2013暑假数学培优4 一元一次方程 二元一次方程组 一元二次方程
- 格式:doc
- 大小:279.00 KB
- 文档页数:4
数学培优专题讲义:一元二次方程一.知识的拓广延伸及相关史料1.一元二次方程几种解法之间的关系解一元二次方程有下列几种常用方法:(1)配方法:如,经配方得2670x x ++=,再直接用开平方法;2(3)2x +=(2)公式法;(3)因式分解法。
这三种方法并不是孤立的,直接开平方法,实际也是因式分解法,解方程,只2670x x ++=要变形为即可,或原方程22(3)0x +-=经配方化为,再求解时,2670x x ++=2(3)2x +=还是归到用平方差公式的因式分解法,所以配方法归为用因式分解法的手段。
公式法在推导公式过程中用的是配方法和直接开平方法,因此,它还是归到因式分解法,所不同的是,公式法用一元二次方程的系数来表示根,因而可以作为公式。
由此可见,对因式分解法应予以足够的重视。
因式分解法还可推广到高次方程。
2.我国古代的一元二次方程提起代数,人们自然就把它和方程联系起来。
事实上,过去代数的中心问题就是对方程的研究。
我国古代对代数的研究,特别是对方程解法的研究有着优良的传统,并取得了重要成果。
下面是我国南宋数学家杨辉在1275年提出的一个问题:”直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?”答:”阔二十四步,长三十六步.”这里,我们不谈杨辉的解法,只用已学过的知识解决上面的问题.上面的问题选自杨辉所著的《田亩比类乘除算法》。
原题另一个提法是:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步?”这个问题同样可以类似求解.3. 掌握数学思想方法,以不变应万变。
本章内容蕴涵了丰富的数学方法,主要有转化思想、类比思想、降次法、配方法等。
(1)转化思想我们知道,解方程的过程就是不断地通过变形把原方程转化为与它等价的最简单方程的过程。
因此,转化思想就是解方程过程中思维活动的主导思想。
在本章,转化无所不在,无处不有,可以说这是本章的精髓和特色之一,其表现主要有以下方面:①未知转化为已知,这是解方程的基本思路:②一元二次方程转化为一元一次方程,这是通过将原方程降次达到的:③特殊转化为一般,一般转化为特殊。
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根. ()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】 ()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得. ()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍.【详解】解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根, 0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+,221223x x +=, 224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去,2k ∴=-.【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.2.已知:关于的方程有两个不相等实数根.(1) 用含的式子表示方程的两实数根;(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.∴由求根公式,得.∴或(II),∴.而,∴,.由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k(k-3)=9>0,再利用求根公式即可求出方程的两根即可;(2)有(1)可知方程的两根,再有条件x1>x2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系.请你解答下列问题:3. y与x的函数关系式为:y=1.7x(x≤m);或( x≥m) ;4.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S的值能为2,此时k的值为2.考点:一元二次方程根的判别式;根与系数的关系.5.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w元,根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x ﹣50)2+4000.∵a=﹣10<0,∴当x=50时,w取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.6.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.(1)求y与x之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?【答案】(1)y=-10x+780;(2) 57;(3)当售价为59元时,利润最大,为3610元【解析】【分析】(1)根据售价每降价1元,每星期可多卖10箱,设售价x元,则多销售的数量为60-x,(2)解一元二次方程即可求解,(3)表示出最大利润将函数变成顶点式即可求解.【详解】解:(1)∵售价每降价1元,每星期可多卖10箱,设该苹果每箱售价x元(40≤x≤60),则y=180+10(60-x)=-10x+780,(40≤x≤60),(2)依题意得:(x-40)(-10x+780)=3570,解得:x=57,∴当每箱售价为57元时,每星期的销售利润达到3570元.(3)设每星期的利润为w,W=(x-40)(-10x+780)=-10(x-59)2+3610,∵-10 0,二次函数向下,函数有最大值,当x=59时, 利润最大,为3610元.【点睛】本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键.7.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x ,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x ,根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.8.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。
第01讲一元二次方程的定义与解法(核心考点讲与练)【基础知识】一.一元一次方程的定义(1)一元一次方程的定义只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.通常形式是ax+b=0(a,b为常数,且a≠0).一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式.这里a是未知数的系数,b是常数,x 的次数必须是1.(2)一元一次方程定义的应用(如是否是一元一次方程,从而确定一些待定字母的值)这类题目要严格按照定义中的几个关键词去分析,考虑问题需准确,全面.求方程中字母系数的值一般采用把方程的解代入计算的方法.二.二元一次方程组的解(1)定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.(2)一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.三.一元二次方程的定义(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.(2)概念解析:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.四.一元二次方程的一般形式(1)一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(2)要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.五.一元二次方程的解(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.(2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0).六.解一元二次方程-直接开平方法形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±.注意:①等号左边是一个数的平方的形式而等号右边是一个非负数.②降次的实质是由一个二次方程转化为两个一元一次方程.③方法是根据平方根的意义开平方.七.解一元二次方程-配方法(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.八.解一元二次方程-公式法(1)把x(b2﹣4ac≥0)叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.(2)用求根公式解一元二次方程的方法是公式法.(3)用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值(注意符号);②求出b2﹣4ac的值(若b2﹣4ac<0,方程无实数根);③在b2﹣4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.九.解一元二次方程-因式分解法(1)因式分解法解一元二次方程的意义因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).(2)因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.十.换元法解一元二次方程1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.【考点剖析】一.一元二次方程的定义(共3小题)1.(2022春•泰兴市校级月考)下列方程中,一定是一元二次方程的是()A.B.(x+1)(x﹣1)=x2﹣xC.5x2﹣4=0 D.ax2+bx+c=02.(2021秋•宜兴市月考)已知关于x的方程(m﹣1)x|m|+1+(2m+1)x﹣m=0是一元二次方程,则m=.3.(2021秋•玉屏县期中)向阳中学数学兴趣小组对关于x的方程(m+1)(m﹣2)x﹣1=0提出了下列问题:(1)是否存在m的值,使方程为一元二次方程?若存在,求出m的值,并解此方程;(2)是否存在m的值,使方程为一元一次方程?若存在,求出m的值,并解此方程.二.一元二次方程的一般形式(共4小题)4.(2021秋•南京期末)一元二次方程2x2﹣1=4x化成一般形式后,常数项是﹣1,一次项系数是()A.2 B.﹣2 C.4 D.﹣45.(2021秋•海州区校级期中)一元二次方程x2﹣3x+1=0中,二次项系数和一次项系数分别为()A.1、0 B.1、3 C.1、﹣3 D.﹣1、﹣36.(2021秋•黄石期末)将方程2(x﹣1)2=3﹣5x化为一般形式是.7.(2020秋•常州期中)已知关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0.(1)求m的值;(2)求此时一元二次方程的解.三.一元二次方程的解(共5小题)8.(2021秋•金湖县期末)若a为方程x2+2x﹣4=0的解,则a2+2a﹣8的值为()A.2 B.4 C.﹣4 D.﹣129.(2022•常州模拟)已知a是方程2x2﹣7x﹣1=0的一个根,则代数式a(2a﹣7)+5=.10.(2022•邗江区一模)关于x的方程x2+nx﹣5m=0(m、n为实数且m≠0),m恰好是该方程的根,则m+n的值为.11.(2021•南海区二模)若关于x,y的二元一次方程组的解x>0,y>0.(1)求a的取值范围;(2)若x是一个直角三角形的直角边长,y是其斜边长,此三角形另一条直角边的长为方程m2﹣8m+16=0的解,求这个直角三角形的面积.12.(2021秋•高港区期中)定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0,那么我们称这个方程为“凤凰方程”.(1)判断一元二次方程3x2﹣4x﹣7=0是否为凤凰方程,说明理由.(2)已知2x2﹣mx﹣n=0是关于x的凤凰方程,若m是此凤凰方程的一个根,求m得值.四.解一元二次方程-直接开平方法(共4小题)13.(2021秋•盐都区期末)一元二次方程x2﹣25=0的解为()A.x1=x2=5 B.x1=5,x2=﹣5 C.x1=x2=﹣5 D.x1=x2=2514.(2021秋•东台市期中)解方程:2x2=6.15.(2020秋•邗江区校级月考)求满足条件的x值:(1)3(x﹣1)2=12;(2)x2﹣3=5.16.(2018秋•鼓楼区期末)求4x2﹣25=0中x的值.五.解一元二次方程-配方法(共3小题)17.(2020秋•香洲区期末)解方程:x2﹣4x+1=0(配方法).18.(2022•碑林区校级三模)解方程:2x2﹣4x﹣1=0(用配方法)19.(2019秋•榕城区期中)用配方法解方程:2x2﹣4x=1.六.解一元二次方程-公式法(共3小题)20.(2019•合浦县二模)解方程:x2+3x﹣2=0.21.(2019•鼎城区模拟)解方程:2x2﹣3x﹣1=0.22.(2019•常德)解方程:x2﹣3x﹣2=0.七.解一元二次方程-因式分解法(共2小题)23.(2021秋•广陵区期末)解方程:(1)x2+5x+4=0.(2)4x(x﹣2)﹣(x﹣2)=0.24.(2021秋•泗阳县期末)解下列方程:(1)x2﹣4x﹣12=0;(2)x(x﹣3)=﹣2(x﹣3).八.换元法解一元二次方程(共3小题)25.(2022春•射阳县校级月考)已知(x2+y2+1)(x2+y2﹣3)=5,则x2+y2的值为()A.0 B.4 C.4或﹣2 D.﹣226.(2021秋•山亭区期末)若(a2+b2)2﹣2(a2+b2)﹣3=0,则a2+b2=.27.(2020春•开江县期末)基本事实:“若ab=0,则a=0或b=0”.方程x2﹣x﹣6=0可通过因式分解化为(x﹣3)(x+2)=0,由基本事实得x﹣3=0或x+2=0,即方程的解为x=3或x=﹣2.(1)试利用上述基本事实,解方程:3x2﹣x=0;(2)若实数m、n满足(m2+n2)(m2+n2﹣1)﹣6=0,求m2+n2的值.【过关检测】一.选择题(共5小题)1.(2019•怀集县一模)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.2.(2019秋•竞秀区期末)将方程x2+8x+9=0配方后,原方程可变形为()A.(x+4)2=7 B.(x+4)2=25 C.(x+4)2=﹣9 D.(x+8)2=73.(2021秋•顺德区月考)把一元二次方程x2+2x=5(x﹣2)化成一般形式,则a,b,c的值分别是()A.1,﹣3,2 B.1,7,﹣10 C.1,﹣5,12 D.1,﹣3,104.(2019秋•苏州期末)下列方程中,关于x的一元二次方程是()A.x+2=3 B.x+y=1 C.x2﹣2x﹣3=0 D.x2 15.(2021•吴中区开学)方程(x+1)2=1的根为()A.0或﹣2 B.﹣2 C.0 D.1或﹣1二.填空题(共3小题)6.(2018春•商南县期末)若(x﹣1)2=4,则x=.7.(2018春•西城区期末)将一元二次方程x2+8x+13=0通过配方转化成(x+n)2=p的形式(n,p为常数),则n=,p=.8.(2016•江阴市校级开学)如果(a2+b2)2﹣(a2+b2)﹣2=0,则a2+b2=.三.解答题(共9小题)9.(2020秋•沭阳县期末)解方程:(1)2(x﹣1)2﹣18=0.(2)8(x+1)3=27.10.(2021秋•新北区校级期中)用恰当的方法解方程:(1)(x﹣3)2﹣9=0;(2)x2+4x﹣1=0;(3)x2﹣3x﹣2=0;(4)(x﹣1)(x+3)=5(x﹣1).11.(2021秋•南京期末)解方程:(1)x2﹣4x﹣1=0;(2)100(x﹣1)2=121.12.(2022•常州模拟)解下列方程:(1)x2﹣4x﹣45=0;(2)x(x+4)=﹣3(x+4).13.(2016秋•盐都区期末)(1)解方程:(x+1)2=9;(2)解方程:x2﹣4x+2=0.14.(2021•吴中区开学)解方程:(1)(x﹣1)2﹣4=0;(2)(x+1)2=2(x+1).15.(2018秋•武进区校级期末)阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到降次的目的,体现了数学的转化思想.(2)解方程:(x2+3x)2+5(x2+3x)﹣6=0.16.(2018秋•京口区校级月考)(阅读理解题)阅读材料,解答问题:为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1看作一个整体,然后设x2﹣1=y,那么原方程可化为y2﹣5y+4=0①,解得y1=1,y2=4.当y1=1时,x2﹣1=1.所以x2=2.所以x=±;当y =4时,x2﹣1=4.所以x2=5.所以x=±,故原方程的解为x1,x2,x3,x4;上述解题过程,在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了转化的数学思想.(1)已知方程x2﹣2x﹣3,若设x2﹣2x=a,那么原方程可化为(结果化成一般式)(2)请利用以上方法解方程:(x2+2x)2﹣(x2+2x)﹣6=0.17.(2020秋•饶平县校级期中)解方程时,把某个式子看成一个整体,用一个新的未知数去代替它,从而使方程得到简化,这叫换元法.先阅读下面的解题过程,再解出右面的两个方程:例:解方程:.解:设(t≥0)∴原方程化为2t﹣3=0∴而∴∴请利用上面的方法,解出下面两个方程:(1)(2)。
第1讲 二元一次方程组一、知识要点回顾1、二元一次方程:⑴同时满足以下几个条件的方程就是二元一次方程:①含 未知数;②未知项的最高次数是 ;③分母不含 。
⑵使二元一次方程左右两边 的两个未知数的值叫二元一次方程的解2、二元一次方程组:⑴同时满足以下条件的方程组就是二元一次方程组:①共含..两个未知数;②未知项的最高次数是 ;③分母不含 。
⑵同时使 方程都成立的未知数的值叫二元一次方程组的解。
无论是二元一次方程还是二元一次方程组的解都应该写成 的形式。
3、二元一次方程组的解法:基本思路是 。
基本方法有:① 消元法:将一个方程变形为用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程,把二元消去一元,再求解一元一次方程。
② 消元法:适用于相同未知数的系数有相等或互为相反数的特点的方程组,首先观察出两个未知数的系数各自的特点,判断如何运用加减消元法消去一个未知数。
含分母、小数、括号等的方程组都应先化为最简形式后再用这两种方法去解。
二 基本练习1、下列方程中,是二元一次方程的有________(填序号)。
① 03=-x② 25s t -= ③ 853=-xy ④ 211=+y x ⑤ 123m n += ⑥ 223a b a b += ⑦ 236x y -= ⑧ 259x x -=2、下列方程组中,是二元一次方程组的有________(填序号)。
①32141x y y z -=⎧⎨=+⎩ ②3232a b a =⎧⎨-=⎩ ③32x y xy +=⎧⎨=⎩ ④1121a b a b ⎧+=⎪⎨⎪-=⎩ ⑤358s t s t ÷=÷⎧⎨-=⎩ ⑥08x y =⎧⎨=⎩ 3、 ①若1320m n x y --=是关于x 、y 的二元一次方程,则m =____,n =____。
②已知(k -1)2k x -2y=3是关于y x ,的二元一次方程,则k= .4、12m n =⎧⎨=-⎩是方程023m n k --=的解,则k 的值是______________。
2014暑假数学培优卷4一元一次方程 二元一次方程组 一元二次方程一:选择题1.下列结论错误的是( )A2= B.方程240x -=的解为2x =C.22()()a b a b a b +-=- D.22x y xy +=2. “五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .(130802080x +⨯=%)%B .30802080x=·%·% C .20803080x ⨯⨯=%% D .30208080x=⨯·%% 3.已知关于x y ,的方程组343x y a x y a +=-⎧⎨-=⎩,.其中31a -≤≤.给出下列结论:①51x y =⎧⎨=-⎩,是方程组的解; ②当2a =-时,x y ,的值互为相反数; ③当1a =时,方程组的解也是方程a y x -=+4的解;④若1x ≤,则14y ≤≤. 其中正确的是( )(A )①② (B )②③ (C )②③④ (D )①③④4.有一根长40mm 的金属棒,欲将其截成x 根7mm 长的小段和y 根9mm 长的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为( )(A ) 1x =,3y = (B ) 3x =,2y = (C ) 4x =,1y = (D ) 2x =,3y =5.如果关于x的一元二次方程210kx +=有两个不相等的实数根,那么k 的取值范围是( ) (A )12k <(B )12k <且0k ≠ (C )1122k -<≤ (D )1122k -<≤且0k ≠6. 一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A .818x y xy yx +=⎧⎨+=⎩ B.8101810x y x y x y+=⎧⎨++=+⎩C.81018x y x y yx +=⎧⎨++=⎩ D.()810x y x y yx+=⎧⎪⎨+=⎪⎩ 7. 已知关于x 的一元二次方程x 2+x +m =0的一个实数根为1,那么它的另一个实数根是A .-2B .0C .1D .28. 如果213n m x y -与35m x y -是同类项,则m 和n 的取值是( )A.3和-2B. -3和2C. 3和2D. -3和-29. 已知1是关于x 的一元二次方程2(1)10m x x -++=的一个根,则m 的值是( )A.1B.1-C.0D.无法确定二.填空题10. 已知关于x 的方程423=-m x 的解是m x =,则m 的值是______.11.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为______.12. 在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2千米所用时间,与以最大速度逆流航行1.2千米所用时间相等.请你计算出该冲锋舟在静水中的最大航速为 .13. 由于电子技术的飞速发展,计算机的成本不断降低,若每隔3年计算机的价格降低13,现价为2400元的某款计算机,3年前的价格为_____________元.14. 若m 、n为实数,且|21|m n +-,则2012(+)m n 的值为 . 15. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a b c d,定义a b c dad bc =-,上述记号就叫做二阶行列式.若 1 181 1x x x x +-=-+,则x =________. 16. 关于x 、y 的二元一次方程组5323x y x y p+=⎧⎨+=⎩,的解是正整数,则整数p 的值为______.17. 把棱长为4的正方体分割成29个棱长为整数的正方体(且没有剩余),其中棱长为1的正方体的个数为_________.18. 若关于x 的方程220x x m --=有两个相等的实数根,则m 的值是________.19. 若实数m 满足m 2-10m + 1 = 0,则 m 4 + m-4 = .三、解答题20.为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁1、2号线.已知修建地铁1号线24千米和2号线22千米共需投资265 亿元;若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.(1)求1号线、2号线每千米的平均造价分别是多少亿元?(2)除1、2号线外,长沙市政府规划到2018年还要再建91.8千米的地铁线网.据预算,这91.8千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?21.玲玲家准备装修一套新住房,若甲,乙两个装修公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元.玲玲的爸爸、妈妈商量后决定只选一个公司单独完成.(1)如果从节约时间的角度考虑应选哪家公司?(2)如果从节约开支的角度考虑呢?请说明理由.。
二元一次方程(组)补习、培优、竞赛归类讲解及练习答案知识点:1、二元一次方程:(1)方程的两边都是整式,(2)含有两个未知数,(3)未知数的最高次数是一次。
2、二元一次方程的一个解:使二元一次方程左右两边相等的两个未知数的值叫二元一次方程的一个解。
3、二元一次方程组:含有两个未知数的两个二元一次方程所组成的方程组。
4、二元一次方程组的解:二元一次方程组中各个方程的公共解。
(使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值)无论是二元一次方程还是二元一次方程组的解都应该写成 的形式。
⎩⎨⎧==y x 5、二元一次方程组的解法:基本思路是消元。
(1)代入消元法:将一个方程变形,用一个未知数的式子表示另一个未知数的形式,再代入另一个方程,把二元消去一元,再求解一元一次方程。
主要步骤:变形——用一个未知数的代数式表示另一个未知数。
代入——消去一个元。
求解——分别求出两个未知数的值。
写解——写出方程组的解。
(2)加减消元法:适用于相同未知数的系数有相等或互为相反数的特点的方程组,首先观察出两个未知数的系数各自的特点,判断如何运用加减消去一个未知数;含分母、小数、括号等的方程组都应先化为最简形式后再用这两种方法去解。
变形——同一个未知数的系数相同或互为相反数。
加减——消去一个元。
求解——分别求出两个未知数的值。
写解——写出方程组的解。
(3)列方程解应用题的一般步骤是:关键是找出题目中的两个相等关系,列出方程组。
列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:①审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数。
②找:找出能够表示题意两个相等关系。
③列:根据这两个相等关系列出必需的代数式,从而列出方程组。
④解:解这个方程组,求出两个未知数的值。
⑤ 答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
6、二元一次方程组的解的情况有以下三种:⎩⎨⎧=+=+222111c y b x a c y b x a ①当时,方程组有无数多解。
一元一次方程,二元一次方程组,一元二次方程教学目的1. 回顾已学过的关于方程(组)与方程的解的概念掌握方程的一些特点以及常规考点,特别是一元二次方程和二元一次方程组的解题技巧和容易犯错的地方,巩固关于一元二次方程和二元一次方程组的解的应用的问题解决方法。
重难点1. 二元一次方程组,一元二次方程的应用在做关于应用题的时候要会理清各个量之间的关系,并运用存在的关系建立方程 教学过程一.一次方程与一次方程组1.方程(组)与方程的解的概念(1)方程:含有未知数的等式叫做方程(2)方程的解:使方程左右两边的值相等的未知数的值叫做方程的解。
(3)一元一次方程:只含有一个未知数,且未知数的次数是一次的整式的方程叫做一元一次方程;它的标准形式是ax+b=0(a ≠0)。
(4)二元一次方程:含有两个未知数,并且含未知数的项的次数都是一次的整式方程叫做二元一次方程,它的基本形式是ax+by=0(a ≠0, b ≠0)。
(5)二元一次方程组:几个一次方程组成的含有两个未知数的一组方程叫做二元一次方程组。
(6)二元一次方程组的解:方程组里每个方程的公共解叫做二元一次方程组的解2.解方程的依据等式的性质:(1) 等式的两边都加上或者减去同一个整式,得到的结果仍是等式(2) 等式的两边都乘或除以同一个不为零的数或整式,所得结果仍是等式2. 方程或方程组的解法与步骤(1) 解一元一次方程的一般步骤:①去分母②去括号③移项④合并同类项⑤未知数的系数化为一(2) 解二元一次方程组的基本思路:通过消元使其转化为一元一次方程来解,通常的消元法有代入法和加减法。
3. 列方程(组)解应用题的一般步骤(1) 审题,特别注意关键的字和词的意义,弄清相关数量关系,已知什么,求什么;(2) 设未知数(注意单位的同意);(3) 根据相灯关系列出方程(组);(4) 解方程(组),并检验;(5) 写出答案(包括单位名称)。
注意:列方程(组)解应用题的关键是:确定等量关系。
第1页 共10页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训自学资料年份 题量 分值 考点题型201526列一元一次方程、二元一次方程组、一元二次方程等解法 选择、解答2016 3 10列一元一次方程、二元一次方程组、一元二次方程等解法 选择、填空、解答2017 5 23列一元一次方程、分式方程、二元一次方程组、一元二次方程等解法选择、填空、解答2018 1 3 二元一次方程组 选择 2019 1 3 一元一次方程的应用选择一、二元一次方程、一次方程组【知识探索】1. 如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组.【错题精练】例1.关于x ,y 的方程组{2x +y =2m +33x −2y =m −1的解满足不等式组{5x −y >0x −3y <0,则m 的取值范围______.第2页共10页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训第3页共10页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训第4页共10页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训第5页共10页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训第6页共10页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训第7页共10页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训第8页 共10页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训B.15x −15x+1=12 C. 15x−1−15x=12 D.15x −15x−1=129.某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务,设这个工程队原计划每天要铺建x 米管道,则依题意所列方程正确的是( ) A. 2000x +2=20001.25x B. 2000x=20001.25x-2C. 2000x +20001.25x =2D.2000x−20001.25x =21.设方程组{2y −x =33x +y =2k 的解满足x <1且y >1,则整数k 的个数是( )A. 1B. 2C. 3D. 无数个2.已知方程组{3x +y =m −1x −3y =2m 的解x ,y 满足x+2y≥0,则m 的取值范围是( )A. m≥13B. 13≤m≤1C. m≤-1D. m≥-13.已知关于X 的方程axx−1-21−x =3无解,求a 的取值范围.4.若分式方程1x−3+1=a−xx−3有增根,则a 的值是( ) A. 4B. 0或4C. 0D. 0或-4第9页 共10页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好 非学科培训5.若分式方程3x−ax 2−2x +1x−2=2x 有增根,则实数a 的值是______.6.某铁路桥长为y 米,一列长为x 米的火车从上桥到过完桥共用去30秒,而整列火车在桥上的时间为20秒,若火车的速度为20米/秒,则可列方程组为______.7.端午节前夕,某超市用1680元购进A 、B 两种商品共60件,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是( )A. {x +y =6036x +24y =1680B. {x +y =6024x +36y =1680C. {36x +24y =60x +y =1680D. {24x +36y =60x +y =16808.受今年五月份雷暴雨影响,深圳某路段长120米的铁路被水冲垮了,施工队抢分夺秒每小时比原计划多修5米,结果提前4小时开通了列车.若原计划每小时修x 米,则所列方程正确的是( ) A.120x -120x+5=4 B. 120x+5-120x =4 C. 120x−5-120x =4 D.120x -120x−5=4第10页共10页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训。
一元一次方程、二元一次方程(组)及应用知识点1:一元一次方程及应用1,系数不等于0的整式方程,叫做一元一次方程.一元一次方程的标准式是:ax +b=0(其中x 是未知数,a 、b 是已知数,并且a≠0). 一元一次方程的最简式是:ax=b(a≠0).【例1】下列方程是一元一次方程的是( )A.x2+1=5 B. 3(m -1)-1=2 ; C. x-y=6 D.都不是 【例2】选项中是方程的是( ) B. a-1>2 C. a 2+b 2-5 D. a 2+2a-3=5;解一元一次方程的一般步骤:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;4.合并同类项:把方程化成ax=b(a ≠0)的形式;5.系数化成1:在方程两边都除以未知数的系数a ,得到方程的解。
【例3】解方程:(1)47815=-x ; (2) 21216231--=+--x x x ;解方程的问题。
【例4】甲、乙两个水池共蓄水50t,甲池用去5t ,乙池又注入8t 后,甲池的水比乙池的水少3t ,问原来甲、乙两个水池各有多少吨水?【例5】一份试卷共25道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分,如果一个学生得90分,那么他选对几题?现有500名学生参加考试,有得83分的同学吗?为什么?知识点2:二元一次方程(组)及应用1,这样的方程,叫做二元一次方程.二元一次方程组:含有相同的两个未知数的两个一次方程所组成的方程组,叫做二元一次方程组.解:使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方1、 代入消元法解二元一次方程组基本思路:未知数由多变少。
消元法的基本方法:将二元一次方程组转化为一元一次方程。
2、 加减消元法解二元一次方程组两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
八年级数学培优学案(4)二元一次方程组相关概念和解法一、二元一次方程的概念含有未知数,并且所含未知数的项的次数都是的整式方程叫做二元一次方程。
实践练习:下列方程有哪些是二元一次方程(1)093=-+y x , (2)012232=+-y x , (3)3xy=1,(4)x 1+2y=1, (5)()523=-y x x , (6)152=-n m . 二、二元一次方程的解:解方程x+y=8方程归纳:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解.三、二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组.如: ⎩⎨⎧=-=+;03,332y x y x ⎩⎨⎧=+=+.8,835b a b a (1)二元一次方程组的解二元一次方程组中各个方程的解,叫做这个二元一次方程组的解.(2)检验一组数是不是某个二元一次方程组的解的常用方法:将这组数值分别带入二元一次方程组中的每个方程,只有当这组数值满足其中的所有方程时,才能说这组数值是此二元一次方程组的解,否则,如果这组数值不满足其中任意一个方程,那么它就不是此二元一次方程组的解。
例1 已知⎩⎨⎧==21y x 是方程组⎩⎨⎧=+=+75y nx my x 的解,则m= , n= .练习:已知关于x ,y 的二元一次方程组⎩⎨⎧=+=-0325y kx y x ,当x =-4时,求k 的值.2.以下的各组数值是方程组⎩⎨⎧-=+=+2222y x y x 的解的是( ) A.⎩⎨⎧-==22y x B.⎩⎨⎧=-=22y x C.⎩⎨⎧==20y x D.⎩⎨⎧==02y x 3.下列四组数值中,是二元一次方程13=-y x 的解是①⎩⎨⎧==;3,2y x ②⎩⎨⎧==;1,4y x ③⎩⎨⎧==;3,10y x ④⎩⎨⎧-=-=.2,5y x 4.二元一次方程组⎩⎨⎧==+x y y x 2,102的解是( ) (A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 5.二元一次方程6=+y x 的正整数解为.6.如果⎩⎨⎧==2,1y x 是⎩⎨⎧=-=+n y x m y x 3,2的解,那么m =,n =. 拓展训练:1、如果方程13221=-+-n m m y x 是二元一次方程,那么m =,n =.2、关于x 、y 的方程组⎩⎨⎧=+=-n my x m y x ,3的解是⎩⎨⎧==1,1y x 则的值是3、已知⎩⎨⎧+=-=a y a x 43,32是方程54=-y x 的一个解,求a 的值四、求解二元一次方程组例1(代入消元法)解下列方程组:(1) ⎩⎨⎧+==+②y x ①y x ;3,1423 (2)⎩⎨⎧=+=+②y x ①y x .134,1632练习:1.用代入消元法解方程组:⎩⎨⎧=--=②y x ①y x ;32,24 2.用代入消元法解下列方程组:⎩⎨⎧=+=++25)(3y x y x x3.用代入消元法解下列方程组:(1)(2) ⎪⎩⎪⎨⎧=+=+0214143y x y x例2 解下列二元一次方程组⎩⎨⎧-=+=-②y x ①y x ⑴132752练习:用加减消元法解方程组:(1)⎩⎨⎧=-=-625423y x y x (2)⎩⎨⎧=--=+1046143y x y x (3) ⎪⎩⎪⎨⎧+=+=-4132123y x x y3、 若方程组⎩⎨⎧=+++=10)1(232y k kx y x 的解互为相反数,求 k 的值拓展提升:1.如果21x y =⎧⎨=⎩是方程组75ax by bx cy +=⎧⎨+=⎩的解,则a c 与的关系是( )A.49a c +=B. 29a c +=C. 49a c -=D. 29a c -=3. 若92x y =⎧⎨=⎩是方程组473x y a b x y a b -=+⎧⎨-=-⎩解, 则a b 、的值是( ) A.81214a b ⎧=⎪⎪⎨⎪=⎪⎩ B. 317a b =⎧⎨=-⎩ C. 47232a b ⎧=⎪⎪⎨⎪=-⎪⎩ D.519a b =⎧⎨=-⎩ 4.已知是方程52=+ay x 的解,则a =.5. 如果方程组()43713x y kx k y +=⎧⎪⎨+-=⎪⎩的解x y 、的值相等,则k 的值是( ) A.1 B.0 C.2 D. 2-6. 若23x y =-⎧⎨=⎩是方程33x y m -=和5x y n +=的公共解,则23m n -=. 7. 已知231x y =-⎧⎨=⎩是二元一次方程组11ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值是. 8.已知方程组的解是,则n m +2的值为______________.9.已知()01212=-+-y x ,且2x-ky=4,求k 的值.⎩⎨⎧==12y x ⎩⎨⎧=+=+30ny x y mx ⎩⎨⎧-==21y x。
2013暑假初三数学培优4
一元一次方程 二元一次方程组 一元二次方程
一:选择题
1.下列结论错误的是( )
A
2= B.方程240x -=的解为2x =
C.22()()a b a b a b +-=- D.22x y xy +=
2. “五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )
A .(130802080x +⨯=%)%
B .30802080x
=·%·% C .20803080x ⨯⨯=%% D .30208080x
=⨯·%% 3.已知关于x y ,的方程组343x y a x y a +=-⎧⎨-=⎩,.
其中31a -≤≤.给出下列结论:
①51
x y =⎧⎨=-⎩,是方程组的解; ②当2a =-时,x y ,的值互为相反数;
③当1a =时,方程组的解也是方程4x y x +=-的解;④若1x ≤,则14y ≤≤.
其中正确的是( )(A )①② (B )②③ (C )②③④ (D )①③④
4.有一根长40mm 的金属棒,欲将其截成x 根7mm 长的小段和y 根9mm 长的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为( )
(A ) 1x =,3y = (B ) 3x =,2y = (C ) 4x =,1y = (D ) 2x =,3y =
5.如果关于x
的一元二次方程2
10kx +=有两个不相等的实数根,那么k 的取值范围是( ) (A )12k <
(B )12
k <且0k ≠ (C )1122k -<≤ (D )1122k -<≤且0k ≠
6. 一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )
A .818x y xy yx +=⎧⎨+=⎩ B.8101810x y x y x y +=⎧⎨++=+⎩
C.81018x y x y yx +=⎧⎨
++=⎩ D.()810x y x y yx
+=⎧⎪⎨+=⎪⎩ 7. 已知关于x 的一元二次方程x 2+x +m =0的一个实数根为1,那么它的另一个实数根是
A .-2
B .0
C .1
D .2
8. 如果213n m x y -与35m x y -是同类项,则m 和n 的取值是( )
A.3和-2
B. -3和2
C. 3和2
D. -3和-2
9. 已知1是关于x 的一元二次方程2(1)10m x x -++=的一个根,则m 的值是( )
A.1
B.1-
C.0
D.无法确定
二.填空题
10. 已知关于x 的方程423=-m x 的解是m x =,则m 的值是______.
11.某企业向银行贷款1000万元,一年后归还银行1065.6多万元,
则年利率高于 %.
12. 在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2千米所用时间,与以最大速度逆流航行1.2千米所用时间相等.请你计算出该冲锋舟在静水中的最大航速为 .
13. 由于电子技术的飞速发展,计算机的成本不断降低,若每隔3年计算机的价格降低13,现价为2400元的某款计算机,3年前的价格为_____________元.
14. 若m 、n
为实数,且|21|m n +-,则2012(+)m n 的值为 .
15. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a b c d
,定义a b c d
ad bc =-,上述记号就叫做二阶行列式.若 1 181 1x x x x +-=-+,则x =________. 16. 关于x 、y 的二元一次方程组5323x y x y p +=⎧⎨+=⎩
,的解是正整数,则整数p 的值为______. 17. 把棱长为4的正方体分割成29个棱长为整数的正方体(且没有剩余),其中棱长为1的正方体的个数为_________.
18. 若关于x 的方程220x x m --=有两个相等的实数根,则m 的值是________.
19. 若实数m 满足m 2-10m + 1 = 0,则 m 4 + m
-4 = .
20. 已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B 型车装满货物一次可运货11吨,某物流公司现有31吨货物,计划同时租用A型车a辆,B 型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:
(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
21. 全球变暖,气候开始恶化,中国政府为了对全球气候变暖负责任,积极推进节能减排,在全国范围内从2008年起,三年内每年推广5000万只节能灯.居民购买节能灯,国家补贴50%购灯费.某县今年推广财政补贴节能灯时,李阿姨买了4个8W和3个24W的节能灯,一共用了29元,王叔叔买了2个8W和2个24W的节能灯,一共用了17元.
求:(1)该县财政补贴50%后,8W、24W节能灯的价格各是多少元?
(2)2009年我省已推广通过财政补贴节能灯850万只,预计我省一年可节约电费2.3亿元左右,减排二氧化碳43.5万吨左右,请你估算一下全国一年大约可节约电费多少亿元?大约减排二氧化碳多少万吨?(结果精确到0.1)。