桥梁健康监测系统的设计与研究
- 格式:doc
- 大小:16.50 KB
- 文档页数:3
大型桥梁结构智能健康监测系统集成技术分析1. 引言1.1 研究背景大型桥梁结构的健康监测一直是工程领域的重要课题。
随着桥梁结构的不断增多和老化,传统的巡检方式已经无法满足对桥梁结构安全性和可靠性的需求。
而智能健康监测系统的出现,为大型桥梁的安全管理提供了新的可能性和途径。
通过结合传感技术、数据处理技术和信息通信技术,智能健康监测系统能够实时监测桥梁结构的运行状态,精准分析结构的健康状况,及时预警潜在问题,为保障桥梁的安全提供了重要支持。
目前智能健康监测系统在大型桥梁结构中的集成技术仍然面临一些挑战,如传感器部署的复杂性、数据处理与分析的实时性要求、系统的可靠性和稳定性等问题。
本文旨在对大型桥梁结构智能健康监测系统的集成技术进行深入分析,探讨其原理与应用,总结技术挑战并提出解决方案,同时评估系统集成的优势,以期为进一步的研究和实践提供参考和指导。
1.2 研究目的研究目的是为了深入探讨大型桥梁结构智能健康监测系统集成技术,探索其在实际工程中的应用和优势。
通过对现有监测技术的概述和原理分析,结合实际案例研究,分析技术挑战和解决方案,最终得出系统集成的优势。
这样有助于为我们提供更有效的监测系统,提高大型桥梁的安全性和可靠性。
通过对未来技术的展望和系统集成实践的总结,探讨未来的研究方向,为大型桥梁结构监测技术的发展提供重要参考。
通过本研究,旨在推动大型桥梁结构监测技术的创新和发展,为保障桥梁结构安全提供更加可靠的技术支持。
1.3 研究意义大型桥梁是现代城市重要的交通设施和基础设施,其安全性直接关系到人们出行的安全和城市交通的顺畅。
随着大型桥梁结构的不断建设和使用,其健康监测和维护变得尤为重要。
目前,传统的桥梁监测方法存在诸多局限性,如监测精度低、实时性差、难以发现隐蔽性缺陷等。
研究开发大型桥梁结构智能健康监测系统集成技术具有重要意义。
智能健康监测系统能够实现对桥梁结构全方位、多维度的监测和分析,提高监测的准确性和实时性,帮助工程师及时发现潜在问题并作出及时处理,从而保障桥梁的安全运行。
高速公路桥梁结构健康监测系统设计与实施高速公路桥梁是连接城市与城市之间、地区与地区之间的重要交通枢纽。
为保障公路桥梁的安全运行,及时发现潜在的结构问题和病害,高速公路桥梁结构健康监测系统设计与实施至关重要。
本文将探讨如何设计和实施这样的系统,确保公路桥梁的结构安全和运行可靠。
1. 系统设计前期工作在设计高速公路桥梁结构健康监测系统之前,需要进行一系列的前期工作。
首先,要对公路桥梁的设计和施工资料进行仔细的研究和分析,了解桥梁的结构特点和常见的问题。
其次,根据桥梁的使用环境和工况要求,确定监测系统需要监测的参数和指标,例如桥梁的挠度、应变、温度、风速等。
然后,选择适当的监测仪器设备和传感器,并确定传感器的布置位置和数量。
2. 系统设计与实施过程系统设计与实施分为硬件部分和软件部分。
硬件部分主要是指监测仪器设备和传感器的选择和布置,以及建立监测系统所需的数据采集和传输网络。
在选取监测仪器设备时,需要考虑其准确度、灵敏度和稳定性等因素。
传感器的布置要根据桥梁的结构特点和监测要求来确定,以实现全面的监测覆盖。
同时,需要建立稳定可靠的数据采集和传输网络,确保监测数据能够及时传输和储存。
软件部分主要是指监测系统的数据处理和分析功能,以及监测数据的可视化展示。
监测系统应具备数据处理和分析功能,以便对监测数据进行实时监控和预警。
同时,监测数据应以可视化的方式展示,以方便工程师和管理人员对桥梁结构健康状态进行评估和决策。
数据处理和分析的算法需要根据桥梁的特点和监测要求来确定,以实现准确的结构健康评估和预测。
3. 系统实施后的运维与管理系统实施后,需要进行运维和管理工作,以确保监测系统的长期稳定运行。
首先,要定期对监测仪器设备和传感器进行检查和校准,以确保其正常工作。
其次,监测数据应进行定期的备份和存储,以便长期保存和分析。
同时,需要建立相关的档案管理制度,对桥梁结构的监测数据和维护情况进行记录和归档。
另外,还应建立统一的运维和管理平台,方便管理人员对监测系统进行远程监控和维护。
典型大跨径桥梁轻量化健康监测技术研究朱舒婷(昆山市交通工程发展中心 江苏苏州 215300)摘要:江苏省拥有丰富的公路网络,桥梁作为其重要的交通设施,对其正常运行和安全性的要求非常高。
对桥梁进行长期自动化的监测,能够帮助管养部门更有效地维护和管理桥梁,提高其使用寿命,从而提升安全性和交通效率。
目前,桥梁轻量化监测方向属于空白。
以筋混凝土连续箱梁、预应力混凝土连续箱梁、预应力混凝土空心板梁、预应力混凝土组合箱梁、装配式预应力混凝土连续箱梁等为对象,对桥梁轻量化健康监测需求分析,开展数据采集方案、系统开发方案的研究,实现桥梁状态全天候的监测,全面提升桥梁的安全管理水平。
关键词:大跨径桥梁 轻量化 健康监测 交通设施中图分类号:TU753文献标识码:A 文章编号:1672-3791(2023)24-0149-03 Research on Lightweight Health Monitoring Technology forTypical Long-Span BridgesZHU Shuting(Kunshan Transportation Engineering Development Center, Suzhou, Jiangsu Province, 215300 China) Abstract:Jiangsu Province has a rich highway network, bridges are its important transportation facilities, and there are very high requirements for their normal operation and safety. The long-term automated monitoring of bridges can help maintenance departments maintain and manage bridges more effectively, improve their service life, and then enhance traffic efficiency and safety. At present, the lightweight monitoring direction of bridges is blank. This article takes the reinforced-concrete continuous box girder, prestressed-concrete continuous box girder, prestressed-concrete hollow slab girder, prestressed-concrete composite box girder and prefabricated prestressed-concrete continuous box girder as objects, analyzes the demand for the lightweight health monitoring of bridges, and conducts research on data collection schemes and system development schemes, so as to realize the all-weather monitoring of bridge conditions, and comprehensively improve the safety management level of bridges.Key Words: Large-span bridge; Lightweight; Health monitoring; Transportation facility桥梁结构物作为现代交通运输体系的重要组成要素,对于国民经济的持续、稳定发展起着重要作用[1]。
桥梁健康监测系统的设计桥梁在现代社会中扮演着重要的角色,连接着城乡、沟通着交通、承载着重要的交通和物流。
由于桥梁长期的风吹雨打和车辆的频繁行驶,桥梁的健康状况一直备受关注。
为了保障桥梁的安全和可靠性,桥梁健康监测系统应运而生。
本文将对桥梁健康监测系统的设计进行详细介绍,从整体结构、传感器选择、数据采集与处理、监测方法以及应用实例等方面进行阐述,希望能够为相关领域的研究和实践提供一些参考。
一、桥梁健康监测系统的整体结构桥梁健康监测系统的整体结构通常包括传感器、数据采集系统、数据传输系统、数据处理与分析系统以及信息展示与应用系统等组成部分。
传感器是整个系统的核心,用于实时感知桥梁的结构变化和环境参数;数据采集系统负责将传感器采集到的数据进行实时采集和存储;数据传输系统将采集到的数据通过有线或无线通信方式传输到数据处理与分析系统;数据处理与分析系统对传感器采集到的数据进行处理、分析和挖掘,发现桥梁的结构健康状态;信息展示与应用系统则向工程师和用户展示监测结果,并为决策提供依据。
二、传感器的选择传感器是桥梁健康监测系统的核心部件,传感器选择的合理与否直接影响着桥梁监测系统的性能和精度。
在桥梁健康监测系统中,通常会采用应变传感器、加速度传感器、位移传感器、温度传感器等多种传感器来对桥梁进行全面监测。
应变传感器用于监测桥梁的受力情况,加速度传感器用于监测桥梁的振动情况,位移传感器用于监测桥梁的变形情况,温度传感器用于监测桥梁的温度情况。
传感器的选择应根据具体的监测需求和桥梁的特点来决定,既要考虑监测的全面性和准确性,也要考虑成本和维护的便捷性。
三、数据采集与处理数据采集系统负责将传感器采集到的数据进行实时采集和存储。
在数据采集过程中,需要考虑数据的实时性和准确性,特别是对于桥梁动态监测来说,数据的实时性至关重要。
数据处理与分析系统则负责对采集到的数据进行处理、分析和挖掘,发现桥梁的结构健康状态。
在数据处理与分析过程中,通常会采用信号处理、模式识别、统计分析等方法来对数据进行处理和分析,以发现桥梁的潜在问题和隐患。
桥梁健康监测系统的设计与研究近年来,随着我国经济的飞速发展,交通运输日渐繁忙,作为公路交通咽喉的桥梁的地位日益突出。
桥梁设计理论的验证以及对桥梁结构和结构环境未知问题的调查与研究扩充了桥梁健康监测的内涵。
对桥梁结构进行综合检测的最终目的是为了使桥梁管理人员对桥梁结构的当前状况有一个正确的认识。
这就要求管理系统具有实时监测和智能化的自行评估的功能。
本文首先论述了桥梁健康监测的相关概念,然后从桥梁工程发展的角度探讨桥梁监测系统设计的有关问题,以期为监测系统的开发提供借鉴。
标签:桥梁健康监测系统概述设计近20年来桥梁抗风、抗震领域的研究成果以及新材料新工艺的开发推动了大距度桥梁的发展;同时,随着人们对重要桥梁安全性、耐久性与正常使用功能的日渐关注,桥梁健康监测的研究与监测系统的开发应运而生。
由于桥梁监测数据可以为验证结构分析模型、计算假定和设计方法提供反馈信息,并可用于深入研究大跨度桥梁结构及其环境中的未知或不确定性问题,因此,桥梁设计理论的验证以及对桥梁结构和结构环境未知问题的调查与研究扩充了桥梁健康监测的内涵。
1 桥梁健康监测概述桥梁建成后,会受到气候、环境等自然因素而逐渐老化,加之交通量的增长,运输车辆的重量和外形尺寸的增大,加剧了现有桥梁的质量的退化,导致桥梁的实际承载能力的降低。
因此,桥梁管理部门需要及时了解桥梁结构的安全性能,根据实际情况安排桥梁养护、维修、改建等工作,保证桥梁结构的安全使用,从而保证整个交通网络的畅通。
对桥梁结构进行综合检测的最终目的是为了使桥梁管理人员对桥梁结构的当前状况有一个正确的认识。
这就要求管理系统具有实时监测和智能化的自行评估的功能。
现代材料技术的发展促使人类社会进入了信息时代,信息材料的生产业已实现设计制造一体化。
各种具有信息采集及传输功能的材料及元器件正逐渐地进入土木工程师的视野。
人们开始尝试将传感器、驱动材料紧密地融合于结构中,同时将各种控制电路、逻辑电路、信号放大器、功率放大器以及现代计算机集成于结构大系统中,通过力、热、光、化学、电磁等激励和控制,使结构不仅有承受建筑荷载的能力,还具有自感知、自分析计算、自推理的能力。
大型桥梁结构健康监测系统的设计方法李 惠 欧进萍(哈尔滨工业大学土木工程学院)摘要结构智能健康监测愈来愈成为重大工程结构健康与安全的重要保障技术,也愈来愈成为重大工程结构损伤积累、乃至灾害演变规律重要的研究手段。
由于我国重大工程结构建设日新月异、突飞猛进,智能健康监测方法、技术和系统的研究、开发与应用吸引了我国土木工程领域众多科技工作者很大的兴趣和积极的参与,并且得到了快速的发展。
我国是桥梁大国,而桥梁结构是服役性能退化较显著的重大工程之一。
本文首先研究了大型桥梁结构健康监测系统的设计总则,结合与桥梁结构健康监测系统有关的理论、方法和技术,分析了健康监测系统的传感器子系统、数据采集子系统、信号传输子系统、损伤识别与模型修正及安全评定、数据管理子系统及系统集成技术等的设计原则与方法及功能要求;采用上述桥梁健康监测系统设计方法,为山东滨州黄河公路大桥和松花江斜拉桥设计并实现了不同等级的健康监测系统,系统运行表明,所建立的桥梁结构健康监测系统协调运行,系统性能很好。
关键词:桥梁;健康监测系统;光纤光栅传感器;无线传输技术;系统集成;数据库;工程应用Design and implementation of health monitoring systems forcable-stayed bridgesLI Hui OU Jinping(School of Civil Engineering, Harbin Institute of Technology)ABSTRACT The intelligent health monitoring system more and more becomes a technique for ensuring the health and safety of civil infrastructures and also an important approach for research of the damage accumulation or even disaster evolving characteristics of civil infrastructures, and attracts prodigious research interests and active development interests of scientists and engineers since a great number of civil infrastructures are planning and building each year in mainland China. Number of cable-stayed bridges have been constructed and are planning to be constructed in mainland China, however, the performance of cable-stayed bridges deteriorates rapidly in long-term service. General design principles of the health monitoring systems for cable-stayed bridges are studied. The design methods of the sensors, software and hardware of data acquisition module, signal transmission, damage detection, model updating, safety evaluation, database and system integrated technologies are analyzed and the basic functions of the health monitoring systems are pointed out. An on-line health monitoring system for the Shandong Binzhou Yellow River Bridge and an off-line health monitoring system for the Harbin Songhua River Bridge are designed and implemented. The two systems have been running for several months and data measured by these two systems are also presented in this paper.Keywords: cable-stayed bridges; health monitoring systems; optical fiber Bragg-grating sensors; wireless communication techniques; system integration; database; implementation国家自然科学基金重大国际合作研究项目(编号:50410133)的资助1. 前言我国经济正处于高速增长时期,为适应经济建设的需要,我国交通事也得到了大规模的发展,大跨度桥梁的建设方兴未艾,并将在未来仍然保持高速增长。
SCIENCE &TECHNOLOGY INFORMATION科技资讯中小跨径桥梁结构健康监测系统设计研究景亚彪(新疆大学建筑工程学院新疆乌鲁木齐830017)摘要:中小跨径桥梁在交通网络中发挥着重要角色。
由于中小跨径桥梁的数量大,工作效率低的人工检测方法不能满足这类桥梁健康监测的需要。
目前,桥梁结构健康监测系统主要应用在重要的大型桥梁上。
在外界自然环境和车辆荷载的共同作用下,中小跨径桥梁在长期的服役过程中健康状况不容乐观,因此有必要针对这类桥梁进行健康监测系统设计与研究,满足国家战略部署和社会经济发展的需要。
关键词:中小跨径桥梁健康监测桥梁管养设计与研究中图分类号:U445文献标识码:A文章编号:1672-3791(2022)09(a)-0106-03桥梁结构是交通网络的重要组成部分,在国家战略方针、社会经济发展方面以及各地区文化交流中占据十分重要的地位。
桥梁在长期的服役过程中,受到交通负荷、环境侵蚀、材料老化等因素的影响而导致桥梁结构损伤,由于桥梁结构损伤而引发的交通事故不胜枚举,这不仅使人们的生命财产无法得到保障,还衍生出恶劣的社会影响。
人工检测是检测桥梁安全性的传统手段,具有主观性强、工作效率低、成本费高等众多缺点,不能满足数量巨大的桥梁结构安全检测的发展需要。
我国在桥梁结构健康监测方面的研究相较于国外发达国家起步晚、发展难度大的劣势。
桥梁健康监测系统经过30多年的研究和发展,满足了国内大部大跨度桥梁结构健康监测的需求[1]。
中小跨径桥梁虽然在桥梁中占据着最大比例,但是其建造费和养护费低,中小跨径桥梁结构健康监测系统的研究与应用相对较少。
陈宇哲[2]将应力(应变)作为基本的检测指标,实现了对空心板梁桥和T 梁桥的安全预警目标。
毛琳等研究者[3]设置应变和倾角的安全阈值,实现了对小箱梁和空心板梁桥安全状态的评估目标。
程勋煜等研究者[4]开发了桥梁养护管理系统,提高了中小跨径桥梁监测数据的管理水平。
桥梁结构的健康监测一、本文概述随着现代基础设施建设的快速发展,桥梁结构作为连接城乡、促进交通流通的关键构件,其安全性与稳定性日益受到人们的关注。
桥梁结构的健康监测,作为一种有效的评估和管理桥梁性能的手段,已经成为土木工程领域研究的热点。
本文旨在探讨桥梁结构健康监测的基本概念、重要性、主要技术方法以及应用现状,并分析其未来的发展趋势。
通过对桥梁健康监测技术的深入研究,我们期望能够为桥梁的安全运营提供科学的理论依据和技术支持,为我国的桥梁工程建设和管理提供有益的参考。
二、桥梁结构健康监测技术桥梁结构的健康监测技术是确保桥梁安全运行的重要手段。
随着科技的不断进步,桥梁健康监测技术也在不断发展与创新。
当前,主要的桥梁结构健康监测技术主要包括静态监测、动态监测、无损检测和结构健康监测系统等方面。
静态监测主要是通过定期的静态应变、位移、沉降等测量,了解桥梁结构的静态性能变化。
这些测量数据可以反映桥梁在静载作用下的响应,有助于发现桥梁结构的潜在问题。
动态监测则主要关注桥梁在动态载荷(如风、交通等)作用下的响应。
通过测量桥梁的振动特性、模态参数等,可以评估桥梁的动态性能,进一步预测桥梁在极端条件下的行为。
无损检测技术则是一种非破坏性的检测方法,通过在桥梁结构上施加特定的物理场(如声、光、磁等),检测桥梁内部的缺陷、损伤等。
这种方法可以在不损伤桥梁结构的前提下,有效地发现桥梁的潜在问题。
结构健康监测系统是一种集成了多种监测技术的综合系统。
它通过实时采集、处理和分析各种监测数据,提供对桥梁结构状态的全面评估。
这种系统可以及时发现桥梁的损伤和性能退化,为桥梁的维护和管理提供决策支持。
桥梁结构健康监测技术是保障桥梁安全运行的重要手段。
随着科技的不断进步,我们有理由相信,未来的桥梁健康监测技术将更加精准、高效,为桥梁的安全运行提供更加坚实的保障。
三、桥梁结构健康监测系统的设计与实现桥梁结构的健康监测系统是实现桥梁状态实时监测、评估和维护的关键环节。
桥梁健康监测系统的设计与研究
作者:李艳军
来源:《中小企业管理与科技·上旬刊》2011年第03期
摘要:近年来,随着我国经济的飞速发展,交通运输日渐繁忙,作为公路交通咽喉的桥梁的地位日益突出。
桥梁设计理论的验证以及对桥梁结构和结构环境未知问题的调查与研究扩充了桥梁健康监测的内涵。
对桥梁结构进行综合检测的最终目的是为了使桥梁管理人员对桥梁结构的当前状况有一个正确的认识。
这就要求管理系统具有实时监测和智能化的自行评估的功能。
本文首先论述了桥梁健康监测的相关概念,然后从桥梁工程发展的角度探讨桥梁监测系统设计的有关问题,以期为监测系统的开发提供借鉴。
关键词:桥梁健康监测系统概述设计
近20年来桥梁抗风、抗震领域的研究成果以及新材料新工艺的开发推动了大距度桥梁的发展;同时,随着人们对重要桥梁安全性、耐久性与正常使用功能的日渐关注,桥梁健康监测的研究与监测系统的开发应运而生。
由于桥梁监测数据可以为验证结构分析模型、计算假定和设计方法提供反馈信息,并可用于深入研究大跨度桥梁结构及其环境中的未知或不确定性问题,因此,桥梁设计理论的验证以及对桥梁结构和结构环境未知问题的调查与研究扩充了桥梁健康监测的内涵。
1 桥梁健康监测概述
桥梁建成后,会受到气候、环境等自然因素而逐渐老化,加之交通量的增长,运输车辆的重量和外形尺寸的增大,加剧了现有桥梁的质量的退化,导致桥梁的实际承载能力的降低。
因此,桥梁管理部门需要及时了解桥梁结构的安全性能,根据实际情况安排桥梁养护、维修、改建等工作,保证桥梁结构的安全使用,从而保证整个交通网络的畅通。
对桥梁结构进行综合检测的最终目的是为了使桥梁管理人员对桥梁结构的当前状况有一个正确的认识。
这就要求管理系统具有实时监测和智能化的自行评估的功能。
现代材料技术的发展促使人类社会进入了信息时代,信息材料的生产业已实现设计制造一体化。
各种具有信息采集及传输功能的材料及元器件正逐渐地进入土木工程师的视野。
人们开始尝试将传感器、驱动材料紧密地融合于结构中,同时将各种控制电路、逻辑电路、信号放大器、功率放大器以及现代计算机集成于结构大系统中,通过力、热、光、化学、电磁等激励和控制,使结构不仅有承受建筑荷载的能力,还具有自感知、自分析计算、自推理的能力。
具体说来,结构将能进行参数(如应变、位移、损伤、温度等)的检测及检测数据的传输,具有一
定的数据实时计算、处理能力,包括人工智能评估推理,以及初步改变结构应力分布、强度、刚度、形状位置等能力,简言之,即使结构具有自监测、自评估、自适应的类似生命体的智能功能。
这种智能结构的概念是为了进一步解决评估结构强度、完整性、安全性及耐久性问题而提出的。
对土木结构的性能进行监测及预报,不仅会大大减少维修费用,而且能增强预测的能力。
近来出现的各种无损检测技术均不能对结构进行实时监测,也不能很好的预报结构的破损情况和进行安全性的评估。
2 桥梁健康监测系统的概念
桥梁健康监测的基本内涵即是通过对桥梁结构状态的监控与评估,为大桥在特殊气候、交通条件下或桥梁运营状况严重异常时触发预警信号,为桥梁维护、维修与管理决策提供依据和指导。
与传统的检测技术不同,桥梁健康监测不仅要求在测试上具有快速大容量的信息采集与通讯能力,而且力求对结构整体行为的实时监控和对结构状态的智能化评估。
桥梁健康监测不只是传统的桥梁检测加结构评估新技术,而是被赋予了结构监控与评估、设计验证和研究与发展三方面的意义。
3 健康监测系统设计
3.1 监测系统设计准则
显然,监测系统的设计应该首先考虑建立该系统的目的和功能。
上节所述的桥梁健康监测三方面的意义也正是桥梁健康监测的目的和功能所在。
对于特定的桥梁,建立健康监测系统的目的可以是桥梁监控与评估,或是设计验证,甚至以研究发展为目的;也可以是三者之二甚至全部。
一旦建立系统的目的确定,系统的监测项目就可以基本上确定。
另外,监测系统中各监测项目的规模以及所采用的传感仪器和通信设备等的确定需要考虑投资的限度。
因此在设计监测系统时必须对监测系统方案进行成本一效益分析。
成本-效益分析是建立高效、合理的监测系统的前提。
根据功能要求和成本一效益分析可以将监测项目和测点数设计到所需的范围,可以最优化地选择并安装系统硬件设施。
因此,功能要求和效益-成本分析是设计桥梁健康监测系统的两大准则。
3.2 监测项目
不同的功能目标所要求的监测项目不尽相同。
绝大多数大跨度桥梁监测系统的监测项目都是从结构监控与评估出发的,个别也兼顾结构设计验证甚至部分监测项目以桥梁问题的研究为
目的。
如果监测系统考虑具有结构设计验证的功能,那就要获得较多结构系统识别所须要的信息。
因此,对于大跨度余支承桥梁,须要较多的传感器布置于桥塔、加劲梁以及缆索/拉索各部位,以获得较为详细的结构动力行为并验证结构设计时的动力分析模型和响应预测。
另外,在支座、挡块以及某些连结部位须安设传感器拾取反映其传力、约束状况等的信息。
目前,某些监测系统以开发结构整体性与安全性评估技术为目的之一。
结合桥梁问题研究的监测系统虽不多见,但有些系统也有监测项目是专为研究服务的。
与理论研究相关的监测项目可以根据待研究问题的性质来确定。
从目前桥梁工程的发展状况看,以下几方面的问题可以借助桥梁健康监测进行深入研究或论证。
①抗风方面:包括风场特性观测、结构在自然风场中的行为以及抗风稳定性。
②抗震方面:包括研究各种场地地面运动的空间与时间变化、土-结构相互作用、行波效应、多点激励对结构响应的影响等。
通过对墩顶与墩底应变、变形及加速度的监测建立恢复力模型对桥梁的抗震分析具有重要的意义。
③结构整体行为方面:包括研究结构在强风、强地面运动下的非线性特性,桥址处环境条件变化对结构动力特性、静力状态(内力分布、变形)的影响等。
这对于发展基于监测数据的整体性评估方法非常重要。
④结构局部问题:例如边界、联接条件,钢梁焊缝疲劳及其他疲劳问题,结合梁结合面(包括剪力键)的破坏机制,等等。
索支承桥梁缆(拉)索和吊杆的振动与减振、局部损伤机制等也值得进一步观察研究。
⑤耐久性问题:桥梁结构中的耐久性问题尚有许多问题须要深入研究。
缆(拉)索与吊杆的腐蚀、锈蚀问题尤须重视。
⑥基础:大直径桩的采用也带来一些设计问题,直接套用原先用于中等直径桩的计算方法不很合理。
借助桥梁监测系统调查大直径桩的变形规律、研究桩的承载力问题,也是设计部门的需要。
桥梁健康监测在国内尚处于起步阶段,实际情况是,由于各种原因,国内现有的几个监测系统均有不同程度的瘫痪。
随着桥梁健康监测工作的进一步深入,监测系统还需要解决远距离监测、提高系统可靠性、完善数据处理和分析理论等一系列问题。
一方面,在系统性能、数据评估方面还都没有现成的规范;另一方面。
随着人们对桥梁安全性熟悉的逐步提高,桥梁健康监测的市场前景越来越广阔。
在实践中探索出一套稳定可靠的监测系统、明确各项参数指标、研究监测数据的具体用途是健康监测下一步工作的目标。