+=与直线2l :()()240a x a y a ++-+=平行,则有(2)40a a a ++-=,解得1a =或4a =-,当1a =时,直线1l :20x y -+=与直线2l :3310x y -+=平行,当4a =-时,直线1l :420x y ++=与直线2l :2840x y ---=,即420x y ++=重合,所以a 的值是1.故选:B8.已知2F 是椭圆()222210x y a b a b+=>>的右焦点,点P 在椭圆上,()220OP OF PF +⋅= ,且22OP OF b +=,则椭圆的离心率为()A B C D .5【正确答案】A【分析】设2PF 的中点为Q ,根据向量的线性运算法则及数量积的定义可得2OQ PF ⊥,从而得到12PF PF ⊥,根据22OP OF b +=得到1||2PF b =,再根据椭圆的定义得到2||PF ,在直角三角形中利用勾股定理得到23b a =,最后根据离心率公式计算可得;【详解】解:设2PF 的中点为Q ,则22OP OF OQ +=由22()0OP OF PF +⋅= ,即220OQ PF ⋅= 所以2OQ PF ⊥,连接1PF 可得1//OQ PF ,所以12PF PF ⊥,因为22OP OF b += ,即22OQ b = ,即1||2PF b =所以21||2||22PF a PF a b =-=-,在12R t PF F 中,2221212||||||PF PF F F +=,即()()2222224c b a b -+=,又222c a b =-,所以222222b a b ab a b +=+--,所以232b ab =,即23b a =解得c e a =故选:A 二、多选题9.下列说法正确的是()A .过点()1,2P 且在x 、y 轴截距相等的直线方程为30x y +-=B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60︒D .过点()1,2-且垂直于直线230x y -+=的直线方程为20x y +=【正确答案】BD【分析】A 选项忽略了过原点的情况,错误,B 选项计算截距得到正确,直线斜率为k =倾斜角为120︒,C 错误,根据垂直关系计算直线方程得到D 正确,得到答案.【详解】过点()1,2P 且在x 、y 轴截距相等的直线方程为30x y +-=和2y x =,A 错误;取0x =,=2y -,则直线32y x =-在y 轴上的截距为2-,B 正确;10y ++=的斜率为k =120︒,C 错误;垂直于直线230x y -+=的直线方程斜率为2k =-,过点()1,2-的直线方程为()2122y x x =-++=-,即20x y +=,D 正确.故选:BD.10.已知无穷等差数列{}n a 的前n 项和为n S ,20182019S S <且20192020S S >,则()A .在数列{}n a 中,1a 最大;B .在数列{}n a 中,2019a 最大C .20200a >D .当2020n ≥时,0n a <【正确答案】AD【分析】由题得201920200,0a a ><,即可解决.【详解】由题知,无穷等差数列{}n a 的前n 项和为n S ,20182019S S <且20192020S S >,所以201920200,0a a ><,所以等差数列{}n a 为递减数列,所以在数列{}n a 中,1a 最大;当2020n ≥时,0n a <;故选:AD11.已知空间中三点()0,1,0A ,()2,2,0B ,()1,3,1C -,则下列命题正确的是()A .AB方向的单位向量是55⎛⎫- ⎪ ⎪⎝⎭B .AB 与BC 夹角的余弦值是C .ABC的面积为2D .若3AP AB AC =+ ,则点P 到直线AC【正确答案】BCD【分析】根据单位向量、向量夹角、三角形面积、点线距等知识对选项进行分析,从而确定正确答案.【详解】A 选项,()2,1,0AB = ,所以AB方向的单位向量是2,1,0,055AB AB ⎛⎫== ⎪ ⎪⎝⎭,A 选项错误.B 选项,()3,1,1BC =- ,设AB与BC 夹角为θ,则cos AB BC AB BCθ⋅==-⋅,B选项正确.C 选项,由于cos 11θ=-,所以cos 11B =,则B 是锐角,所以sin B =所以12ABC S =C 选项正确.D 选项,()1,2,1AC =-,()111,3,1,,31,33AP AB AC AP ⎛⎫===+ ⎪⎝⎭,所以点P 到直线ACD 选项正确.故选:BCD12.如图,P 是椭圆22122:1(0)x y C a b a b+=>>与双曲线22222:1(0,0)x y C m n m n -=>>在第一象限的交点,且12,C C 共焦点121212,,,,F F F PF C C ∠θ=的离心率分别为12,e e ,则下列结论正确的是()A .12,PF a m PF a m=+=-B .若60θ=︒,则2221314e e +=C .若90θ=︒,则2212e e +的最小值为2D .tan2n bθ=【正确答案】ABD【分析】根据给定条件结合椭圆、双曲线定义计算判断A ;借助余弦定理、离心率公式、均值不等式计算判断B ,C ,D 作答.【详解】由椭圆和双曲线的定义得:121222PF PF aPF PF m ⎧+=⎪⎨-=⎪⎩,解得1PF a m =+,2PF a m =-,A 正确;在12F PF △中,由余弦定理得:()()()()()2222cos 2a m a m a m a m c θ-++--+=,整理得()()2221cos 1cos 2a m c θθ-++=,()()22221cos 1cos 2a m c c θθ-++=,即22121cos 1cos 2e e θθ-++=,当60θ=︒时,222132122e e +=,即2221314e e +=,B 正确;当90θ=︒时,2212112e e +=,2222222112122222121211)11()()1(22e e e e e e e e e e ++++==+2221221212e e e e ≥+⋅,当且仅当121e e ==时取“=”,而1201,1e e <<>,C 不正确;在椭圆中,22222121212122||||cos ||||||442||||PF PF PF PF F F a c PF PF θ=+-=--,即2122||||1cos b PF PF θ=+,在双曲线中,22222121212122||||cos ||||||442||||PF PF PF PF F F m c PF PF θ=+-=-+,即2122||||1cos n PF PF θ=-,于是得22222222sin 221cos 2tan 1cos 1cos 1cos 22cos 2n b n b θθθθθθθ-=⇔===-++,而022θπ<<,则tan 2n b θ=,D 正确.故选:ABD方法点睛:双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、双曲线定义,得到a ,c 的关系.三、填空题13.双曲线221916x y -=的渐近线方程是___________.【正确答案】43y x=±【分析】直接由双曲线的方程求解即可【详解】因为双曲线方程为221916x y -=,所以双曲线的渐近线方程为220916x y -=,即43y x =±,故43y x=±14.以点(1,1),(3,3)A B -为直径的圆的一般式方程为______________.【正确答案】22240x y x y +--=【分析】根据AB 为直径,得到直径和圆心坐标,然后写方程即可.【详解】因为()1,1A -,()3,3,所以AB =AB 中点坐标为()1,2,所以以AB 为直径的圆的标准方程为()()22125x y -+-=,展开得一般式方程为22240x y x y +--=.故答案为.22240x y x y +--=15C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【正确答案】163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【详解】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x -代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x ==所以212116||1||13|3|33AB k x x =+-=+⋅-=解法二:10036640∆=-=>设1122(,),(,)A x y B x y ,则12103x x +=,过,A B 分别作准线=1x -的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故163本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.16.如图,二面角AB αβ--的大小为60 ,线段PM 与NQ 分别在这个二面角的两个面内,并且都垂直于棱AB .若2,3,4PM MN NQ ===,则PQ =__________.21【分析】利用空间向量的线性运算可得PQ PM MN NQ =++,再根据向量所成角,结合数量积公式平方即可得解.【详解】根据题意,PQ PM MN NQ =++,由二面角l αβ--大小为120︒,可得,120PM NQ =,22()PQ PM MN NQ =++ 222222PM MN NQ PM MN NQ MN PM NQ=+++⋅+⋅+⋅ 14916224212⎛⎫=+++⨯⨯⨯-= ⎪⎝⎭,所以PQ =四、解答题17.已知公差不为0的等差数列{an }满足a 3=9,a 2是a 1,a 7的等比中项.(1)求{an }的通项公式;(2)设数列{bn }满足()17n n b n a =+,求{bn }的前n 项和Sn .【正确答案】(1)an =4n ﹣3.(2)Sn 44nn =+.(1)设等差数列{an }的公差为d (d ≠0),根据a 3=9,a 2是a 1,a 7的等比中项.利用“1,a q ”法求解.(2)由(1)知()1111741n n b n a n n ⎛⎫==⎪++⎝⎭,再用裂项相消法求解.【详解】(1)设等差数列{an }的公差为d (d ≠0),则()()12111296a d a d a a d +=⎧⎪⎨+=⋅+⎪⎩解得d =4或d =0(舍去),a 1=1,∴an =1+4(n ﹣1)=4n ﹣3.(2)∵()1111741n n b n a n n ⎛⎫==⎪++⎝⎭,∴1231111111412231n n S b b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫=++++=-+-++- ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦ 1114144nn n ⎛⎫=-=⎪++⎝⎭.本题主要考查等差数列的基本运算和裂项相消法求和,还考查了运算求解的能力,属于中档题.18.已知圆22:240C x y y +--=,直线:10l mx y m -+-=.(1)判断直线l 与圆C 的位置关系;(2)若直线l 与圆C 交于不同的两点,A B,且AB =.【正确答案】(1)直线l 与圆C 相交;(2)直线的方程为0x y -=或20x y +-=【分析】(1)先求出直线l 过的定点坐标,判断定点在圆内,则直线l 必与圆相交;(2)由圆的半径和弦长求得圆心到直线l 的距离,以此列方程求解m 的值,即可求出直线l 的方程.【详解】(1)直线:10l mx y m -+-=,整理得(1)1m x y -=-,令1010x y -=⎧⎨-=⎩,解得11x y =⎧⎨=⎩即直线l 过定点(1,1)P .将P 点坐标代入圆C 方程得112440+--=-<,故P 点在圆C 内,直线l 与圆C 相交.(2)圆22:240C x y y +--=,整理得22(1)5x y +-=即(0,1)C ,r =.因为AB =,所以圆心C 到直线l 的距离为2d ==.又2d =,所以1m =±故直线的方程为0x y -=或20x y +-=.19.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,M 是PA 的中点,PD ⊥平面ABCD ,且4PD CD ==,2AD =.(1)求证:PA CD ⊥;(2)求AP 与平面CMB 所成角的正弦值;(3)求二面角M CB P --的余弦值.【正确答案】(1)证明见解析;(2)45;(331010(1)根据线面垂直的判定定理证明CD ⊥平面PAD ,即证PA CD ⊥;(2)以D 为原点,分别以,,DA DC DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,求平面CMB的法向量,用向量的方法求直线AP 与平面CMB 所成角的正弦值;(3)求平面CBP 的法向量,用向量的方法求二面角M CB P --的余弦值.【详解】(1)PD ⊥ 平面ABCD ,CD ⊂平面ABCD ,PD CD ∴⊥.底面ABCD 是矩形,AD CD ∴⊥,又AD PD D =I ,CD \^平面PAD ,PA ⊂平面PAD ,CD PA ∴⊥.(2)以D 为原点,分别以,,DA DC DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示则()()()()()()0,0,0,2,0,0,0,4,0,0,0,4,1,0,2,2,4,0D A C P M B ,()()()2,0,4,2,0,0,1,4,2,25AP CB BM AP ∴=-==--= 设平面CMB 的法向量(),,n x y z = ,则·0·0n CB n BM ⎧=⎨=⎩,即0420x x y z =⎧⎨--+=⎩,令1y =,则2z =,()0,1,2,5n n ∴== .设直线AP 与平面CMB 所成的角为θ,则4sin cos ,5255AP n AP n AP n θ=〈〉==⨯ .所以AP 与平面CMB 所成角的正弦值为45.(3)()()2,0,0,2,4,4CB BP ==-- .设平面CBP 的法向量(),,m x y z = ,则·0·0m CB m BP ⎧=⎨=⎩,即02440x x y z =⎧⎨--+=⎩,令1y =,则1z =.()0,1,1,2m m == 又平面CMB 的法向量()0,1,2,5n n == 设二面角M CB P --的大小为α,则α为锐角,310cos cos ,1025m n m n m nα∴=〈〉===⨯ ,所以二面角M CB P --的余弦值为31010.本题考查线线垂直,考查用向量的方法求线面角和面面角,考查学生的运算能力,属于较难的题目.20.如图,焦点为F 的抛物线2y 2px(p 0)=>过点()Q 1,m (m 0)>,且QF 2=.(Ⅰ)求p 的值;(Ⅱ)过点Q 作两条直线1l ,2l 分别交抛物线于()11A x ,y ,()22B x ,y 两点,直线1l ,2l 分别交x 轴于C ,D 两点,若QCD QDC ∠∠=,证明:12y y +为定值.【正确答案】(Ⅰ)p 2=;(Ⅱ)见解析.【分析】(Ⅰ)由抛物线的定义可得出p 的值;(Ⅱ)先写出抛物线的方程,由条件∠QCD =∠QDC ,得出直线AQ 和直线BQ 的斜率之和为零,利用两点的斜率公式以及等式2114y x =,2224y x =可计算出y 1+y 2=-4,进而证明结论成立.【详解】(Ⅰ)抛物线的准线方程为p x 2=-,由抛物线的定义得p QF 122=+=,得p 2=;(Ⅱ)由(Ⅰ)可知,抛物线的方程为2y 4x =,将点Q 的坐标代入抛物线的方程得2m 414=⨯=,m 0> ,得m 2=,所以,点Q 的坐标为()1,2.QCD QDC ∠∠= ,所以,直线AQ 和BQ 的斜率互为相反数.则()()121212AQ BQ 2222121212124y 24y 2y 2y 2y 2y 244k k 0y y x 1x 1y 4y 4y 2y 21144------+=+=+=+=+=----++--.所以,12y 2y 20+++=,因此,12y y 4(+=-定值).本题考查直线与抛物线的综合,考查抛物线的定义,同时考查抛物线性质的应用,考查计算能力,属于中等题.21.已知数列{}n a 中,12a =且*122(2,)n n a a n n n N -=-+≥∈.(1)求2a ,3a ,并证明{}n a n -是等比数列;(2)设12n n n a b -=,求数列{}n b 的前n 项和n S .【正确答案】(1)24a =,37a =,证明见解析;(2)1242n n n S n -+=+-.(1)在已知的数列递推公式中分别取2,3n =,结合已知的首项即可求得23,a a 的值,再把递推式两边同时减n 即可证明{}n a n -是等比数列;(2)由{}n a n -是等比数列求出数列{}n a 的通项公式,代入12n n n a b -=,分组后利用错位相减法求数列{}n b 的前n 项和n S .【详解】(1)由已知()*1222,n n a a n n n N -=-+≥∈+24a =,37a =,1222n n a n a n --=-+,即()121n n a n a n -⎡⎤-=--⎣⎦,因为()()*122,1n n a n n n N a n --=≥∈--,所以{}n a n -是以2为公比的等比数列.(2)由(1)得()1112n n a n a --=-⋅,即12n n a n -=+,所以11122n n n n a n b --==+,设12n n n C -=,且前n 项和为n T ,所以01231123422222n n n T -=+++++ ,①123112322222n n n T =++++ ,②①-②得231111111222222-⎛⎫=+++++- ⎪⎝⎭ n n n n T ,11112212122212--+=+-=--n n nn n ,所以1242n n n T -+=-,1242n n n S n -+=+-.该题主要考查的是等比数列的定义,数列的递推公式,错位相减法求和,还考查了运算求解的能力,属于中档题.22.已知定点()1,0M -,圆N :()22116x y -+=,点Q 为圆N 上动点,线段MQ 的垂直平分线交NQ 于点P ,记P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点M 与N 作平行直线1l 和2l ,分别交曲线C 于点A ,B 和点D ,E ,求四边形ABDE 面积的最大值.【正确答案】(1)22143x y +=(2)6【分析】(1)由椭圆的定义求解(2)设直线方程后与椭圆方程联立,由韦达定理表示弦长,将面积转化为函数后求求解【详解】(1)由题意可得42MP NP PQ NP MN +=+=>=,所以动点P 的轨迹是以M ,N 为焦点,长轴长为4的椭圆,即曲线C 的方程为:22143x y +=;(2)由题意可设2l 的方程为1x ty =+,联立方程得()2222134690431x y t y ty x ty ⎧+=⎪⇒++-=⎨⎪=+⎩,设()11,D x y ,()22,E x y ,则由根与系数关系有122122634934t y y t y y t ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩,所以DE =()2212134t t +=+,根据椭圆的对称性可得()2212134t DE AB t +==+,1l 与2l 的距离即为点M 到直线2l的距离,为d所以四边形ABDE 面积为24S =()1u u =≥得224241313u S u u u==++,由对勾函数性质可知:当且仅当1u =,即0=t 时,四边形ABDE 面积取得最大值为6.。
天柱县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=x 2﹣2x+3在[0,a]上有最大值3,最小值2,则a 的取值范围( ) A .[1,+∞) B .[0.2} C .[1,2] D .(﹣∞,2]2. 已知双曲线的渐近线与圆x 2+(y ﹣2)2=1相交,则该双曲线的离心率的取值范围是( )A .(,+∞) B .(1,)C .(2.+∞)D .(1,2)3. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( ) A .M ∪NB .M ∩NC .∁I M ∪∁I ND .∁I M ∩∁I N4. 若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )A .﹣B .C .2D .65. f ()=,则f (2)=( )A .3B .1C .2D .6. 复数z=(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限7. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( )A .(4,1,1)B .(﹣1,0,5)C .(4,﹣3,1)D .(﹣5,3,4)8. 若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]9. 已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2- B.1- C. 1 D. 2【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力. 10.设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的取值范围是()A.3,12e⎡⎫-⎪⎢⎣⎭B.33,24e⎡⎫-⎪⎢⎣⎭C.33,24e⎡⎫⎪⎢⎣⎭D.3,12e⎡⎫⎪⎢⎣⎭1111]11.在极坐标系中,圆的圆心的极坐标系是( )。
永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( )A .50x -<<或5x >B .5x <-或5x >C .55x -<<D .5x <-或05x <<2. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .33. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣14. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假5. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <06. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件7. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=18. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对9. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( )A .﹣1B .0C .1D .210.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .11.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( ) A .1﹣i B .1+i C .﹣1﹣iD .﹣1+i12.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)二、填空题13.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号).①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8; ③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率; ④双曲线﹣=1与椭圆有相同的焦点.14.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )fB (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .15.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 18.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B为 .三、解答题19.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女总计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.附:K2=P(K2≥k0)0.50 0.40 0.25 0.15 0.10 0.05 0.0250.010 0.005 0.001k00.455 0.708 1.323 2.072 2.706 3.84 5.024 6.63520.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.(1)若x0=﹣4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.21.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3231312f x x k x kx =-+++,其中.k R ∈ (1)当3k =时,求函数()f x 在[]0,5上的值域; (2)若函数()f x 在[]1,2上的最小值为3,求实数k 的取值范围.22.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN 与x 轴交于点B 点,求点B 横坐标的取值范围.23.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.24.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.12. 【答案】A【解析】解:由,得3x 2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y ﹣8=0与抛物线y=﹣x 2无交点.设与直线4x+3y ﹣8=0平行的直线为4x+3y+m=0联立,得3x 2﹣4x ﹣m=0.由△=(﹣4)2﹣4×3(﹣m )=16+12m=0,得m=﹣.所以与直线4x+3y ﹣8=0平行且与抛物线y=﹣x 2相切的直线方程为4x+3y ﹣=0.所以抛物线y=﹣x 2上的一点到直线4x+3y ﹣8=0的距离的最小值是=.故选:A .【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.3. 【答案】B【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0,∴a=2×0+1=1.故选:B.4.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.5.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.6.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A7.【答案】C【解析】解:如图,++().故选C.8.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.9.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.10.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h (x )的图象如图:当x ≤0时,h (x )=2+x+x 2=(x+)2+≥,当x >2时,h (x )=x 2﹣5x+8=(x ﹣)2+≥,故当=时,h (x )=,有两个交点,当=2时,h (x )=,有无数个交点,由图象知要使函数y=f (x )﹣g (x )恰有4个零点,即h (x )=恰有4个根,则满足<<2,解得:b ∈(,4),故选:D .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.11.【答案】A【解析】解:∵z (1+i )=2,∴z===1﹣i .故选:A .【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.12.【答案】B【解析】解:∵α,β为锐角△ABC 的两个内角,可得α+β>90°,cos β=sin (90°﹣β)<sin α,同理cos α<sin β,∴f (x )=()|x ﹣2|+()|x ﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);故选:B.二、填空题13.【答案】②③.【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x2﹣5x+2=0的两个根为x=2或x=,所以方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③.故答案为:②③.【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.14.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.15.【答案】3.【解析】解:直线l的方程为ρcosθ=5,化为x=5.点(4,)化为. ∴点到直线l 的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.16.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c c b b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.117.【答案】2 【解析】18.【答案】4π 【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B 角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷( )中以选择题的压轴题出现.三、解答题19.【答案】【解析】解:(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表:非体育迷体育迷合计男30 15 45女45 10 55总计75 25 100将2×2列联表中的数据代入公式计算可得K2的观测值为:k==≈3.030.∵3.030<3.841,∴我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中a i(i=1,2,3)表示男性,b j (j=1,2)表示女性.设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).∴P(A)=.【点评】本题考查了“独立性检验基本原理”、古典概率计算公式、频率分布直方图及其性质,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y2﹣8y﹣9=0…(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,又∠CAO=∠ACO,∴∠DOB=∠COD又OC=OB,所以△BOD≌△COD∴∠OCD=∠OBD=90°即OC⊥CD,则直线CD与圆M相切.…(其他方法亦可)21.【答案】(1)[]1,21;(2)2k ≥.【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;试题解析:(1)解:3k = 时,()32691f x x x x =-++则()()()23129313f x x x x x =-+=--' 令0f x '=得121,3x x ==列表由上表知函数()f x 的值域为[]1,21(2)方法一:()()()()2331331f x x k x k x x k =-++=--'①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增 所以()()()min 31113132f x f k k ==-+++= 即53k =(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减所以()()()min 28613213f x f k k ==-++⋅+= 符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增所以()()()322min 313132f x f k k k k k ==-+++= 化简得:32340k k -+= 即()()2120k k +-=所以1k =-或2k =(舍)注:也可令()3234g k k k =-+则()()23632g k k k k k =='-- 对()()1,2,0k g k ∀∈'≤()3234g k k k =-+在()1,2k ∈单调递减所以()02g k <<不符合题意综上所述:实数k 取值范围为2k ≥方法二:()()()()2331331f x x k x k x x k =-++=--'①当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分 ②当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增所以()()min 23f x f <=不符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意综上所述:实数k 取值范围为2k ≥ 22.【答案】【解析】解:(1)设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=8﹣p ,|MF|=x 1+,|NF|=x 2+, ∴|MF|+|NF|=x 1+x 2+p=8;(2)p=2时,y 2=4x ,若直线MN 斜率不存在,则B (3,0);若直线MN 斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则代入利用点差法,可得y 12﹣y 22=4(x 1﹣x 2)∴k MN =,∴直线MN 的方程为y ﹣t=(x ﹣3),∴B 的横坐标为x=3﹣,直线MN 代入y 2=4x ,可得y 2﹣2ty+2t 2﹣12=0△>0可得0<t 2<12,∴x=3﹣∈(﹣3,3),∴点B 横坐标的取值范围是(﹣3,3). 【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.23.【答案】(1)2或2)(1,0)(0,3)-.【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围.试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.(2)与夹角为锐角,0a b ∙>,2230x x -++>,13x -<<,又因为0x =时,//a b , 所以的取值范围是(1,0)(0,3)-.考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是0a b a b⋅>且,a b 不同向,同样两向量夹角为钝角的充要条件是0a b a b⋅<且,a b 不反向.24.【答案】【解析】解:(1)将点(0,4)代入椭圆C 的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x﹣3),…设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入椭圆C方程,整理得x2﹣3x﹣8=0,…由韦达定理得x1+x2=3,y1+y2=(x1﹣3)+(x2﹣3)=(x1+x2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.。
2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 2. 已知集合,,则 .3. 已知等差数列的首项为3,公差为4,则该数列的前项和 .4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答).5. 不等式的解集是 .6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 .8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 .9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示).11. 若,是一二次方程的两根,则 .12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 13. 已知实数、满足,则的取值范围是 .14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D.16. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件17. 则表示复数的点是( )18. A. 1个 B. 4个三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2在锐角中,、、分别为内角、(1)求的大小;(2)若,的面积,求的值.B120.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式.21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由;(2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由.23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中)(1)求;(2)求数列的通项公式;(3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由.静安区xx第一学期期末教学质量检测高三年级数学(文科)试卷答案(试卷满分150分 考试时间120分钟) xx.12一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 解:.2. 已知集合,,则 . 解:.3. 已知等差数列的首项为3,公差为4,则该数列的前项和 . 解:.4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答). 解:45.5. 不等式的解集是 . 解:.6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .解:256.7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 . 解:.8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 . 解:.9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 解:-2.10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示). 解:(或或).11. 若,是一二次方程的两根,则 . 解:-3.12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 解:或.13. 已知实数、满足,则的取值范围是 . 解:.14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 . 解:.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D. 解:D.B 116. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件解:B.17. 则表示复数的点是( )解:D.18. A. 1个 B. 4个解:C.三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在锐角中,、、分别为内角、、所对的边长,且满足. (1)求的大小;(2)若,的面积,求的值. 解:(1)由正弦定理:,得,∴ ,(4分) 又由为锐角,得.(6分)(2),又∵ ,∴ ,(8分)根据余弦定理:2222cos 7310b a c ac B =+-=+=,(12分) ∴ 222()216a c a c ac +=++=,从而.(14分)20.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式. 解:(1)他应付出出租车费26元.(4分)(2)14,03() 2.4 6.8,3103.6 5.2,10x f x x x x x <≤⎧⎪=+<≤⎨⎪->⎩ . 21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.解:(1)∵ 点为面的对角线的中点,且平面,∴ 为的中位线,得,又∵ ,∴ 22MN ND MD ===(2分) ∵ 在底面中,,,∴ ,又∵ ,为异面直线与所成角,(6分) 在中,为直角,,∴ .即异面直线与所成角的大小为.(8分) (2),(9分)1132P BMN V PM MN BN -=⋅⋅⋅⋅,(12分)22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由; (2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由. 解:(1)∵ ,∴ 函数的定义域为,(1分)又∵ ()()log )log )0a a f x f x x x +-=+=,∴ 函数是奇函数.(4分) (2)由,且当时,, 当时,,得的值域为实数集. 解得,.(8分)(3)在区间上恒成立,即, 即在区间上恒成立,(11分) 令,∵ ,∴ , 在上单调递增,∴ , 解得,∴ .(16分)23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中) (1)求;(2)求数列的通项公式; (3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由. 解:(1)∵ ,令,得,∴ ,(3分)或者令,得,∴ .(2)当时,1111(1)()(1)22n n n n a a n a S ++++-+==,∴ 111(1)22n nn n n n a na a S S ++++=-=-,∴ , 推得,又∵ ,∴ ,∴ ,当时也成立,∴ ().(9分) (3)假设存在正整数、,使得、、成等比数列,则、、成等差数列,故(**)(11分) 由于右边大于,则,即, 考查数列的单调性,∵ ,∴ 数列为单调递减数列.(14分) 当时,,代入(**)式得,解得; 当时,(舍).综上得:满足条件的正整数组为.(16分)(说明:从不定方程以具体值代入求解也可参照上面步骤给分)温馨提示:最好仔细阅读后才下载使用,万分感谢!。
韶山市第三中学2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.设定义在R上的函数f(x)对任意实数x,y,满足f(x)+f(y)=f(x+y),且f(3)=4,则f(0)+f(﹣3)的值为()A.﹣2 B.﹣4 C.0 D.42.设为虚数单位,则()A. B. C. D.3.设a,b∈R且a+b=3,b>0,则当+取得最小值时,实数a的值是()A.B. C.或D.34.设集合M={x|x>1},P={x|x2﹣6x+9=0},则下列关系中正确的是()A.M=P B.P⊊M C.M⊊P D.M∪P=R5.把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f(x)的图象关于直线x=对称,则φ的值为()A.﹣B.﹣C.D.6.下面各组函数中为相同函数的是()A.f(x)=,g(x)=x﹣1 B.f(x)=,g(x)=C.f(x)=ln e x与g(x)=e lnx D.f(x)=(x﹣1)0与g(x)=7.记,那么ABCD8.已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=f(2﹣x)的图象为()A.B.C.D.9.已知集合,,则满足条件的集合的个数为A、B、C、D、10.若函数则函数的零点个数为()A.1 B.2 C.3 D.411.设公差不为零的等差数列的前项和为,若,则()A.B.C.7 D.14【命题意图】本题考查等差数列的通项公式及其前项和,意在考查运算求解能力. 12.下列命题中正确的是()(A)若为真命题,则为真命题(B )“,”是“”的充分必要条件(C)命题“若,则或”的逆否命题为“若或,则”(D)命题,使得,则,使得二、填空题13.已知直线l过点P(﹣2,﹣2),且与以A(﹣1,1),B(3,0)为端点的线段AB 相交,则直线l的斜率的取值范围是.14.已知数列的首项,其前项和为,且满足,若对,恒成立,则的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.15.在(1+x)(x2+)6的展开式中,x3的系数是.16.若与共线,则y=.17.设所有方程可以写成(x﹣1)sinα﹣(y﹣2)cosα=1(α∈[0,2π])的直线l组成的集合记为L,则下列说法正确的是;①直线l的倾斜角为α;②存在定点A,使得对任意l∈L都有点A到直线l的距离为定值;③存在定圆C,使得对任意l∈L都有直线l与圆C相交;④任意l1∈L,必存在唯一l2∈L,使得l1∥l2;⑤任意l1∈L,必存在唯一l2∈L,使得l1⊥l2.18.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M 点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=m.三、解答题19.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,E,F,G分别是AC,AD,BC的中点.求证:(I)AB∥平面EFG;(II)平面EFG⊥平面ABC.20.在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1的直角坐标方程与曲线C2的普通方程;(Ⅱ)试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.21.已知,其中e是自然常数,a∈R(Ⅰ)讨论a=1时,函数f(x)的单调性、极值;(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+.22.如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.(Ⅰ)求证AB•PC=PA•AC(Ⅱ)求AD•AE的值.23.已知命题p:“存在实数a,使直线x+ay﹣2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆内部”,若命题“p且¬q”是真命题,求实数a的取值范围.24.已知函数f(x)=x2﹣(2a+1)x+alnx,a∈R(1)当a=1,求f(x)的单调区间;(4分)(2)a>1时,求f(x)在区间[1,e]上的最小值;(5分)(3)g(x)=(1﹣a)x,若使得f(x0)≥g(x0)成立,求a的范围.韶山市第三中学2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f(0)+f(0)=f(0+0)=f(0),所以,f(0)=0;再令y=﹣x,则f(x)+f(﹣x)=f(0)=0,所以,f(﹣x)=﹣f(x),所以,函数f(x)为奇函数.又f(3)=4,所以,f(﹣3)=﹣f(3)=﹣4,所以,f(0)+f(﹣3)=﹣4.故选:B.【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题.2.【答案】C 【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C3.【答案】C【解析】解:∵a+b=3,b>0,∴b=3﹣a>0,∴a<3,且a≠0.①当0<a<3时,+==+=f(a),f′(a)=+=,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=时,+取得最小值.②当a<0时,+=﹣()=﹣(+)=f(a),f′(a)=﹣=﹣,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=﹣时,+取得最小值.综上可得:当a=或时,+取得最小值.故选:C.【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题.4.【答案】B【解析】解:P={x|x=3},M={x|x>1};∴P⊊M.故选B.5.【答案】B【解析】解:把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f(x)=cos[2(x+)+φ]=cos(2x+φ+)的图象关于直线x=对称,则2×+φ+=kπ,求得φ=kπ﹣,k∈Z,故φ=﹣,故选:B.6.【答案】D【解析】解:对于A:f(x)=|x﹣1|,g(x)=x﹣1,表达式不同,不是相同函数;对于B:f(x)的定义域是:{x|x≥1或x≤﹣1},g(x)的定义域是{x}x≥1},定义域不同,不是相同函数;对于C:f(x)的定义域是R,g(x)的定义域是{x|x>0},定义域不同,不是相同函数;对于D:f(x)=1,g(x)=1,定义域都是{x|x≠1},是相同函数;故选:D.【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题.7.【答案】B【解析】【解析1】,所以【解析2】,8.【答案】A【解析】解:由(0,2)上的函数y=f(x)的图象可知f(x)=当0<2﹣x<1即1<x<2时,f(2﹣x)=2﹣x当1≤2﹣x<2即0<x≤1时,f(2﹣x)=1∴y=f(2﹣x)=,根据一次函数的性质,结合选项可知,选项A正确故选A.9.【答案】D【解析】,.∵,∴可以为,,,.10.【答案】D【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.11.【答案】C.【解析】根据等差数列的性质,,化简得,∴,故选C.12.【答案】D【解析】对选项A,因为为真命题,所以中至少有一个真命题,若一真一假,则为假命题,故选项A错误;对于选项B,的充分必要条件是同号,故选项B错误;命题“若,则或”的逆否命题为“若且,则”,故选项C错误;故选D.二、填空题13.【答案】[,3].【解析】解:直线AP的斜率K==3,直线BP的斜率K′==由图象可知,则直线l的斜率的取值范围是[,3],故答案为:[,3],【点评】本题给出经过定点P的直线l与线段AB有公共点,求l的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.14.【答案】15.【答案】20.【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为T r+1=•x12﹣3r,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20.故答案为:20.16.【答案】﹣6.【解析】解:若与共线,则2y﹣3×(﹣4)=0解得y=﹣6故答案为:﹣6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键.17.【答案】②③④【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误;对于②:(x﹣1)sinα﹣(y﹣2)cosα=1,(α∈[0,2π)),可以认为是圆(x﹣1)2+(y﹣2)2=1的切线系,故②正确;对于③:存在定圆C,使得任意l∈L,都有直线l与圆C相交,如圆C:(x﹣1)2+(y﹣2)2=100,故③正确;对于④:任意l1∈L,必存在唯一l2∈L,使得l1∥l2,作图知④正确;对于⑤:任意意l1∈L,必存在两条l2∈L,使得l1⊥l2,画图知⑤错误.故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.18.【答案】150【解析】解:在RT△ABC中,∠CAB=45°,BC=100m,所以AC=100m.在△AMC中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,由正弦定理得,,因此AM=100m.在RT△MNA中,AM=100m,∠MAN=60°,由得MN=100×=150m.故答案为:150.三、解答题19.【答案】【解析】证明:(I)在三棱锥A﹣BCD中,E,G分别是AC,BC的中点.所以AB∥EG…因为EG⊂平面EFG,AB⊄平面EFG所以AB∥平面EFG…(II)因为AB⊥平面BCD,CD⊂平面BCD所以AB⊥CD…又BC⊥CD且AB∩BC=B所以CD⊥平面ABC…又E,F分别是AC,AD,的中点所以CD∥EF所以EF⊥平面ABC…又EF⊂平面EFG,所以平面平面EFG⊥平面ABC.…【点评】本题考查线面平行,考查面面垂直,掌握线面平行,面面垂直的判定是关键.20.【答案】【解析】解:(Ⅰ)由曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,可得它的直角坐标方程为x+y=1,根据曲线C2的参数方程为(θ为参数),可得它的普通方程为+y2=1.(Ⅱ)把曲线C1与C2是联立方程组,化简可得5x2﹣8x=0,显然△=64>0,故曲线C1与C2是相交于两个点.解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,﹣).【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.21.【答案】【解析】解:(1)a=1时,因为f(x)=x﹣lnx,f′(x)=1﹣,∴当0<x<1时,f′(x)<0,此时函数f(x)单调递减.当1<x≤e时,f′(x)>0,此时函数f(x)单调递增.所以函数f(x)的极小值为f(1)=1.(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.又g′(x)=,所以当0<x<e时,g′(x)>0,此时g(x)单调递增.所以g(x)的最大值为g(e)=,所以f(x)min﹣g(x)max>,所以在(1)的条件下,f(x)>g(x)+.【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题..22.【答案】【解析】(1)证明:∵PA为圆O的切线,∴∠PAB=∠ACP,又∠P为公共角,∴△PAB∽△PCA,∴,∴AB•PC=PA•AC.…(2)解:∵PA为圆O的切线,BC是过点O的割线,∴PA2=PB•PC,∴PC=40,BC=30,又∵∠CAB=90°,∴AC2+AB2=BC2=900,又由(1)知,∴AC=12,AB=6,连接EC,则∠CAE=∠EAB,∴△ACE∽△ADB,∴,∴.【点评】本题考查三角形相似的证明和应用,考查线段乘积的求法,是中档题,解题时要注意切割线定理的合理运用.23.【答案】【解析】解:∵直线x+ay﹣2=0与圆x2+y2=1有公共点∴≤1⇒a2≥1,即a≥1或a≤﹣1,命题p为真命题时,a≥1或a≤﹣1;∵点(a,1)在椭圆内部,∴,命题q为真命题时,﹣2<a<2,由复合命题真值表知:若命题“p且¬q”是真命题,则命题p,¬q都是真命题即p真q假,则⇒a≥2或a≤﹣2.故所求a的取值范围为(﹣∞,﹣2]∪[2,+∞).24.【答案】解:(1)当a=1,f(x)=x2﹣3x+lnx,定义域(0,+∞),∴…(2分),解得x=1或x=,x∈,(1,+∞),f′(x)>0,f (x)是增函数,x∈(,1),函数是减函数.…(4分)(2)∴,∴,当1<a<e时,∴f(x)min=f(a)=a(lna﹣a﹣1)当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,∴综上…(9分)(3)由题意不等式f(x)≥g(x)在区间上有解即x2﹣2x+a(lnx﹣x)≥0在上有解,∵当时,lnx≤0<x,当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,∴在区间上有解.令…(10分)∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,x∈(1,e],h(x)是增函数,∴,∴时,,∴∴a的取值范围为…(14分)。
2019—2020学年第二学期南昌市八一中学高二理科数学期中考试试卷第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足1i 1i z +=-,则||z =( ) A. 2iB. 2C. iD. 1 【★答案★】D【解析】【分析】 根据复数的运算法则,求得复数zi ,即可得到复数的模,得到★答案★. 【详解】由题意,复数11i i z +=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D . 【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.2. 已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【★答案★】B【解析】【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可.【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立,当αβ⊥时,l β⊥不一定成立,即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B .【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.3. 已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A′O′=32,那么原△ABC的面积是( )A. 3B. 22C.32D.34【★答案★】A【解析】【分析】先根据已知求出原△ABC的高为AO=3,再求原△ABC的面积. 【详解】由题图可知原△ABC的高为AO=3,∴S△ABC=12×BC×OA=12×2×3=3,故★答案★为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4. 某几何体的三视图如图所示,则这个几何体的体积等于()A. 4B. 6C. 8D. 12【★答案★】A【解析】由三视图复原几何体,是如图所示的四棱锥,它的底面是直角梯形,梯形的上底长为2,下底长为4,高为2,棱锥的一条侧棱垂直底面高为2,所以这个几何体的体积:12422432V+=⨯⨯⨯=,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5. 下列命题中,正确的是()A. 经过不同的三点有且只有一个平面B. 分别在两个平面的两条直线一定是异面直线C. 垂直于同一个平面的两条直线是平行直线D. 垂直于同一个平面的两个平面平行【★答案★】C【解析】【分析】根据不在一条直线上的三点确定一个平面,来判断A是否正确;根据分别在两个平面内的两条直线的位置关系不确定,来判断B是否正确;根据垂直于同一平面的两直线平行,来判断C是否正确;根据垂直于同一条直线的两条直线的位置关系是平行、相交或异面,来判断D是否正确.【详解】解:对A,当三点在一条直线上时,平面不唯一,∴A错误;对B,分别在两个平面内的两条直线的位置关系不确定,∴B错误;对C,根据垂直于同一平面的两直线平行,∴C正确;对D,垂直于同一平面的两平面的位置关系是平行、相交,∴D错误.故选C.【点睛】本题考查了空间直线与直线的位置关系及线面垂直的判定与性质,考查了学生的空间想象能力.6. 实数a 使得复数1a i i +-是纯虚数,10b xdx =⎰,1201c x dx =-⎰则a ,b ,c 的大小关系是( ) A. a b c <<B. a c b <<C. b c a <<D. c b a <<【★答案★】C【解析】【分析】 利用复数的乘除运算求出a ,再利用微积分基本定理以及定积分的定义即可求出b ,c ,从而比较其大小关系. 【详解】()()()()11111122a i i a i a a i i i i +++-+==+--+, 1a i i +-是纯虚数, 102a -∴=,1a , 121001122b xdx x ⎛⎫===⎪⎝⎭⎰, 1201c x dx =-⎰表示是以()0,0为圆心, 以1为半径的圆在第一象限的部分与坐标轴围成的14个圆的面积, 21144c ππ∴=⨯⨯=,所以b c a <<. 故选:C【点睛】本题考查了复数的乘除运算、微积分基本定理求定积分、定积分的定义,考查了基本运算求解能力,属于基础题.7. 已知正四棱柱''''ABCD A B C D -的底面是边长为1的正方形,若平面ABCD 内有且仅有1个点到顶点A '的距离为1,则异面直线,AA BC '' 所成的角为 ( ) A. 6π B. 4π C. 3π D. 512π 【★答案★】B【解析】由题意可知,只有点A 到'A 距离为1,即高为1,所以该几何体是个正方体,异面直线11,AA BC 所成的角是4π,故选B.8. 函数3xeyx=的部分图象可能是()A. B.C. D.【★答案★】C【解析】分析:根据函数的奇偶性,及x=1和x=2处的函数值进行排除即可得解.详解:易知函数3xeyx=为奇函数,图象关于原点对称,排除B,当x=1时,y=<1,排除A,当x=4时,4112ey=>,排除D,故选C.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.9. 如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A. 一条线段B. 一条直线C. 一个圆D. 一个圆,但要去掉两个点【★答案★】D【解析】 因为平面PAC⊥平面PBC ,AC⊥PC,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC⊥平面PBC.又因为BC ⊂平面PBC ,所以AC⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.点睛:求轨迹实质是研究线面关系,本题根据面面垂直转化得到线线垂直,再根据圆的定义可得轨迹,注意轨迹纯粹性.10. 如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 等边三角形;③三棱锥D -ABC 是正三棱锥;④平面ADC ⊥平面AB C.其中正确的是( )A. ①②④B. ①②③C. ②③④D. ①③④【★答案★】B【解析】【分析】根据翻折后垂直关系得BD ⊥平面ADC ,即得BD ⊥AC ,再根据计算得△BAC 是等边三角形,最后可确定选项.【详解】由题意知,BD ⊥平面ADC ,故BD ⊥AC ,①正确;AD 为等腰直角三角形斜边BC 上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,又由②知③正确;由①知④错.故选B .【点睛】本题考查线面垂直判定与性质,考查推理论证求解能力,属中档题.11. 如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A. 12πB. 32πC. 36πD. 48π【★答案★】C【解析】分析】 根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键. 12. 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率e 的取值范围为( ) A. 2,312⎡⎤-⎢⎥⎣⎦B. 2,12⎡⎫⎪⎢⎪⎣⎭C. 23,22⎡⎤⎢⎥⎣⎦D. 36,33⎡⎤⎢⎥⎣⎦【★答案★】A【解析】【分析】 根据直角三角形性质得A 在圆上,解得A 点横坐标,再根据条件确定A 横坐标满足条件,解得离心率.【详解】由题意得OA OB OF c ===,所以A 在圆222=x y c +上,与22221x y a b +=联立解得22222()Aa cb xc -=, 因为ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦, 所以22sin 22sin ()2sin [,]A A a a c a c a c AF c e x c x c e e eααα---=∴-=∴=∈因此2222222()()()a c a c b a c e c e---≤≤, 解得22222222(2)()(2)2()a c c b a c a c c a a c -≤-≤--≤-≤-,,即222,20a c a c ac ≤--≥,即2212,120312e e e e ≤--≥∴≤≤-,选A. 【点睛】本题考查椭圆离心率,考查基本分析化简求解能力,属中档题.第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将★答案★填在答题卡的相应位置.13. ()ππsin cos x x dx -+=⎰__________. 【★答案★】0【解析】【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限作差得出★答案★.【详解】()()ππsin cos cos sin x x dx x x ππ--+=-+⎰()()()cos sin cos sin 110ππππ=-+---+-=-=⎡⎤⎣⎦.故★答案★为:0【点睛】本题主要考查了定积分的计算,解题的关键是确定原函数,属于基础题.14. 在三棱锥P ABC -中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.【★答案★】8【解析】【分析】如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F .过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .可得四点EFMN 共面,进而得到23EF MN AC AC ==,根据比例可求出截面各边长度,进而得到周长. 【详解】解:如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .由作图可知:EN ∥FM ,∴四点EFMN 共面可得MN ∥AC ∥EF ,EN ∥PB ∥FM . ∴23EF MN AC AC == 可得EF =MN =2.同理可得:EN =FM =2.∴截面的周长为8.故★答案★为:8.【点睛】本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,属于中档题.15. 已知一个正三棱柱,一个体积为4π3的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是______. 【★答案★】183【解析】【分析】由球的体积可以求出半径,从而得到棱柱的高;由球体与棱柱的所有面均相切,得出球的半径和棱柱底面正三角形边长的关系,求出边长,即求出底面正三角形的面积,得出棱柱的表面积.【详解】由球的体积公式可得24433R ππ=,1R ∴=, ∴正三棱柱的高22h R ==,设正三棱柱的底面边长为a , 则其内切圆的半径为:13132a ⋅=,23a ∴=,∴该正三棱柱的表面积为:21333226183222a R a a a a ⋅+⨯⨯=+=. 故★答案★为:183【点睛】本题考查了球的体积公式、多面体的表面积求法,属于基础题.16. 如图,在矩形ABCD 中,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆.若M 为线段1A C 的中点,则在ADE ∆翻转过程中,正确的命题是______.(填序号)①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使MB平面1A DE .【★答案★】①②④【解析】【分析】取DC 中点N 再根据直线与平面的平行垂直关系判断即可.【详解】对①, 取DC 中点N ,连接,MN BN ,则1//MN A D ,//NB DE .因为MN NB N ⋂=,1A D DE D ⋂=,故平面1//MNB A DE .易得1MNB A DE ∠=∠为定值,故在ADE ∆翻转过程中MNB ∆的形状不变.故BM 是定值.故①正确.对②,由①得, 在ADE ∆翻转过程中MNB ∆沿着NB 翻折,作MO NB ⊥交NB 于O ,则点M 在以O 为圆心,半径为MO 的圆上运动.故②正确.对③,在DE 上取一点P 使得AP DE ⊥,则1A P DE ⊥,若1DE A C ⊥则因为111A P A C A ⋂=,故DE ⊥面1A CP ,故DE PC ⊥,不一定成立.故③错误.对④,由①有1//MNB A DE ,故MB平面1A DE 成立.综上所述,①②④正确.故★答案★为:①②④ 【点睛】本题主要考查了翻折中线面垂直平行的判定,需要画出对应的辅助线分析平行垂直关系,属于中等题型.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .【★答案★】见解析【解析】试题分析:连接AF 并延长交BC 于M .连接PM ,因为AD ∥BC ,∴BF MF FD FA =,又BF PE FD EA =,∴PE MF EA FA=, 所以EF ∥PM ,从而得证.试题解析:连接AF 并延长交BC 于M .连接PM .因为AD ∥BC ,所以=. 又由已知=,所以=. 由平面几何知识可得EF ∥PM ,又EF ⊄平面PBC ,PM ⊂平面PBC ,所以EF ∥平面PBC .18. 如图所示,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .【★答案★】证明见解析【解析】【分析】通过长方体的几何性质证得11BM A B ⊥,通过计算证明证得1BM B M ⊥,由此证得BM ⊥平面11A B M ,从而证得平面ABM ⊥平面11A B M .【详解】由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,∴A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,∴C 1M =CM =1.在Rt△B 1C 1M 中,B 1M 2212C M CM =+=, 同理BM 222BC CM =+=,又B 1B =2, ∴B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,∴BM ⊥平面A 1B 1M ,∵BM ⊂平面ABM ,∴平面ABM ⊥平面A 1B 1M .【点睛】本小题主要考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线l 的极坐标方程为2cos 104ρθπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB +. 【★答案★】(1)10x y --=,24y x =;(2)1【解析】【试题分析】(1) 2cos 104πρθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】(1)由2cos 104πρθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =, 所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为()1,0,点M 在直线l 上. 设直线l 的参数方程为21222t x ty ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得24280t t --=.设点,A B 对应的参数分别为1t ,2t ,则1242t t +=,128t t =-,所以121211t t MA MB t t -+== ()21212224323218t t t t t t +-+==. 20. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ⊥底面ABCD ,为AD 中点,M 是棱PC 上的点,.(1)求证:平面POB ⊥平面PAD ;(2)若点M 是棱的中点,求证://PA 平面.【★答案★】(1)见解析;(2)见解析【解析】【详解】(1)证明: ∵AD 中点,且,∴DO BC =又//AD BC ,090ADC ∠=,∴ 四边形BCDO 是矩形,∴BO OD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD OD =,BO ⊂平面ABCD ,∴BO ⊥平面PAD ,又BO ⊂平面POB ,∴ 平面POB ⊥平面PAD .(2)如下图,连接AC 交BO 于点E ,连接EM ,由(1)知四边形BCDO 是矩形,∴//OB CD ,又为AD 中点,∴E 为AC 中点,又是棱AC 的中点,∴//EM PA ,又EM ⊂平面,平面, ∴//PA 平面21. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//AB CD ,223AB DC ==,AC BD F ⋂=.且PAD ∆与ABD ∆均为正三角形,E 为AD 的中点,G 为PAD ∆重心.(1)求证://GF 平面PDC ;(2)求异面直线GF 与BC 的夹角的余弦值.【★答案★】(1)证明见解析;(2)33952. 【解析】试题分析:(1)连接AG 交PD 于H ,连接GH ,由重心性质推导出GFHC ,根据线面平行的判定定理可得GF 平面PDC ;(2)取线段AB 上一点Q ,使得13BQ AB =,可证GFQ ∠ 即是异面直线GF 与BC 的夹角,由余弦定理可得结果.试题解析:(1)方法一:连AG 交PD 于H ,连接CH .由梯形ABCD ,//AB CD 且2AB DC =,知21AF FC = 又E 为AD 的中点,G 为PAD ∆的重心,∴21AG GH =,在AFC ∆中,21AG AF GH FC ==,故GF //HC . 又HC ⊆平面PCD ,GF ⊄ 平面PCD ,∴GF //平面PDC .方法二:过G 作//GN AD 交PD 于N ,过F 作//FM AD 交CD 于M ,连接MN ,G 为PAD ∆的重心,23GN PG ED PE ==,22333GN ED ∴==,又ABCD 为梯形,//AB CD ,12CD AB =,12CF AF ∴=13MF AD ∴=,233MF ∴= ∴GN FM = 又由所作,//FM AD 得GN //FM ,GNMF ∴为平行四边形.//GN AD //,GF MN GF PCD MN PCD ⊄⊆面,面,∴ //GF 面PDC(2) 取线段AB 上一点Q ,使得13BQ AB =,连FQ ,则223FQ BC ==, 1013,33EF GF ==,1316,33EQ GQ == ,在GFQ ∆中 222339cos 2?52GF FQ GQ GFQ GF FQ +-∠== ,则异面直线GF 与BC 的夹角的余弦值为33952. 角函数和等差数列综合起来命题,也正体现了这种命题特点.【方法点晴】本题主要考查线面平行的判定定理、异面直线所成的角、余弦定理,属于中挡题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.22. 已知函数()1ln (2)(1),f x a x a a R x=+-+∈.(Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )x f x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围. 【★答案★】(1) 见解析(2) 1,1e ⎡⎫+∞⎪⎢-⎣⎭【解析】 【详解】(Ⅰ)因为()()1ln 21,(,0).f x a x a a R x x ⎛⎫=+-+∈> ⎪⎝⎭所以()()2211.ax a a a f x x x x'-++=-= ①若10a -≤≤,则()0f x '<,即()f x 在区间∞(0,+)上单调递减; ②若0a >,则当10a x a +<<时,()0f x '< ;当1a x a +>时,()0f x '>; 所以()f x 在区间10,a a +⎛⎫ ⎪⎝⎭上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; ③若1a <-,则当10a x a +<<时,()0f x '>;当1a x a+>时,()0f x '<; 所以函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. 综上所述,若10a -≤≤,函数在区间上单调递减;; 若,函数在区间上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; 若1a <-,函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. (Ⅱ)依题意得()()()1ln 210x x f x a x e ae a x ⎛⎫≥-⇔+-+≥ ⎪⎝⎭, 令()()121x h x ae a x ⎛⎫=+-+ ⎪⎝⎭.因为()10h ≥,则()11a e -≥,即101a e ≥>-. 于是,由()1210x ae a x ⎛⎫+-+≥ ⎪⎝⎭,得1201x a e a x +-≥+, 即211x a x a xe-≥+对任意0x >恒成立. 设函数()21(0)x x F x x xe -=>,则()()()2211x x x F x x e +-='-. 当01x <<时,()0F x '>;当1x >时,()0F x '<;所以函数()F x 在()0,1上单调递增,在()1,+∞上单调递减;所以()()max 11F x F e ⎡⎤==⎣⎦. 于,可知11a a e ≥+,解得11a e ≥-.故a 的取值范围是1,1e ⎡⎫+∞⎪⎢-⎣⎭感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。
空间向量与立体几何(选择题、填空题)一、单项选择题1.(江西省赣州市赣县第三中学2020-2021学年高二8月入学考试)已知点(,1,2)A x 和点(2,3,4)B ,且AB =x 的值是( )A .6或2-B .6或2C .3或4-D .3-或4【答案】A【解析】AB ==()2216x -=,解得:2x =-或6x =.故选A2.(2020江西省新余期末质量检测)在空间直角坐标系中,已知P(-1,0,3),Q(2,4,3),则线段PQ 的长度为( )A B .5C D 【答案】B【解析】由题得2(3,4,0),35PQ PQ =∴=+=,所以线段PQ 的长度为5. 故答案为B3.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知空间向量()3,1,3m =,()1,,1n λ=--,且//m n ,则实数λ=( )A .13- B .-3 C .13D .6【答案】A【解析】因为//m n ,所以,m n R μμ=∈,即:()3,1,3m ==(),,n μλμμμ--=, 所以3,1μλμ=-=,解得13λ=-.故选A .4.(江西省新余一中、宜春一中2021届高二联考)如图所示,在正方体1111ABCD A B C D -中,O 是底面正方形ABCD 的中心,M 是1D D 的中点,N 是11A B 的中点,则直线NO ,AM 的位置关系是( )A .平行B .相交C .异面垂直D .异面不垂直【答案】C【分析】建立空间直角坐标系,写出NO 与AM 的坐标,即可判断位置关系.【解析】建立空间直角坐标系,如图所示.设正方体的棱长为2,则(2,0,0)A ,(0,0,1)M ,(1,1,0)O ,(2,1,2)N ,∴(1,0,2)NO =--,(2,0,1)AM =-.∵0NO AM ⋅=,∴直线NO ,AM 的位置关系是异面垂直. 故选: C5.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,则AE AF ⋅的值为( ) A .2aB .212aC .214a D 2 【答案】C【分析】由题意可得11()22AB AC AE AF AD ⋅=+⋅,再利用两个向量的数量积的定义求得结果.【解析】11()22AB AC AE AF AD ⋅=+⋅1()4AB AD AC AD =⋅+⋅ ()22211cos60cos6044a a a ︒︒=+=,故选C. 6.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知M ,N 分别是四面体OABC 的棱OA ,BC 的中点,点P 在线段MN 上,且2MP PN =,设向量OA a =,OBb =,OC c =则OP =( )A .111666a b c ++B .111333a b c ++C .111633a b c ++D .111366a b c ++【答案】C【解析】如图所示,连接ON ,∵OP ON NP =+,1()2ON OB OC =+,所以13NP NM =,NM OM ON =-,12OM OA =,∴13OP ON NP ON NM =+=+121()333ON OM ON ON OM =+-=+21()32OB OC =⨯+1132OA +⨯111633OA OB OC =++111633a b c =++.故选C . 7.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)若两条不重合直线1l 和2l 的方向向量分别为()11,0,1ν=-,()22,0,2ν=-,则1l 和2l 的位置关系是( ) A .平行 B .相交 C .垂直D .不确定【答案】A【解析】因为两条不重合直线1l 和2l 的方向向量分别为()11,0,1ν=-,()22,0,2ν=-, 所以212v ν=-,即2ν与1v 共线,所以两条不重合直线1l 和2l 的位置关系是平行,故选A8.(山东省滕州市第一中学2020-2021学年高二9月开学收心考试)设,x y R ∈,向量()()(),1,1,1,,1,2,4,2,a x b y c ===-且,//a c b c ⊥,则a b +=( )A .BC .3D .4【答案】C【分析】根据向量垂直和平行的坐标表示求得参数,x y ,再求向量模长即可. 【解析】()//,241,2,1,21b c y y b ∴=-⨯∴=-∴=-,,(),1210,1a b a b x x ⊥∴⋅=+⋅-+=∴=,()()1,112,1,2a a b ∴=∴+=-,,(2213a b ∴+=+-=,故选C .9.(江西省宜春市2016-2017学年高二上学期期末统考理)如图所示,在空间四边形OABC 中,OA a OB b OC c ===,,,点M 在OA 上,且2,OM MA N =为BC 中点,则MN =( )A .121232a b c -+B .211322a b c -++ C .111222a b c +-D .221b 332a c -+-【答案】B【解析】由向量的加法和减法运算:12211()23322MN ON OM OB OC OA a b c =-=+-=-++.故选B10.(陕西省商洛市商丹高新学校2019-2020学年高二下学期4月学情质量检测数学(理))如图,已知正方体ABCD A B C D ''''-,点E 是A C ''的中点,点F 是AE 的三等分点,且12AF EF =,则AF =( )A .1122AA AB AD '++ B .111222AA AB AD '++ C .111266AA AB AD '++D .111366AA AB AD '++【答案】D【解析】∵点E 是A C ''的中点,点F 是AE 的三等分点,且12AF EF =, ∴111111()333236AF AE AA A E AA A C AA A C ⎛⎫''''''''==+=+=+ ⎪⎝⎭ 11()36AA A B A D '''''=++111366AA AB AD '=++,故选D . 11.(安徽省六安市舒城中学2020-2021学年高二上学期开学考试数学(文)试题)如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为( )A .8B .4C .2D .1【答案】D【解析】()2i i i AB AP AB AB BP AB AB BP ⋅=⋅+=+⋅,AB ⊥平面286BP P P ,i AB BP ∴⊥,i AB BP ∴⋅=,21i AB AP AB ∴⋅==,则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为1个,故选D .12.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)点P (1,2,3)关于xOy 平面的对称点的坐标为( ) A .(-1,2,3) B .(1,-2,-3) C .(-1,-2,-3) D .(1,2,-3)【答案】D【分析】关于xOy 平面对称的点的,x y 坐标不变,只有z 坐标相反. 【解析】点P (1,2,3)关于xOy 平面的对称点的坐标为(1,2,)3-.故选D .13.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)若向量(2,0,1)a =-,向量(0,1,2)b =-,则2a b -=( )A .(4,1,0)-B .(4,1,4)--C .(4,1,0)-D .(4,1,4)--【答案】C【分析】根据题意求出2(4,0,2)a=-,再根据向量的减法坐标运算,由此即可求出结果.【解析】因为向量(2,0,1)a =-,向量(0,1,2)b =-,则2(4,0,2)a =-,则2(4,0,2)(0,1,2)(4,1,0)a b -=---=-,故选C .14.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知正方体1111ABCD A B C D -,点E 是上底面11A C 的中心,若1AE AA xAB yAD =++,则x y +等于( ) A .13B .12C .1D .2【答案】C【解析】如图,()111111112AE AA A E AA A B A D =+=++ ()11111222AA AB AD AA AB AD =++=++,所以12x y ==,所以1x y +=.故选C15.(江苏省南京市秦淮区2019-2020学年高一下学期期末)空间直角坐标系O xyz -中,已知两点()11,2,1P -,()22,1,3P -,则这两点间的距离为( )A BC .D .18【答案】B【解析】根据题意,两点()11,2,1P -,()22,1,3P -,则12||PP =B .16.(湖北省恩施高中2020届高三下学期四月决战新高考名校交流卷(B ))已知向量()1,2a =,()3,b x =,()1,1c y =--,且//a b ,b c ⊥,则x y ⋅的值为( )A .6B .32 C .9D .132-【答案】C【解析】∵//a b ,∴60x -=,6x =,∴向量()3,6b =, ∵b c ⊥,∴()3610y -+-=,∴32y =,∴9x y ⋅=.故选C . 17.(四川省绵阳市2019-2020学年高二下学期期末教学质量测试数学(理)试题)在空间直角坐标系中,若()1,1,0A ,()13,0,12AB =,则点B 的坐标为( ) A .()5,1,2-- B .()7,1,2- C .()3,0,1 D .()7,1,2【答案】D【分析】首先设出点(,,)B x y z ,利用向量坐标公式以及向量相等的条件得到等量关系式,求得结果. 【解析】设(,,)B x y z ,所以(1,1,)2(3,0,1)(6,0,2)AB x y z =--==,所以16102x y z -=⎧⎪-=⎨⎪=⎩,所以712x y z =⎧⎪=⎨⎪=⎩,所以点B 的坐标为(7,1,2),故选D .18.(广东省云浮市2019-2020学年高二上学期期末)如图,在三棱锥P ABC -中,点D ,E ,F 分别是AB ,PA ,CD 的中点,设PA a =,PB b =,PC c =,则EF =( )A .111442a b c --B .111442a b c -+ C .111442a b c +-D .111442a b c -++【答案】D 【解析】点D ,E ,F 分别是AB ,PA ,CD 的中点,且PA a =,PB b =,PC c =,∴()11112224EF EP PC CF PA PC CD PA PC CA CB =++=-++=-+++()1111124442PA PC PA PC PB PC PA PB PC =-++-+-=-++111442a b c =-++.故选D .19.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)一个向量p 在基底{},,a b c 下的坐标为()1,2,3,则p 在基底{},,a b a b c +-下的坐标为( )A .31322⎛⎫- ⎪⎝⎭,,B .31322⎛⎫- ⎪⎝⎭,, C .13322⎛⎫- ⎪⎝⎭,,D .13322⎛⎫- ⎪⎝⎭,,【答案】B【解析】因为向量p 在基底{},,a b c 下的坐标为()1,2,3,所以23p a b c =++, 设p 在基底{},,a b a b c +-下的坐标为(),,x y z ,所以()()()()p x a b y a b zc x y a x y b zc =++-+⇒++-+,有13223x y x y x z +=⎧⎪-=⇒=⎨⎪=⎩,12y,3z =,p 在基底{},,a b a b c +-下的坐标为31,,322⎛⎫- ⎪⎝⎭.故选B .20.(湖北省武汉襄阳荆门宜昌四地六校考试联盟2020-2021学年高三上学期起点联考)如图,直四棱柱1111ABCD A B C D -的底面是菱形,12AA AB ==,60BAD ∠=︒,M 是1BB 的中点,则异面直线1A M 与1B C所成角的余弦值为( )A. B .15- C .15D.5【答案】D【分析】用向量1,,AB BC BB 分别表示11,AM BC ,利用向量的夹角公式即可求解. 【解析】由题意可得221111111111,5,2A M AB B M AB BB A M A B B M=+=-=+=221111,2BC BC BB B C BC BB =-=+=,()211111111111cos ,AB BB BC BB AB BC BB A M B C A M B C A M B C⎛⎫-⋅-⋅+ ⎪⋅⎝〈〉===0122cos604⨯⨯+⨯==故选D21.(河北省石家庄市第二中学2020-2021学年高二上学期8月线上考试(二))长方体1111ABCD A B C D -中,11,2,AB AD AA E ===为棱1AA 的中点,则直线1C E 与平面11CB D 所成角的余弦值为( ) A.9 B.9CD .23【答案】A【解析】根据题意,建立如图所示直角坐标系:则1C E (1,1,1)=--,设平面11B D C 的法向量为n (,,)x y z =,则100n B D n BC ⎧⋅=⎪⎨⋅=⎪⎩可得:020x y x z --=⎧⎨--=⎩,取n (2,2,1)=--,则1,cos n C E =11n C E nC E⋅9==,设直线1C E 与平面11B D C 的夹角为θ,则9sin θ=,9cos θ==.故选A . 22.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知点()1,1,A t t t --,()2,,B tt ,则A ,B 两点的距离的最小值为A.10 B.5C.5D .35【答案】C【分析】由两点之间的距离公式求得AB 之间的距离用t 表示出来,建立关于t 的函数,转化为求函数的最小值.【解析】因为点()1,1,A t t t --,()2,,B t t ,所以22222(1)(21)()522AB t t t t t t =++-+-=-+,有二次函数易知,当15t =时,取得最小值为95,AB ∴,故选C .23.(湖南省邵阳市邵东县第十中学2020届高三下学期模拟考试数学(文)试题)如图,在正方体1111ABCD A B C D -中,M ,N 分别是棱AB ,1BB 的中点,点P 在对角线1CA 上运动.当△PMN 的面积取得最小值时,点P 的位置是( )A .线段1CA 的三等分点,且靠近点1AB .线段1CA 的中点C .线段1CA 的三等分点,且靠近点CD .线段1CA 的四等分点,且靠近点C【答案】B【解析】设正方体的棱长为1,以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立空间直角坐标系,如图所示:则1(,0,0)2M ,1(1,0,)2N ,MN 的中点31(,0,)44Q ,1(0,0,1)A ,(1,1,0)C ,则1(1,1,1)AC =-,设(,,)P t t z ,(1,1,)PC t t z =---, 由1AC 与PC 共线,可得11111t t z---==-,所以1t z =-,所以(1,1,)P z z z --,其中01z ≤≤,因为||(1PM ==||(11)(1PN z =--+=所以||||PM PN =,所以PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离,由空间两点间的距离公式可得||PQ ===12c =时,||PQ 取得最小值4,此时P 为线段1CA 的中点,由于||4MN =为定值,所以当△PMN 的面积取得最小值时,P 为线段1CA 的中点.故选B24.(云南省梁河县第一中学2019-2020学年高二7月月考数学(理)试题)长方体1111ABCD A B C D -中,12AB AA ==,1AD =,E 为1CC 的中点,则异面直线1BC 与AE 所成角的余弦值为( )A BCD .【答案】B【分析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得异面直线1BC 与AE 所成角的余弦值.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,则()0,0,0A 、()2,0,0B 、()12,1,2C 、()2,1,1E ,()2,1,1AE =,()10,1,2BC =,111cos ,6AE BC AE BC AEBC ⋅<>===⋅. 因此,异面直线1BC 与AE .故选B . 25.(广西桂林市2019-2020学年高二下学期期末质量检测数学(理))在正方体ABCD --A 1B 1C1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成角的正弦值为( ) A.5-B.5C .D 【答案】B【分析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立空间直角坐标系,利用向量法能求出直线BE 与平面1B BD 所成角的正弦值.【解析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立如图空间直角坐标系,设正方体的棱长为2,则()000D ,,,()220B ,,,()1222B ,,,()021E ,,, ∴() 220BD =--,,,()1 002BB =,,,() 201BE =-,,, 设平面1B BD 的法向量为() ,,x n y z =,∵ n BD ⊥,1n BB ⊥, ∴22020x y z --=⎧⎨=⎩,令y 1=,则() 110n =-,,,∴10cos ,n BE n BE n BE ⋅==⋅,设直线BE 与平面1B BD 所成角为θ,则10sin cos ,5n BE θ==,故选B .26.(陕西省商洛市商丹高新学校2020届高三下学期考前适应性训练理科)如图在平行六面体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,侧棱12AA =且1160A AD A AB ∠=∠=︒,则1AC =( )A . BC .D 【答案】B【解析】因为底面ABCD 是边长为1的正方形,侧棱12AA =且1160A AD A AB ∠=∠=︒,则2=1AB ,2=1AD ,21=4AA ,0AB AD ⋅=,111cos 1AB AA AB AA A AB ⋅=⋅⋅∠=,111cos 1AD AA AD AA A AD ⋅=⋅⋅∠=,则1AC 1AB AD AA =++()1222111222AB AD AA AB AA AB AD AD AA =+++⋅+⋅+⋅==,故选B .27.(2020届上海市七宝中学高三高考押题卷)已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM PN →→⋅的取值范围为( ) A .[]0,4 B .[]0,2 C .[]1,4D .[]1,2【答案】B【分析】利用向量的线性运算和数量积运算律可将所求数量积化为21PO →-,根据正方体的特点可确定PO →的最大值和最小值,代入即可得到所求范围.【解析】设正方体内切球的球心为O ,则1OM ON ==,2PM PN PO OM PO ON PO PO OM ON OM ON →→→→→→→→→→→→⎛⎫⎛⎫⎛⎫⋅=+⋅+=+⋅++⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,MN 为球O 的直径,0OM ON →→∴+=,1OM ON →→⋅=-,21PM PN PO →→→∴⋅=-,又P 在正方体表面上移动,∴当P 为正方体顶点时,PO →P 为内切球与正方体的切点时,PO →最小,最小值为1,[]210,2PO →∴-∈,即PM PN →→⋅的取值范围为[]0,2.故选B .【点睛】本题考查向量数量积的取值范围的求解问题,关键是能够通过向量的线性运算将问题转化为向量模长的取值范围的求解问题.28.(湖北省荆门市2019-2020学年高二下学期期末)在平行六面体ABCD A B C D ''''-中,若2AC x AB y BC z CC →→→→''=++,则x y z ++=( )A .52B .2C .32D .116【答案】A【解析】由空间向量的线性运算,得AB BC AC AC CC CC →→→→→→⎛⎫=+=++ ⎪⎭'''⎝, 由题可知,2AC x AB y BC z CC →→→→''=++,则1,1,21x y z ===,所以11,2y z ==, 151122x y z ∴++=++=.故选A .29.(安徽省六校教育研究会2020-2021学年高三上学期第一次素质测试理科)如图,在直三棱柱111ABC A B C -中,已知90ABC ∠=︒,P 为侧棱1CC 上任意一点,Q 为棱AB 上任意一点,PQ 与AB 所成角为α,PQ 与平面ABC 所成的角为β,则α与β的大小关系为( )A .αβ=B .αβ<C .αβ>D .不能确定【答案】C【分析】建立空间直角坐标系设()()(),0,,0,,00,0,0P x z Q y x y z >≥≥,利用空间向量法分别求得cos ,cos αβ,然后根据(0,],0,22ππαβ⎡⎤∈∈⎢⎥⎣⎦,利用余弦函数的单调性求解.【解析】建立如图所示空间直角坐标系:设()()(),0,,0,,00,0,0P x z Q y x y z >≥≥,则()(),,,0,,0QP x y z QB y =-=-, 所以2222,,QP QB y QP x y z QB y ⋅==++=,所以2cos QP QB QP QBx zα⋅==⋅+又(0,],0,22ππαβ⎡⎤∈∈⎢⎥⎣⎦,sin QP CP QPβ⋅==所以cos β=cos cos βα>,因为cos y x = 在0,2π⎛⎫⎪⎝⎭上递减,所以αβ>,故选C 30.(江西省赣州市赣县第三中学2019-2020学年高二6月份考试数学(理)试题)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53 C .2D .259【答案】B【分析】建立空间直角坐标系,利用向量法能求出线面角的正切值的最大值. 【解析】以1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系, 设(,3,)P x z ,则1(3,3,),(3,3,4)AP x z BD =-=--,11,0AP BD AP BD ⊥∴⋅=,33(3)3340,4x z z x ∴---⨯+=∴=,||BP ∴==9255=, ||5tan ||3AB BP θ∴=,tan θ∴的最大值为53.故选B .31.(江西省赣州市赣县第三中学2019-2020学年高二6月份考试数学(理)试题)如图,在棱长都相等的正三棱柱111ABC A B C -中,D 是棱1CC 的中点,E 是棱1AA 上的动点.设AE x =,随着x 增大,平面BDE 与底面ABC 所成锐二面角的平面角是( )A .增大B .先增大再减小C .减小D .先减小再增大【答案】D【解析】设正三棱柱111ABC A B C -棱长为2,,02AE x x =≤≤, 设平面BDE 与底面ABC 所成锐二面角为α,以A 为坐标原点,过点A 在底面ABC 内与AC 垂直的直线为x 轴,1,AC AA 所在的直线分别为,y z 轴建立空间直角坐标系,则(0,2,1),(0,0,),(3,1,1),(0,2,1)B D E x BD ED x =-=-,设平面BDE 的法向量(,,)m s t k =,则m BD m ED⎧⊥⎨⊥⎩,即02(1)0t k t x k ⎧++=⎪⎨+-=⎪⎩,令k =33,1t x s x =-=+,所以平面BDE的一个法向量(m x=+-,底面ABC的一个法向量为(0,0,1)n =,cos|cos,|m nα=<>==当1(0,)2x∈,cosα随着x增大而增大,则α随着x的增大而减小,当1(,2)2x∈,cosα随着x增大而减小,则α随着x的增大而增大.故选D.32.(山东省滕州市第一中学2020-2021学年高二9月开学收心考试)已知空间直角坐标系O xyz-中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q在直线OP上运动,则当QA QB⋅取得最小值时,点Q 的坐标为()A.131,,243⎛⎫⎪⎝⎭B.133,,224⎛⎫⎪⎝⎭C.448,,333⎛⎫⎪⎝⎭D.447,,333⎛⎫⎪⎝⎭【答案】C【分析】设(,,)Q x y z,根据点Q在直线OP上,求得(,,2)Qλλλ,再结合向量的数量积和二次函数的性质,求得43λ=时,QA QB⋅取得最小值,即可求解.【解析】设(,,)Q x y z,由点Q在直线OP上,可得存在实数λ使得OQ OPλ=,即(,,)(1,1,2)x y zλ=,可得(,,2)Qλλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+, 根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q . 故选C .【点睛】本题主要考查了空间向量的共线定理,空间向量的数量积的运算,其中解答中根据向量的数量积的运算公式,得关于λ的二次函数是解答的关键,着重考查运算与求解能力.33.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC =4,AB =AC ,∠BAC =90°,D 为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为( )A .16+8πB .32+16πC .32+8πD .16+16π【答案】A【解析】设D 在底面半圆上的射影为1D ,连接1AD 交BC 于O ,设1111A D B C O ⋂=. 依题意半圆柱体底面直径4,,90BC AB AC BAC ==∠=︒,D 为半圆弧的中点, 所以1111,AD BC A D B C ⊥⊥且1,O O 分别是下底面、上底面半圆的圆心.连接1OO , 则1OO 与上下底面垂直,所以11,,OO OB OO OA OA OB ⊥⊥⊥,以1,,OB OA OO 为,,x y z 轴建立空间直角坐标系,设几何体的高为()0h h >,则()()()()12,0,0,0,2,,0,2,0,2,0,B D h A B h -,所以()()12,2,,2,2,BD h AB h =--=-,由于异面直线BD 和1AB 所成的角的余弦值为23,所以11238BD AB BD AB ⋅==⋅,即2222,16,483h h h h ===+.所以几何体的体积为2112442416822ππ⨯⨯⨯+⨯⨯⨯=+.故选A.34.(安徽省阜阳市太和第一中学2020-2021学年高二(平行班)上学期开学考试)在正方体1111ABCD A B C D -中,直线1BC 与平面1A BD 所成角的余弦值为( )A .24B .23 C .3 D .3 【答案】C【分析】分别以1,,DA DC DD 为,,x y z 轴建立如图所示空间直角坐标系,求出直线的方向向量和平面的法向量后可得所求线面角的余弦值. 【解析】分别以1,,DA DC DD 为,,x y z轴建立如图所示空间直角坐标系,设正方体的棱长为1,可得()()()()110,0,0,1,1,0,0,1,1,1,0,1D B C A ∴()()()111,0,1,1,0,1,1,1,0BC A D BD =-=--=--, 设(),,n x y z =是平面1A BD 的一个法向量,∴100n A D n BD ⎧⋅=⎨⋅=⎩,即00x z x y +=⎧⎨+=⎩,取1x =,得1y z ==-,∴平面1A BD 的一个法向量为()1,1,1n =--,设直线1BC 与平面1A BD 所成角为θ, ∴11126sin cos ,323BC nBC n BC nθ⋅-=〈〉===⨯, ∴23cos 1sin θθ=-1BC 与平面1A BD 所成角的余弦值是33, 故选C.【点睛】用向量法求二面角大小的两种方法:(1)分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小即为二面角的大小;(2)分别求出二面角的两个半平面的法向量,然后通过两个法向量的夹角得到二面角大小,解题时要注意结合图形判断出所求的二面角是锐角还是钝角.35.(2020届重庆市第一中学高三下学期6月模拟数学(理)试题)如图所示,在正方体1111ABCD A B C D -中,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则异面直线1A P 与BD 所成角的取值范围为( )A .3,44ππ⎡⎤⎢⎥⎣⎦B .,42ππ⎡⎤⎢⎥⎣⎦C .,32ππ⎡⎤⎢⎥⎣⎦D .2,33ππ⎡⎤⎢⎥⎣⎦【答案】C【解析】过A 作平面α平面1DBC ,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则P ∈平面α,即P 在α与平面1111D C B A 的交线上,连接111,,AB AD B D ,11DD BB =,则四边形11BDD B 是平行四边形,11B D BD ∴,11B D ∴平面1DBC ,同理可证1AB ∥平面1DBC ,∴平面11AB D ∥平面1DBC ,则平面11AB D 即为α,点P 在线段11B D 上,以D 为坐标原点,1,,DA DC DD 建立如图坐标系,设正方体棱长为1, 则()0,0,0D ,()1,1,0B ,()1,0,0A ,设(),,1P λλ,[]0,1λ∈, ()1,1,0DB ∴=,()1,,1AP λλ=-,21DB AP λ∴⋅=-,2DB =,2AP λ=,设1A P 与BD 所成角为θ,则cos 2DB APDB APθ⋅===⋅ ==12λ=时,cos θ取得最小值为0, 当0λ=或1时,cos θ取得最大值为12,10cos 2θ∴≤≤,则32ππθ≤≤.故选C . 36.(重庆市第八中学2020届高三下学期第五次月考数学(理)试题)如图,矩形ABCD 中,2AB AD ==E 为边AB 的中点,将ADE 沿直线DE 翻折成1A DE △.在翻折过程中,直线1A C 与平面ABCD 所成角的正弦值最大为()A.4B .6C.14D【答案】A【解析】分别取DE ,DC 的中点O ,F ,则点A 的轨迹是以AF 为直径的圆, 以,OA OE 为,x y 轴,过O 与平面AOE 垂直的直线为z 轴建立坐标系,则()2,1,0C -,平面ABCD 的其中一个法向量为n = (0,0.1), 由11A O =,设()1cos ,0,sin A αα,则()1cos 2,1,sin CA αα=+-,记直线1A C 与平面ABCD 所成角为θ,则11sin 4cos ||CA nCAn θ⋅===⋅设315cos ,,sin 222t αθ⎡⎤=+∈=≤=⎢⎥⎣⎦ 所以直线1A C 与平面ABCD ,故选A . 二、多项选择题37.(江苏省南京市秦淮中学2019-2020学年高二(美术班)上学期期末)对于任意非零向量()111,,a x y z =,()222,,b x y z =,以下说法错误的有( )A .若a b ⊥,则1212120x x y y z z ++=B .若//a b ,则111222x y z x y z == C .cos ,a b =><D .若1111===x y z ,则a为单位向量 【答案】BD【解析】对于A 选项,因为a b ⊥,则1212120a b x x y y z z ⋅=++=,A 选项正确;对于B 选项,若20x =,且20y ≠,20z ≠,若//a b ,但分式12x x 无意义,B 选项错误; 对于C 选项,由空间向量数量积的坐标运算可知cos ,a b =><,C 选项正确;对于D 选项,若1111===x y z,则211a =+=,此时,a 不是单位向量,D 选项错误.故选BD .38.(2020届百师联盟高三开学摸底大联考山东卷)下面四个结论正确的是( ) A .向量(),0,0a b a b ≠≠,若a b ⊥,则0a b ⋅=.B .若空间四个点P ,A ,B ,C ,1344PC PA PB =+,则A ,B ,C 三点共线. C .已知向量()1,1,a x =,()3,,9b x =-,若310x <,则,a b 为钝角.D .任意向量a ,b ,c 满足()()a b c a b c ⋅⋅=⋅⋅. 【答案】AB【解析】由向量垂直的充要条件可得A 正确;1344PC PA PB =+,∴11334444PC PA PB PC -=-即3AC CB =,∴A ,B ,C 三点共线,故B 正确;当3x =-时,两个向量共线,夹角为π,故C 错误;由于向量的数量积运算不满足结合律,故D 错误.故选AB.39.(广东省中山市2019-2020学年高一下学期期末)在空间直角坐标系中,下列结论正确的是( ) A .点()2,1,4-关于x 轴对称的点的坐标为()2,1,4 B .到()1,0,0的距离小于1的点的集合是()(){}222,,11x y z x y z -++<C .点()1,2,3与点()3,2,1的中点坐标是()2,2,2D .点()1,2,0关于平面yOz 对称的点的坐标为()1,2,0- 【答案】BCD【解析】对于选项A :点()2,1,4-关于x 轴对称的点的坐标为()2,1,4---,所以A 不正确; 对于选项B :点(),,x y z到()1,0,0的距离小于11<,所以B 正确;对于选项C :点()1,2,3与点()3,2,1的中点坐标是()132231,,2222,2,2⎛⎫=⎪⎝⎭+++,所以C 正确;对于选项D :由点(),,x y z 关于平面yOz 对称的点的坐标为(),,x y z -,所以D 正确. 故选B C D .40.(山东省威海市文登区2019-2020学年高二上学期期末)正方体1111ABCD A B C D -的棱长为a ,则下列结论正确的是( )A .211AB AC a ⋅=- B .212BD BD a ⋅= C .21AC BA a⋅=- D .212AB AC a ⋅=【答案】BC【解析】如下图所示:对于A 选项,()2211AB AC AB AC AB AB AD AB a ⋅=⋅=⋅+==,A 选项错误;对于B ,()()()()2221112BD BD AD AB BD DD AD AB AD AB AA AD AB a ⋅=-+=--+=+=,B 选项正确;对于C 选项,()()2211AC BA AB AD AA AB AB a ⋅=+⋅-=-=-,C 选项正确;对于D 选项,()2211AB AC AB AB AD AA AB a ⋅=⋅++==,D 选项错误.故选BC .41.(福建省泉州市普通高中2019-2020学年毕业班第一次质量检查(理))如图,正方体1111ABCD A B C D -的棱长为1,E 是1DD 的中点,则( )A .直线1//BC 平面1A BD B .11B C BD ⊥C .三棱锥11C B CE -的体积为13D .异面直线1B C 与BD 所成的角为60︒【答案】ABD【解析】如图建立空间直角坐标系,()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,1,0D ,()10,0,1A ,()11,0,1B ,()11,1,1C ,()10,1,1D ,10,1,2⎛⎫ ⎪⎝⎭E ,()1B C 0,1,1=-,()11,1,1BD =-,()1,1,0BD =-,()11,0,1BA =-,所以()111011110B C BD =-⨯+⨯+-⨯=,即11BC BD ⊥,所以11B C BD ⊥,故B 正确;()11011101B C BD =-⨯+⨯+-⨯=,12B C =,2BD =,设异面直线1B C 与BD 所成的角为θ,则111cos 2B C BD B C BDθ==,又0,2πθ⎛⎤∈ ⎥⎝⎦,所以3πθ=,故D 正确;设平面1A BD 的法向量为(),,n x y z =,则1·0·0n BA n BD ⎧=⎨=⎩,即0x y x z -+=⎧⎨-+=⎩,取()1,1,1n =,则()10111110n B C =⨯+⨯+⨯-=,即1C n B ⊥,又直线1B C ⊄平面1A BD ,所以直线1//B C 平面1A BD ,故A 正确;111111111111113326C B CE B C CE C CE V B C S V -∆-===⨯⨯⨯⨯=⋅,故C 错误;故选ABD.42.(海南省海南中学2019-2020学年高三第四次月考)如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是()A .113P AA D V -=B .点P 必在线段1BC 上C .1AP BC ⊥D .//AP 平面11AC D【答案】BD 【解析】对于A ,P 在平面11BCC B 上,平面11//BCC B 平面1AA D ,P ∴到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长,1111111113326P AA D AA D V S CD -∴=⋅=⨯⨯⨯⨯=△,A 错误;对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则()1,0,0A ,(),1,P x z ,()1,1,0B ,()10,0,1D ,()11,1,1B ,()0,1,0C()1,1,AP x z →∴=-,()11,1,1BD →=--,()11,0,1B C →=--,1AP BD ⊥,1110AP BD x z →→∴⋅=--+=,x z ∴=,即(),1,P x x ,(),0,CP x x →∴=,1CP x B C →→∴=-,即1,,B P C 三点共线,P ∴必在线段1B C 上,B 正确;对于C ,()1,1,AP x x →=-,()11,0,1BC →=-,111AP BC x x →→∴⋅=-+=,AP ∴与1BC 不垂直,C 错误;对于D ,()11,0,1A ,()10,1,1C ,()0,0,0D ,()11,0,1DA →∴=,()10,1,1DC →=,设平面11AC D 的法向量(),,n x y z →=,1100n DA x z n DC y z ⎧⋅=+=⎪∴⎨⋅=+=⎪⎩,令1x =,则1z =-,1y =,()1,1,1n →∴=-, 110AP n x x →→∴⋅=-+-=,即AP n →→⊥,//AP ∴平面11ACD ,D 正确.故选BD . 43.(福建省宁德市2019-2020学年高二上学期期末考试)如图所示,棱长为1的正方体1111ABCD A B C D-中,P 为线段1A B 上的动点(不含端点),则下列结论正确的是( )A .平面11D A P ⊥平面1A APB .1AP DC ⋅不是定值 C .三棱锥11BD PC -的体积为定值 D .11DC D P ⊥【答案】ACD【解析】A .因为是正方体,所以11D A ⊥平面1A AP ,11D A ⊂平面11D A P ,所以平面11D A P ⊥平面1A AP ,所以A 正确;B .11111111()AP DC AA A P DC AA DC A P DC ⋅=+⋅=⋅+⋅ 11112cos 45cos901212AA DC A P DC =+=⨯⨯=,故11AP DC ⋅=,故B 不正确; C .1111B D PC P B D C V V --=,11B D C 的面积是定值,1//A B 平面11B D C ,点P 在线段1A B 上的动点,所以点P 到平面11B D C 的距离是定值,所以1111B D PC P B D C V V --=是定值,故C 正确; D .111DC A D ⊥,11DC A B ⊥,1111A D A B A =,所以1DC ⊥平面11A D P ,1D P ⊂平面11A D P ,所以11DC D P ⊥,故D 正确.故选ACD44.(山东省济南莱芜市第一中学2019-2020学年高二下学期第一次质量检测)关于空间向量,以下说法正确的是( )A .空间中的三个向量,若有两个向量共线,则这三个向量一定共面B .若对空间中任意一点O ,有111632OP OA OB OC =++,则P ,A ,B ,C 四点共面 C .设{},,a b c 是空间中的一组基底,则{},,a b b c c a +++也是空间的一组基底 D .若0a b ⋅<,则,a b 是钝角 【答案】ABC【解析】对于A 中,根据共线向量的概念,可知空间中的三个向量,若有两个向量共线,则这三个向量一定共面,所以是正确的;对于B 中,若对空间中任意一点O ,有111632OP OA OB OC =++,根据空间向量的基本定理,可得,,,P A B C 四点一定共面,所以是正确的;对于C 中,由{},,a b c 是空间中的一组基底,则向量,,a b c 不共面,可得向量,a b b c ++,c a +也不共面,所以{},,a b b c c a +++也是空间的一组基底,所以是正确的; 对于D 中,若0a b ⋅<,又由,[0,]a b π∈,所以,(,]2a b ππ∈,所以不正确.故选ABC .45.(河北省沧州市盐山中学2019-2020学年高一下学期期末)若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD【解析】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-, 因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-,设平面1B CE 的一个法向量为111(,,)n x y z =,则由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y =,所以(1,2,1)n =, 同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高,所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△,故C 正确; 三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2R ==所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确.故选CD .46.(山东省济南市2019-2020学年高二下学期末考试)如图,棱长为的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点(不含端点),则下列结论正确的是( )A .直线1D P 与AC 所成的角可能是6π B .平面11D A P ⊥平面1A AP C .三棱锥1D CDP -的体积为定值D .平面1APD 截正方体所得的截面可能是直角三角形 【答案】BC【解析】对于A ,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,()()()10,0,1,1,0,0,0,1,0D A C ,设()()1,,01,01P a b a b <<<< ()()11,,1,1,1,0D P a b AC =-=-,(111cos ,01D P AC D P AC D P ACa b ⋅==<++-1301,01,,24a b D P AC ππ<<<<∴<<∴直线D 1P 与AC 所成的角为,42ππ⎛⎫⎪⎝⎭,故A 错误; 对于B ,正方体ABCD ﹣A 1B 1C 1D 1中,A 1D 1⊥AA 1,A 1D 1⊥AB , ∵AA 1AB =A ,∴A 1D 1⊥平面A 1AP ,∵A 1D 1⊥平面D 1A 1P ,∴平面D 1A 1P ⊥平面A 1AP ,故B 正确;对于C ,1111122CDD S=⨯⨯=,P 到平面CDD 1的距离BC =1, ∴三棱锥D 1﹣CDP 的体积:111111326D CDP P CDD V V --==⨯⨯=为定值,故C 正确;对于D ,平面APD 1截正方体所得的截面不可能是直角三角形,故D 错误;故选BC .47.(江苏省苏州中学园区校2020-2021学年高三上学期8月期初调研)如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且12EF =,则下列结论中正确的是( )A .线段11B D 上存在点F ,使得AC AF ⊥ B .//EF 平面ABCD C .AEF 的面积与BEF 的面积相等 D .三棱锥A BEF -的体积为定值【答案】BD【解析】如图,以C 为坐标原点建系CD ,CB ,1CC 为x ,y ,z 轴,()1,1,0A ,()0,0,0C ,()1,1,0AC =--,1B F B λ=11D ,即()()0,1,11,1,0x y z λ---=-,∴x λ=,1y λ=-,1z =,∴(),1,1F λλ-,()1,,1AF λλ=--,()()11010AC AF λλ⋅=--++=≠, ∴AC 与AF 不垂直,A 错误.E ,F 都在B ,D 上,又11//BD B D ,∴//EF BD ,BD ⊂平面ABCD ,EF ⊄平面ABCD ,∴//EF 平面ABCD ,B 正确AB 与EF 不平行,则1A B 与EF 的距离相等,∴AEF BEF S S ≠△△,∴C 错误A 到BEF 的距离就是A 到平面11BDDB 的距离,A 到11BDD B 的距离为22AC =1111224BEF S =⨯⨯=△,∴1134224A BEF V -=⨯⨯=是定值,D 正确.故选BD .48.(江苏省扬州市宝应中学2020-2021学年高三上学期开学测试)在正三棱柱ABC A B C '''-中,所有棱长为1,又BC '与B C '交于点O ,则( )A .AO =111222AB AC AA '++ B .AO B C '⊥C .三棱锥A BB O '-D .AO 与平面BB ′C ′C 所成的角为π6【答案】AC【解析】由题意,画出正三棱柱ABC A B C '''-如图所示,向量()()111222AO AB BO AB BC BB AB AC AB AA ''=+=++=+-+ 111222AB AC AA '=++,故选项A 正确;在AOC △中,1AC =,22OC,1OA ==, 222OA OC AC +≠,所以AO 和B C '不垂直,故选项B 错误;在三棱锥A BB O '-中,14BB O S '=,点A 到平面BB O '的距离即ABC 中BC 边上的高,所以h =以111334A BB O BB O V S h ''-==⨯=C 正确; 设BC 中点为D ,所以AD BC ⊥,又三棱柱是正三棱柱,所以AD ⊥平面BB C C '',所以AOD ∠即AO 与平面BB ′C ′C 所成的角,112cos 12OD AOD OA ∠===,所以3AOD π∠=,故选项D 错误.故选AC49.(山东省泰安肥城市2020届高三适应性训练(一))如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为ABCD 为矩形,CD =Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC所成角的余弦值为3C .三棱锥B ACQ -的体积为D .四棱锥Q ABCD -外接球的内接正四面体的表面积为【答案】BD【解析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,因为三角形PAD 为等边三角形,所以OP AD ⊥,因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD ,因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A ,(P C B ,因为点Q 是PD 的中点,所以Q ,平面PAD 的一个法向量为(0,1,0)m =,6(QC =,显然 m 与QC 不共线,所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则3602260n AQ x zn AC ⎧⋅==⎪⎨⎪⋅=+=⎩, 令=1x ,则y z ==(1,2,3)n =--,设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===,所以22cos 3θ=,所以B 正确;三棱锥B ACQ -的体积为1132B ACQ Q ABC ABCV V S OP --==⋅ 1116322=⨯⨯⨯=,所以C 不正确;设四棱锥Q ABCD -外接球的球心为)M a ,则MQ MD =,所以22222222a a ⎛⎫⎛++-=++ ⎪ ⎪ ⎝⎭⎝⎭,解得0a =,即M 为矩形ABCD 对角线的交点,所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为2x ,所以2236⎫=⎪⎪⎝⎭,得224x =,所以正四面体的表面积为244x ⨯=,所以D 正确.故选BD.50.(山东省滕州市第一中学2020-2021学年高二9月开学收心考试)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为△ABC 的重心,则111333PQ PA PB PC =++C .若0PA BC =,0PC AB =,则0PB AC =D .若四面体P ABC -各棱长都为2,M N ,分别为,PA BC 的中点,则1MN = 【答案】ABC 【解析】对于A ,1233AD AC AB =+,32AD AC AB ∴=+, 22AD AB AC AD ∴-=- , 2BD DC ∴=,3BD BD DC BC ∴=+=即3BD BC ∴=,故A 正确;对于B ,Q 为△ABC 的重心,则0QA QB QC ++=,33PQ QA QB QC PQ∴+++=()()()3PQ QA PQ QB PQ QC PQ ∴+++++=,3PA PB PC PQ ∴++=,即111333PQ PA PB PC ∴=++,故B 正确;对于C ,若0PA BC =,0PC AB =,则0PA BC PC AB +=,()0PA BC PC AC CB ∴++=,0PA BC PC AC PC CB ∴++=0PA BC PC AC PC BC ∴+-=,()0PA PC BC PC AC ∴-+= 0CA BC PC AC ∴+=,0AC CB PC AC ∴+=()0AC PC CB ∴+=,0AC PB ∴=,故C 正确;对于D ,111()()222MN PN PM PB PC PA PB PC PA ∴=-=+-=+- 1122MN PB PC PA PA PB PC ∴=+-=-- 222222PA PB PC PA PB PC PA PB PA PC PC PB --=++--+==2MN ∴=D 错误.故选ABC.三、填空题51.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++,若P ,A ,B ,C 四点共面,则实数t =_________.。
安顺市第三中学2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.复数i﹣1(i是虚数单位)的虚部是()A.1 B.﹣1 C.i D.﹣i2.已知e是自然对数的底数,函数f(x)=e x+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,则下列不等式中成立的是()A.a<1<b B.a<b<1 C.1<a<b D.b<1<a3.i是虚数单位,计算i+i2+i3=()A.﹣1 B.1 C.﹣i D.i4.阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i的最大值为()A.3 B.4 C.5 D.65.函数f(x)=3x+x的零点所在的一个区间是()A.(﹣3,﹣2) B.(﹣2,﹣1) C.(﹣1,0)D.(0,1)6.下列函数中,既是偶函数又在单调递增的函数是()A.B.C.D.7.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x的图象是()A.①B.②C.③D.④8.已知直线x+ay﹣1=0是圆C:x2+y2﹣4x﹣2y+1=0的对称轴,过点A(﹣4,a)作圆C 的一条切线,切点为B,则|AB|=()A.2 B.6 C.4D.29.若复数z=(其中a∈R,i是虚数单位)的实部与虚部相等,则a=()A.3 B.6 C.9 D.1210.高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为()A.720 B.270 C.390 D.30011.若点O和点F(﹣2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为()A.B.C.D.12.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数R2来刻画回归的效果,R2值越小,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是()A.0 B.1 C.2 D.3二、填空题。
上思县第三中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. “”是“一元二次方程x 2+x+m=0有实数解”的( )A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分非必要条件2. 设a=lge ,b=(lge )2,c=lg ,则( )A .a >b >cB .c >a >bC .a >c >bD .c >b >a3. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种C .270种D .540种4. 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )A .B .C .D .5. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x << 6. 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )A .B .C .D .7. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .988. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .09. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.10.已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t=有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4 B .13[,)86 C .31[,)162 D .3[,3)811.下列说法中正确的是( ) A .三点确定一个平面 B .两条直线确定一个平面C .两两相交的三条直线一定在同一平面内D .过同一点的三条直线不一定在同一平面内 12.把函数y=cos (2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f (x )的图象关于直线x=对称,则φ的值为( ) A .﹣B .﹣C .D .二、填空题13.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .14.已知α为钝角,sin (+α)=,则sin (﹣α)= .15.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答) 16.△ABC 中,,BC=3,,则∠C=.17.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 . 18.已知复数,则1+z 50+z 100= .三、解答题19.已知函数f (x )=|x ﹣m|,关于x 的不等式f (x )≤3的解集为[﹣1,5]. (1)求实数m 的值;(2)已知a ,b ,c ∈R ,且a ﹣2b+2c=m ,求a 2+b 2+c 2的最小值.20.如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:BC1∥平面ACD1.(2)当时,求三棱锥E﹣ACD1的体积.21.已知a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC.(I)求C的值;(Ⅱ)若c=2a,b=2,求△ABC的面积.22.若已知,求sinx 的值.23.(1)已知f (x )的定义域为[﹣2,1],求函数f (3x ﹣1)的定义域; (2)已知f (2x+5)的定义域为[﹣1,4],求函数f (x )的定义域.24.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:313b a+≥.上思县第三中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:由x2+x+m=0知,⇔.(或由△≥0得1﹣4m≥0,∴.),反之“一元二次方程x2+x+m=0有实数解”必有,未必有,因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件.故选A.【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.2.【答案】C【解析】解:∵1<e<3<,∴0<lge<1,∴lge>lge>(lge)2.∴a>c>b.故选:C.【点评】本题主要考查对数的单调性.即底数大于1时单调递增,底数大于0小于1时单调递减.3.【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种.故选D.4.【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P==,故选:B.【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题.5. 【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.1 6. 【答案】 D【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,故两人都击不中的概率为(1﹣)(1﹣)=,故目标被击中的概率为1﹣=,故选:D .【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.7. 【答案】A【解析】解:因为f (x+4)=f (x ),故函数的周期是4 所以f (7)=f (3)=f (﹣1), 又f (x )在R 上是奇函数,所以f (﹣1)=﹣f (1)=﹣2×12=﹣2,故选A .【点评】本题考查函数的奇偶性与周期性.8. 【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P ,底面四边形的个顶点为A 、B 、C 、D .分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA 、DC ;PB 、AD ;PC 、AB ;PD 、BC )或(PA 、BC ;PD 、AB ;PC 、AD ;PB 、DC )那么安全存放的不同方法种数为2A 44=48.故选B .【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖. 9. 【答案】D【解析】{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5AB ∴=,故选D.10.【答案】C【解析】试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则314t <<,由1324x +=,可得14x =,由213x =,可得3x =(负舍),即有12111,4223x x ≤<≤≤,即221143x ≤≤,则()212123133,162x f x x x ⎡⎫=⋅∈⎪⎢⎣⎭.故本题答案选C.考点:数形结合.【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.11.【答案】D【解析】解:对A ,当三点共线时,平面不确定,故A 错误; 对B ,当两条直线是异面直线时,不能确定一个平面;故B 错误;对C ,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C 错误; 对D ,由C 可知D 正确. 故选:D .12.【答案】B【解析】解:把函数y=cos (2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f (x )=cos[2(x+)+φ]=cos (2x+φ+)的图象关于直线x=对称,则2×+φ+=k π,求得φ=k π﹣,k ∈Z ,故φ=﹣,故选:B .二、填空题13.【答案】 6,12,2,n n a n n n n *=⎧⎪=+⎨≥∈⎪⎩N【解析】【解析】()()12312n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅11:6n a ==;()()()123112312:12 1n n n n a a a a a n n a a a a n n --≥⋅=++=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅故22:n n n a n+≥=14.【答案】﹣ .【解析】解:∵sin(+α)=, ∴cos(﹣α)=cos[﹣(+α)]=sin(+α)=,∵α为钝角,即<α<π,∴<﹣,∴sin(﹣α)<0,∴sin(﹣α)=﹣=﹣=﹣,故答案为:﹣.【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号.15.【答案】24【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,故答案为:24.【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.16.【答案】【解析】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C为三角形的内角,且c<a,∴0<∠C<,则∠C=.故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C的范围.17.【答案】(x﹣1)2+(y+1)2=5.【解析】解:设所求圆的圆心为(a,b),半径为r,∵点A(2,1)关于直线x+y=0的对称点A′仍在这个圆上,∴圆心(a,b)在直线x+y=0上,∴a+b=0,①且(2﹣a)2+(1﹣b)2=r2;②又直线x﹣y+1=0截圆所得的弦长为,且圆心(a,b)到直线x﹣y+1=0的距离为d==,根据垂径定理得:r2﹣d2=,即r2﹣()2=③;由方程①②③组成方程组,解得;∴所求圆的方程为(x﹣1)2+(y+1)2=5.故答案为:(x﹣1)2+(y+1)2=5.18.【答案】i.【解析】解:复数,所以z2=i,又i2=﹣1,所以1+z50+z100=1+i25+i50=1+i﹣1=i;故答案为:i.【点评】本题考查了虚数单位i的性质运用;注意i2=﹣1.三、解答题19.【答案】【解析】解:(1)|x﹣m|≤3⇔﹣3≤x﹣m≤3⇔m﹣3≤x≤m+3,由题意得,解得m=2;(2)由(1)可得a﹣2b+2c=2,由柯西不等式可得(a2+b2+c2)[12+(﹣2)2+22]≥(a﹣2b+2c)2=4,∴a2+b2+c2≥当且仅当,即a=,b=﹣,c=时等号成立,∴a2+b2+c2的最小值为.【点评】本题主要考查绝对值三角不等式、柯西不等式的应用,属于基础题.20.【答案】【解析】(1)证明:∵AB∥C1D1,AB=C1D1,∴四边形ABC1D1是平行四边形,∴BC1∥AD1,又∵AD1⊂平面ACD1,BC1⊄平面ACD1,∴BC1∥平面ACD1.(2)解:S△ACE=AEAD==.∴V=V===.【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题.21.【答案】【解析】解:(I)∵a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC,∴sinCsinA=sinAcosC,∴sinCsinA﹣sinAcosC=0,∴sinC=cosC,∴tanC==,由三角形内角的范围可得C=;(Ⅱ)∵c=2a,b=2,C=,∴由余弦定理可得c2=a2+b2﹣2abcosC,∴4a2=a2+12﹣4a•,解得a=﹣1+,或a=﹣1﹣(舍去)∴△ABC的面积S=absinC==22.【答案】【解析】解:∵,∴<<2π,∴sin()=﹣=﹣.∴sinx=sin[(x+)﹣]=sin()cos﹣cos()sin=﹣﹣=﹣.【点评】本题考查了两角和差的余弦函数公式,属于基础题.23.【答案】【解析】解:(1)∵函数y=f(x)的定义域为[﹣2,1],由﹣2≤3x﹣1≤1得:x∈[﹣,],故函数y=f(3x﹣1)的定义域为[﹣,];’(2)∵函数f(2x+5)的定义域为[﹣1,4],∴x∈[﹣1,4],∴2x+5∈[3,13],故函数f(x)的定义域为:[3,13].24.【答案】【解析】【命题意图】本题考查基本不等式、绝对值三角不等式等基础知识,意在考查转化思想和基本运算能力.。
肇庆市2023届高中毕业班第一次教学质量检测数学本试题共4页,考试时间120分钟,满分150分注意事项:1.答题前,考生先将自己的信息填写清楚、准确,将条形码准确粘贴在条形码粘贴处。
2.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效。
3.答题时请按要求用笔,保持卡面清洁,不要折叠,不要弄破、弄皱,不得使用涂改液、修正带、刮纸刀。
考试结束后,请将本试题及答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,已知全集{}4,U x x x =<∈Z ,集合{}3,1,0,1A =--,{}2,1,0,1B =--,{}1,1,2,3C =-,图中阴影部分表示集合M ,则M =A.{}1,0,1-B.{}3,2,0,2,3--C.{}3,2,2,3,4-- D.{}1,1-2.同时满足以下三个条件的一个复数是.①复数在复平面内对应的点位于第三象限;②复数的模为5;③复数的实部大于虚部.A.43i - B.2i-- C.34i-- D.43i--3.设sin 22a =,2log sin 2b =,sin 22c =,则下列关系正确的是A.a c b >> B.c a b >> C.b a c>> D.a b c>>4.已知{}n a 是各项均为正数的等差数列,且6710220a a a ++=,则78a a ⋅的最大值为A.10B.20C.25D.505.下列选项正确的是A.A B A ⋂=是A B ⊆的必要不充分条件B.在ABC △中,sin sin A B =是A B =的充要条件C.ln ln a b >是22ab>的充要条件D.命题“x ∀∈R ,210x x ++>”的否定是:“x ∀∈R ,210x x ++≤”6.已知函数()()y f x x =∈R ,满足导函数()()f x f x '<恒成立,则下列选项正确的是A.()()e 20212022f f = B.()()e 20212022f f <C.()()e 20212022f f > D.()()2e 20212022f f >7.22sin 1252cos15cos5512sin 50︒︒-︒-︒的值为.A.12-B.12C.1D.28.《周髀算经》是我国最早的数学典籍,书中记载:我国早在商代时期,数学家商高就发现了勾股定理,亦称商高定理三国时期数学家赵爽创制了如图2(1)的“勾股圆方图”(以弦为边长得到的正方形ABCD 是由4个全等的直角三角形再加上中间的那个小正方形组成),用数形结合法给出了勾股定理的详细证明.现将“勾股圆方图”中的四条股延长相同的长度得到图2(2).在图2(2)中,若6AF =,BF =,G ,F 两点间的距离为,则“勾股圆方图”中小正方形的面积为A.9B.4C.3D.8二、选择题:本题共4小题,每小题5分,共20分。
2019-2020学年广东省联考联盟高二上学期质量检测数学试题及答案一、单选题1.命题“x R ∀∈,22x x ≠”的否定是( ) A .x R ∀∈,22x x = B .0x R ∃∉,2002x x = C .0x R ∃∈,2002x x ≠ D .0x R ∃∈,2002x x =【答案】D【解析】全称命题的否定是特称命题.第一步是将全称量词改写为存在量词,第二步是将结论加以否定. 【详解】根据全称命题的否定的原则,命题“x R ∀∈,22x x ≠”的否定是0x R ∃∈,2002x x =,故本题选D. 【点睛】本题考查了全称命题的否定,改量词,否定结论是关键.2.若直线过点(2,4),(1,4+,则此直线的倾斜角是()A .30︒B .60︒C .120︒D .150︒【答案】C【解析】根据斜率的坐标表示以及tan k α=,故可得结果. 【详解】由题意知,直线的斜率k = 即直线的倾斜角α满足tan α=又0180α︒︒≤<,120α︒∴=,故选:C 【点睛】本题主要考查斜率与倾斜角的关系,属基础题.3.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( ) A.(7,B .(14,C .(7,±D .(7,【答案】C【解析】根据抛物线的定义,可得p x ,代入方程,可得结果. 【详解】根据抛物线28y x =,知4p =,根据抛物线的定义可知点P 到其焦点的距离 等于点P 到其准线2x =-的距离得7p x =,把p x 代入抛物线方程解得p y =±,故选:C 【点睛】本题主要考查抛物线的定义,属基础题.4.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .m //α,n //α,则m //nB .m α⊂,n //α,则m //nC .m α⊥,n α⊥,则m //nD .α//β,m α⊂,n β⊂,则m //n【答案】C【解析】根据线面位置关系的判定与性质,对选项逐一判定,即可得到答案。
【详解】由题意,对于A 中,直线m ,n 也可能相交或异面,所以不正确;对于B 中,直线m ,n 也可能异面,所以不正确; 对于C 中,根据同垂直与一个平面的两直线平行,所以C 是正确的;对于D 中,直线m ,n 也可能异面,所以不正确. 故选:C . 【点睛】本题主要考查了线线,线面,面面之间的关系判定问题,其中解答中熟记线面位置关系的判定定理和性质定理,以及两直线的位置关系是解答的关键,着重考查了推理与论证能力,属于基础题.5.正方体的棱长为a ,且正方体各面的中心是一个几何体的顶点,这个几何体的棱长为( )A .2a B .12aC .3a D .13a【答案】A【解析】利用数形结合,可得该几何体,利用勾股定理,可得结果. 【详解】 如图,该几何体是正八面体, 222222a a a ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭故选:A 【点睛】本题考查几何体的认识以及棱长的求法,属基础题. 6.已知直线1:(1)2l x m y m ++=-与2:24160l mx y ++=,若1l //2l ,则实数m 的值为( ) A .2或-1 B .1 C .1或-2 D .-2【答案】B【解析】根据平面线线平行的充要条件12210A B A B -=且12210AC A C -≠,可得结果.【详解】由1l //2l ,42(1)016(1)4(2)m m m m -+=⎧∴⎨+≠-⎩,解得1m =.故选:B 【点睛】本题主要平面线线平行的充要条件,属基础题.7.曲线221169x y +=与曲线221(916)169x y k k k +=<<--的()A .长轴长相等B .短轴长相等C .焦距相等D .离心率相等【答案】C【解析】可以判断出两个曲线的类型,然后求出它们的焦距,这样可以选出正确的答案. 【详解】曲线221169x y +=表示椭圆,焦距为2c ==,当916k <<时,曲线221169x y k k +=--表示双曲线,焦距为2c ===,故本题选C. 【点睛】本题考查了通过曲线方程识别曲线的能力,考查了椭圆与双曲线方程中,,,a b c 之间的关系.8.在平行六面体1111ABCD A B C D -中,若1123AC xAB yBC zDD =-+,则x y z ++=( )A .23B .56C .1D .76【答案】B【解析】在平行六面体中,有11AC AB BC CC =++,再根据11CC DD =,所以有11AC AB BC DD =++,有已知可求出,,x y z 的值. 【详解】∵在平行六面体1111ABCD A B C D -中,11AC AB BC CC =++,11CC DD =,∴11AC AB BC DD =++,1123AC xAB yBC zDD =-+∴111,,23x y z ==-=,即56x y z ++=. 故选:B 【点睛】本题考查空间向量,意在考查数形结合和转化与化归,属于简单题型.9.直线1y x =+被椭圆2224x y +=所截得的弦的中点坐标是 ( ) A .(,23-) B .(13-,)C .(,13-)D .(23-,)【答案】D 【解析】【详解】设弦为AB ,1122(,),(,),A x y B x y AB 中点为00(,)M x y2222112224,24x y x y ∴+=+=22221212220x x y y ∴+-=-1212002()0,2220AB x x y y k x y ∴++=++⋅=0000002120,220,,33x y x x x y ∴+=∴++=∴=-=,选D.10.如图,一个圆柱的底面半径为3,高为2,若它的两个底面圆周均在球O 的球面上,则球O 的表面积为( )A .323πB .16πC .8πD .4π【答案】B【解析】采用数形结合,根据勾股定理可得球的半径,然后利用球的表面积公式,可得结果. 【详解】根据题意,画图如下:则OA R =,3O A r '==12hOO '==, 故在Rt OO A '∆中,22132OA OO O A ''+=+=,2R ∴=,2244216S R πππ∴==⋅=球.故选:B 【点睛】本题主要考查球的表面积,属基础题.11.已知双曲线2222:1(0,0)x y E a b a b -=>>,过原点O 任作一条直线,分别交曲线两支于点P ,Q (点P 在第一象限),点F 为E 的左焦点,且满足||3||PF FQ =,||OP b =,则E 的离心率为( ) A 3B 2C 5D .2【答案】A【解析】利用右焦点1F ,得到四边形1PFQF 为平行四边形,然后根据双曲线定义,可得,PF FQ 的值且90PQF ︒∠=,最后利用勾股定理,可得结果. 【详解】设双曲线右焦点为1F ,由题意可知:P 关于原点的对称点为Q , 则||||OP OQ =,∴四边形1PFQF 为平行四边形,则1||PF FQ =,1||PF QF =,由||3||PF FQ =,根据双曲线的定义1||2PF PF a -=,1PF a ∴=,||OP b =,1OF c =,190OPF ︒∴∠=,在1QPF ∆中,||2PQ b =,13QF a =,1PF a =,222(2)(3)b a a ∴+=,整理得222b a =,则双曲线的离心率c e a ===故选:A. 【点睛】本题主要考查双曲线的离心率,难点在于可以得到四边形1PFQF 为平行四边形,属中档题.12.一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:(1)三角形;(2)四边形;(3)五边形;(4)六边形.其中正确的结论是( ) A .(1)(3) B .(2)(4) C .(2)(3)(4)D .(1)(2)(3)(4)【答案】B【解析】因为正方体容器中盛有一半容积的水,为了怎样转动,其水面总是正方体的中心,于是过正方体的一条棱和中心可作一截面,截面形状可以是长方形或矩形,所以(2)是正确的;过正方体的一个面相邻两边的中点以及正方体的中心作一截面,得截面形状为正六边形,所以(4)是正确; 同时过正方体的中心的平面截正方体的表面得到的截面不可能是三角形和五边形,故选B. 【考点】空间几何体的结构特征.二、填空题13.已知椭圆2212516x y +=上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为【答案】7【解析】试题分析:由椭圆定义知:122PF PF a +=,所以P 到另一焦点距离为7. 【考点】椭圆的定义.14.命题“2240x ax --->不成立”是真命题,则实数a 的取值范围是________. 【答案】[2,2]-【解析】根据“正难则反”,使用等价命题,可得“对于任意的x ∈R ,不等式2240x ax ---≤恒成立”,结合∆,可得结果.【详解】命题“2240x ax --->不成立”是真命题, 即对于任意的x ∈R , 不等式2240x ax ---≤恒成立,24160a ∴∆=-≤,解之得22a -≤≤,故答案为:[2,2]-. 【点睛】本题考查根据命题真假求参数,属基础题.15.圆锥的侧面展开图为一个扇形,其圆心角为23π,半径为3,则此圆锥的体积为________.【答案】3【解析】根据弧长公式l R α=,可得l ,然后可得圆锥底面的半径r ,利用勾股定理可得圆锥的高,最后利用锥体体积公式,可得结果. 【详解】圆锥侧面展开图是圆心角为23π,半径为3的扇形, 则圆锥的母线长为3l =,底面周长即扇形的弧长为2323ππ⨯=,所以底面圆的半径为1r =, 所以底面圆的面积为2r ππ⨯=,圆锥的高为h =所以圆锥的体积为133V π=⨯⨯.故答案为:3【点睛】 本题考查根据圆锥的展开图求圆锥的体积,重点在于求圆锥的高和底面半径,属基础题.16.已知圆22:1O x y +=,点P ,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,记C 为圆O 上到点P 距离最远的点,则四边形PACB 的面积为________.【答案】2【解析】根据四边形P ACB 的面积为12S PC AB =⋅,计算,PC AB ,可得结果.【详解】由平面几何知识可知:||3PC =,||||PA PB ==,30CPA ︒∠=,∴四边形P ACB 的面积为1233022S ︒=⨯⨯=.【点睛】 本题主要考查圆的应用,属基础题.三、解答题17.已知p :式子2log ()k a -(a 为常数)有意义,q :方程22113x y k k +=+-(k 为实数)表示双曲线.若q ⌝是p 的充分不必要条件,求实数a 的取值范围.【答案】1a <-【解析】分别计算出q ⌝,p 成立的条件,然后根据q ⌝是p 的充分不必要条件,等价转换为集合之间的关系,可得结果.【详解】由p :式子有意义,则k a >, 由中22:113x y q k k +=+-表示双曲线,则(1)(3)0k k +-<,即1k <-或3k >,:[1,3]q k ∴⌝∈-.q ⌝∵是p 的充分不必要条件,1a ∴<-.【点睛】本题主要考查根据充分必要条件求参数,属基础题. 18.已知直线1:23l x y -=与直线2:4350l x y --=.(1)求直线1l 与2l 的交点坐标;(2)求经过直线1l 与2l 的交点,且与直线320x y -+=垂直的直线l 的方程.【答案】(1)(2,1);(2)370x y +-=【解析】(1)联立方程,可得结果.(2)根据两条直线垂直,假设直线l 方程,结合(1)的结论,根据点斜式,可得结果.【详解】解:(1)由23435x yx y-=⎧⎨-=⎩,解得21xy=⎧⎨=⎩,∴两直线的交点坐标为(2,1).(2)设与直线320x y-+=垂直的直线l的方程为30x y C++=,点(2,1)在直线l上,3210,7C C∴⨯++==-,故所求直线l的方程为370x y+-=.【点睛】本题主要考查平面线线的位置关系,属基础题19.已知关于x,y的方程22:420C x y x y m+--+=.(1)若方程C表示圆,求实数m的取值范围;(2)若圆C与直线:240l x y+-=相交于M,N两点,且||5MN=,求m的值.【答案】(1)5m<;(2)4m=【解析】(1)先将圆的一般方程化为标准方程,可得22(2)(1)5x y m-+-=-,然后根据20r>,可得结果.(2)根据圆的弦长公式.【详解】(1)22420x y x y m+--+=化简得22(2)(1)5x y m-+-=-,则当5m<时,方程C表示以(2,1)为半径的圆.(2)圆心(2,1)C到直线l的距离为22521d ==+. 22255555m ⎛⎫⎛⎫∴-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得4m =.【点睛】本题考查表示圆的方程满足条件以及圆的弦长公式,属基础题.20.如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC PCD 90∠∠==,BAC CAD 60∠∠==,设E 、F 分别为PD 、AD 的中点.(Ⅰ)求证:CD AC ⊥;(Ⅱ)求证:PB //平面CEF ;【答案】(Ⅰ)见解析; (Ⅱ)见解析.【解析】(Ⅰ)推导出PA CD ⊥,PC CD ⊥,从而CD ⊥平面PAC ,由此能证明CD AC ⊥.(Ⅱ)推导出CF//AB ,CF //平面PAB ,EF //PA ,EF //平面PAB ,从而平面CEF //平面PAB ,由此能证明PB //平面CEF .【详解】(Ⅰ)PA ⊥平面ABCD ,PA CD ∴⊥.PCD 90∠=,PC CD.∴⊥PA PC P ⋂=,CD ∴⊥平面PAC , AC ⊂平面PAC ,CD AC.∴⊥(Ⅱ)由(Ⅰ)得ACD 90∠=. 在直角三角形ACD 中,CAD 60∠=,CF AF =,ACF 60∠∴=,CF//AB.∴CF ⊄平面PAB ,AB ⊂平面PAB ,CF//∴平面PAB. E 、F 分别是PD 、AD 中点,EF//PA ∴,又EF ⊄平面PAB ,PA ⊂平面PAB ,EF //∴平面PAB . CF EF F ⋂=,∴平面CEF //平面PAB.PB ⊂平面PAB ,PB//∴平面CEF.【点睛】本题考查了线线垂直、线面平行的证明,其中解答中熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.21.如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1A BA 所成的二面角(是指不超过90︒的角)的余弦值.【答案】310(2)23. 【解析】(1)根据题意,,以11,,AA AB AC AB AC AA ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭为单位正交基底建立空间直角坐标系A xyz -,求出两直线的方向向量,根据向量夹角公式,即可求出结果;(2)分别求出两平面的法向量,根据向量夹角公式,求出两法向量夹角,进而可得出二面角的余弦值.【详解】(1) 在直三棱柱111A B C ABC -中,因为AB AC ⊥,因此,以11,,AA AB AC AB AC AA ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭为单位正交基底建立空间直角坐标系A xyz -,则(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,1(0,0,4)A ,(1,1,0)D ,1(0,2,4)C , 1(2,0,4)A B ∴=-,1(1,1,4)C D =--, 111111cos ,A B C D A B C D A B C D ⋅∴<>=310102018==⋅, ∴异面直线1A B 与1C D 所成角的余弦值为310(2)(0,2,0)AC =是平面1ABA 的一个法向量,设平面1ADC 的法向量为(,,)m x y z =,(1,1,0)AD =,1(0,2,4)AC =10,240,m AD x y m AC y z ⎧⋅=+=⎪∴⎨⋅=+=⎪⎩,取1z =,得2y =-,2x =. ∴平面1ADC 的法向量为(2,2,1)m =-,设平面1ADC 与1ABA 所成二面角为θ,cos cos ,AC m θ∴=<>42329-==, ∴平面1ADC 与1ABA 所成二面角的余弦值为23.【点睛】本题主要考查求异面直线所成的角,以及二面角,灵活运用空间向量的方法求解即可,属于常考题型.22.已知抛物线2:2(0)C y px p =>的焦点F 与椭圆22:143x y Γ+=的右焦点重合,过焦点F 的直线l 交抛物线于A ,B 两点. (1)求抛物线C 的方程;(2)记抛物线C 的准线与x 轴的交点为H ,试问:是否存在λ,使得()AF FB λλ=∈R ,且22||||40HA HB +≥成立?若存在,求实数λ的取值范围;若不存在,请说明理由.【答案】(1)24y x =;(2)存在;(0,2[2)⋃++∞【解析】(1)根据抛物线的焦点,02p F ⎛⎫ ⎪⎝⎭,结合椭圆的焦点,可得结果.(2)巧设直线的方程1x ty =+,联立直线与抛物线方程,利用韦达定理,可得22||||HA HB +,然后根据AF FB λ=,可得到,t λ的式子,最后可得结果.【详解】(1)依题意:在椭圆22:143x y Γ+=中,24a =,23b =,则2221c a b =-=,所以点(1,0)F ,则12p =,即2p =.故抛物线C 的方程为24y x =.(2)设直线:1l x ty =+,()11,A x y ,()22,B x y ,联立241y x x ty ⎧=⎨=+⎩,消去x ,得2440y ty --=. 因为216160t ∆=+>,所以121244y y t y y +=⎧⎨=-⎩①, 且112211x ty x ty =+⎧⎨=+⎩.又AF FB λ=,则()()11221,1,x y x y λ--=-,即12y y λ,代入①,得222(1)44y t y λλ-=⎧⎨-=-⎩, 消去2y ,得2142t λλ=+-.易得(1,0)H -,则()()2222221122||||11HA HB x y x y +=+++++ 22||||HA HB +()222212121222x x x x y y =++++++由11221,1x ty x ty =+=+22||||HA HB +()()()2221212148t y y t y y =+++++22||||HA HB +()()221168448t t t t =+++⋅+ 22||||HA HB +42164016t t =++.由4216401640t t ++≥, 解得212t ≥或23t ≤-(舍去), 将212t ≥代入2142t λλ=+-, 得140λλ+-≥, 又由题意,可得0λ>, 解得02λ<≤2λ≥.故存在满足题意的实数λ,其取值范围是(0,2[2)-⋃++∞.【点睛】本题主要考查直线与抛物线的几何关系的应用,难点在于得到22||||HA HB +,直线与圆锥曲线的应用,往往需要联立方程以及韦达定理,耐心计算,属中档题。