6-11-思想方法:带电粒子在交变电场中的运动问题(示波器)
- 格式:ppt
- 大小:2.58 MB
- 文档页数:18
带电粒子在交变电场中的运动一、选择题1.在两金属板(平行)分别加上如图2—7—1中的电压,使原来静止在金属板中央的电子有可能做振动的电压图象应是(设两板距离足够大)图2—7—12.有一个电子原来静止于平行板电容器的中间,设两板的距离足够大,今在t =0开始在两板间加一个交变电压,使得该电子在开始一段时间内的运动的v —t 图线如图2—7—2(甲)所示,则该交变电压可能是图2—7—2(乙)中的哪些图2—7—2(乙)3.一个匀强电场的电场强度随时间变化的图象如图2—7—3所示,在这个匀强电场中有一个带电粒子,在t =0时刻由静止释放,若带电粒子只受电场力的作用,则电场力的作用和带电粒子的运动情况是图2—7—2(甲)图2—7—3A.带电粒子将向一个方向运动B.0~3 s内,电场力的冲量等于0,电场力的功亦等于0C.3 s末带电粒子回到原出发点D.2 s~4 s内电场力的冲量不等于0,而电场力的功等于04.一束电子射线以很大恒定速度v0射入平行板电容器两极板间,入射位置与两极板等距离,v0的方向与极板平面平行.今以交变电压U=U m sinωt加在这个平行板电容器上,则射入的电子将在两极板间的某一区域内出现.图2—7—4中的各图以阴影区表示这一区域,其中肯定不对的是图2—7—45.图2—7—5中A、B是一对中间开有小孔的平行金属板,两小孔的连线与金属板面相垂直,两极板的距离为l,两极板间加上低频交变电流.A板电势为零,B板电势U=U0c osωt,现有一电子在t=0时穿过A板上的小孔射入电场,设初速度和重力的影响均可忽略不计,则电子在两极板间可能图2—7—5A.以AB间的某一点为平衡位置来回振动B.时而向B板运动,时而向A板运动,但最后穿出B板C.如果ω小于某个值ω0,l小于某个值l0,电子一直向B板运动,最后穿出B板D.一直向B板运动,最后穿出B板,而不论ω、l为任何值二、填空题6.如图2—7—6(甲)所示,在两块相距d=50 cm的平行金属板A、B间接上U=100 V的矩形交变电压,(乙)在t=0时刻,A板电压刚好为正,此时正好有质量m=10-17kg,电量q=10-16C的带正电微粒从A板由静止开始向B板运动,不计微粒重力,在t=0.04 s时,微粒离A板的水平距离是______s.图2—7—67.如图2—7—7所示,水平放置的平行金属板下板小孔处有一静止的带电微粒,质量m,电量-q,两板间距6 mm,所加变化电场如图所示,若微粒所受电场力大小是其重力的2倍,要使它能到达上极板,则交变电场周期T至少为_______.图2—7—7三、计算题8.如图2—7—9(甲)为平行板电容器,板长l=0.1 m,板距d=0.02 m.板间电压如图(乙)示,电子以v=1×107m/s的速度,从两板中央与两板平行的方向射入两板间的匀强电场,为使电子从板边缘平行于板的方向射出,电子应从什么时刻打入板间?并求此交变电压的周期.(电子质量m=9.1×10-31 kg,电量e=1.6×10-19 C)图2—7—910.如图2—7—10甲所示,A、B为两块距离很近的平行金属板,板中央均有小孔.一电子以初动能E kO=120 eV,从A板上的小孔O不断地垂直于板射入A、B之间,在B板的右侧,偏转板M、N组成一匀强电场,板长L=2×10-2 m,板间距离d=4×10-3 m;偏转板加电压为U2=20 V,现在A、B间加一个如图乙所示的变化电压U1,在t=2 s时间内,A板电势高于B板,则在U1随时间变化的第一周期内.图2—7—10(1)在哪段时间内,电子可从B板上小孔O′射出?(2)在哪段时间内,电子能从偏转电场右侧飞出?(由于A、B两板距离很近,可以认为电子穿过A、B所用时间很短,忽略不计)11.示波器是一种多功能电学仪器,可以在荧光屏上显示出被检测的电压波形.它的工作原理等效成下列情况:(如图2—7—11所示)真空室中电极K发出电子(初速不计),经过电压为U1的加速电场后,由小孔S沿水平金属板,A、B间的中心线射入板中.板长L,相距为d,在两板间加上如图乙所示的正弦交变电压,前半个周期内B板的电势高于A板的电势,电场全部集中在两板之间,且分布均匀.在每个电子通过极板的极短时间内,电场视作恒定的.在两极板右侧且与极板右端相距D处有一个与两板中心线垂直的荧光屏,中心线正好与屏上坐标原点相交.当第一个电子到达坐标原点O时,使屏以速度v沿-x方向运动,每经过一定的时间后,在一个极短时间内它又跳回到初始位置,然后重新做同样的匀速运动.(已知电子的质量为m,带电量为e,不计电子重力)求:图2—7—11(1)电子进入AB板时的初速度;(2)要使所有的电子都能打在荧光屏上,图乙中电压的最大值U0需满足什么条件?(3)要使荧光屏上始终显示一个完整的波形,荧光屏必须每隔多长时间回到初始位置?计算这个波形的最大峰值和长度.在如图2—7—11丙所示的x-y坐标系中画出这个波形.参考答案一、1.BC 2.AB 3.BCD4.ACD 不同时刻入射的电子在不同瞬时电压下,沿不同抛物线做类平抛运动,其轨迹符合方程y =d mv eU202 x 2(U 为变化电压),x 轴正向为初速v 0方向,y 轴的正方向垂直于初速v 0向上或向下.电压低时从板间射出,电压高时打在板上,电子在板间出现的区域边界应为开口沿纵坐标方向的抛物线.5.AC二、6.0.4 m 7. 6.0×10-2 s三、8.由于金属筒对电场的屏蔽作用,使离子进入筒后做匀速直线运动,只有当离子到达两筒的缝隙处才能被加速.这样离子在筒内运动时间为t =fT 212= (T 、f 分别为交变电压周期、频率)①,设离子到第1个筒左端速度为v 1,到第n 个筒左端速度v n ,第n 个筒长为L n ,则L n =v n ·t ②从速度v 1加速v n 经过了(n -1)次加速,由功能关系有:21mv n 2=21mv 12+(n -1)·qU ③ 联立得L n =m n qU v f )1(22121-+ E k n =221n mv =21mv 12+(n -1)qU 令n =N,则得打到靶上离子的最大动能21mv N 2=21mv 12+(N -1)qU 9.电子水平方向匀速直线运动,竖直方向做变加速运动.要使电子从板边平行于板方向飞出,则要求电子在离开板时竖直方向分速度为0,并且电子在竖直方向应做单向直线运动向极板靠近.此时电子水平方向(x 方向)、竖直方向(y )方向的速度图线分别如图所示 .电子须从t =n2T (n =0,1,2,…)时刻射入板间,且穿越电场时间t =kT (k =1,2…)①,而电子水平位移l =vt ② 竖直位移21d =2120)2(T m d eU ·2k ③三式联立得,T =leU mvd 022=2.5×10-9 s,k =4,故f =1/T =4×108 Hz,且k =4. 10.(1)0~2 s 电子能从O ′射出,动能必须足够大,由功能关系得U 1e <E k0 得U 1<120 V所以当t <0.6或t >1.4时,粒子可由B 板小孔O ′射出.(2)电子进入偏转极板时的水平速度为v ,通过偏转电极时,侧向偏移是y ,y =dmv eL U 2222 能从偏转电场右侧飞出的条件是y <2d 得21mv 2>2222dl eU 代入数字的21mv 2>250 eV,即AB 间必须有130 V 的加速电压,所以当2.65 s <t <3.35 s 时,电子能从偏转电场右侧飞出,如图所示.11.(1)电子在加速电场中运动,据动能定理,有eU 1=21mv 12,v 1=meU 12 (2)因为每个电子在板A 、B 间运动时,电场均匀、恒定,故电子在板A 、B 间做类平抛运动,在两板之外做匀速直线运动打在屏上.在板A 、B 间沿水平方向运动时,有 L =v 1t ,竖直方向,有 y ′=21at 2,且a =mdeU , 联立解得 y ′=2122mdv eUL .只要偏转电压最大时的电子能飞出极板打在屏上,则所有电子都能打在屏上,所以 y m ′=21202mdv L eU <2d ,U 0<2122L U d . (3)要保持一个完整波形,需每隔周期T 回到初始位置,设某个电子运动轨迹如图所示,有tan θ=L y mdv eUL v v ''==⊥211,又知 y ′=2122mdv eUL ,联立得 L ′=2L . 由相似三角形的性质,得y yL D L'=+2/2,则 y =14)2(dU LUD L -,峰值为 y m =14)2(dU LU D L +.波形长度为 x 1=vT .波形如图所示.。
带电粒子在交变电场中的运动轨迹专题
一、交变电场的基本概念
交变电场是指在时域上呈周期性变化的电场。
在交变电场中,
带电粒子的运动方程比直流电场中复杂得多。
二、带电粒子在交变电场中的运动情况
带电粒子在交变电场中会发生两种运动:漂移运动和回旋运动。
1.漂移运动
漂移运动是带电粒子在交变电场的作用下沿着电场方向偏移。
漂移速度与电场强度和频率有关。
2.回旋运动
带电粒子在交变电场的作用下还会发生径向周期运动,这种运
动叫做回旋运动。
三、带电粒子轨迹的计算方法
在交变电场中,带电粒子的运动轨迹比直流电场中复杂得多,
常用的计算方法有以下几种:
1.迭代法
迭代法是用于求解微分方程的常用数值计算方法。
通过将微分方程进行离散化,计算出每个时间点上带电粒子的位置和速度。
2.数值积分法
数值积分法将微分方程转化为积分方程,再通过数值方法计算出每个时间点上带电粒子的位置和速度。
3.分析法
分析法通过对微分方程进行分析,求出带电粒子在交变电场中的运动函数,进而计算出其轨迹。
四、结论
带电粒子在交变电场中的运动轨迹是十分复杂的,需要利用数学计算方法来求解。
研究带电粒子在交变电场中的运动轨迹对于理解带电粒子在电场中的行为规律十分重要,也为电磁波理论的研究提供了基础。
例1如图(a )所示,两平行正对的金属A 、B 间加有如图(b )所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间 P 处•若在t o 时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在 A 板上.则t 可图也)TA. O v;9T 8则由图象解决带电粒子在交变电场中运动的方法技法一 借助图象,展示物理过程带电粒子在交变电场中运动时, 受电场力作用,其加速度、速度等均做周期性变化.借 助图象来描述它在电场中的运动情况,可直观展示物理过程, 从而获得启迪,快捷地分析求解.【解析】 设粒子的速度方向、 位移方向向右为正.依题意得,粒子的速度方向时而为 T T 3T 负,时而为正,最终打在A 板上时位移为负,速度方向为负.作出to = 0、4、2 3■时粒子 运动的速度图象如图所示. 由于速度图线与时间轴所围面积表示粒子通过的位移, T 3TT 3T可知o<t o <4, ]<t o <T 时粒子在一个周期内的总位移大于零;4<t o <V 时粒子在一个周期内的总位移小于零;当t o > T 时情况类似.因粒子最终打在 A 板上,则要求粒子在每个周期内的 总位移应小于零,对照各选项可知只有B 正确.【答案】 B本题物理情景简单,但隐含条件较多.如打在 A 板上时速度方向为向左,位移方向为 向左,做此类题目注意隐含条件的挖掘. 另外,速度一时间图象的合理应用,可提高同学们 的解题速度.技法二巧取分运动,化繁为简某个方向的分运动不会因其他分运动的存在而受到影响,这就是运动的独立性原理,应V V 2+ V y =寸 V 0 +——2 29q U o T4m d【答(1)2.5VOT ⑵;V 2+豊腭-【解d 1 2 2=尹,用这一原理可以简捷分析某些带电粒子在交变电场中运动的问题.例2如图(a )所示,平行板电容器间距为 d ,两板所加电压如图(b )所示,t = 0时刻,质 量为m 、带电荷量为q 的粒子以平行于极板的速度 v o 射入电容器,2.5T 时恰好落在下极板 上,带电粒子的重力不计,在这一过程中,求:(1) 该粒子的水平位移; (2)粒子落到下极板时的速度.【解析】 (1)带电粒子在水平方向不受外力作用,做匀速直线运动,因此水平位移为: s = V o t = v ox2.5T = 2.5V °T.(2)带电粒子落在下极板上时在竖直方向的分速度为33qU oVy= a2T = 2md T粒子落在下极板上时的速度大小为技法三巧建模型,化难为易对于某些实际的物理过程, 可根据题设条件, 运用近似处理方法, 通过简化描述来反映事物基本的物理特征,这有助于迅速、准确确定出解题方向和策略,使问题得到迅速解决.例3在真空中速度为 V = 6.4 x 107 m/s 的电子束连续地射入两平行极板之间,极板长度为L = 8.0X 10 m ,间距为d = 5.0X 10 m ,电子束沿两极板间的中线通过,如图所示,在 两极板上加上50 Hz 的交变电压u = U m sin 3 t 如果所加电压的最大值超过某一值 U c ,将开始出现以下现象:电子有时能通过两极板,有时不能通过,求U c 的大小.(电子的比荷为111.76 x 10 C/kg )设电子刚好不能通过时平行板的电压为 U c ,电子经过平行板的时间为 t,则:2 ,2eU c 小仆… mv da = C,解得UC = r = 91 V.md eL【答91 V丿考能提升二对点演练h[高考真题]1. (2016课标卷I, 14)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上•若将云母介质移出,则电容器()A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C.极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变【解析】电容器接在恒压直流电源上,两极板的电压不变,若将云母介质移出,相对介电常数减小,电容器的电容减小,所以极板上的电荷量减小,极板间的距离不变,所以极板间的电场强度不变,故A、B、C错误,D正确.【答案】D2. (2015课标卷H, 14)如图,两平行的带电金属板水平放置.若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态.现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°再由a点从静止释放一同样的微粒,该微粒将()A .保持静止状态B .向左上方做匀加速运动C. 向正下方做匀加速运动D. 向左下方做匀加速运动【解析】两平行金属板水平放置时,带电微粒静止有mg= qE,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45。
带电粒子在交变电场中的运动解题技巧篇一:哎呀呀,同学们,说到带电粒子在交变电场中的运动,这可真是个让人头疼又好奇的问题呢!就像我们在操场上跑步,一会儿快跑,一会儿慢跑,带电粒子在交变电场里也是这样,一会儿加速,一会儿减速。
想象一下,带电粒子就像个调皮的小孩子,交变电场就是那变化多端的游戏规则。
有时候电场力推着它往前跑,跑得可快啦;有时候又像是被拉住了,速度慢下来。
那我们怎么才能搞清楚它到底是怎么运动的呢?首先呀,我们得搞清楚交变电场的变化规律,这就好比知道游戏规则什么时候变。
比如说,电场强度是怎么随着时间变化的,周期是多长。
然后呢,我们得分析带电粒子受到的电场力。
这力可不简单,它一会儿大一会儿小,就像一阵一阵的风,吹着小船摇摇晃晃。
老师给我们讲的时候说:“同学们,你们看,如果电场力的方向和粒子的运动方向相同,那粒子不就加速了吗?”我们都点点头。
有一次,我和同桌一起讨论这个问题,我问他:“要是电场力一会儿推着粒子跑,一会儿又拉着它,那可怎么办?”同桌挠挠头说:“那我们就得一段一段地分析呀!”我们还一起做了好多练习题。
有一道题可难啦,我怎么都想不明白,急得我直跺脚。
这时候,旁边的学霸看到了,笑着说:“别着急,你看这里,先根据电场的变化算出电场力,再分析加速度。
”听了他的话,我恍然大悟,原来如此!其实啊,解决这类问题就像是走迷宫,每一步都要小心谨慎,仔细分析。
只要我们认真思考,多做练习,就一定能找到出口。
所以呀,同学们,带电粒子在交变电场中的运动虽然复杂,但只要我们掌握了方法,有耐心,有信心,就一定能把它拿下!哎呀呀,同学们,你们知道带电粒子在交变电场中的运动有多神奇吗?这可真是个让人头疼但又超级有趣的知识!就像我们在操场上跑步,有时候跑快,有时候跑慢,带电粒子在交变电场中也是这样,一会儿加速,一会儿减速。
那怎么才能搞清楚它们的运动规律呢?咱们先来说说最基本的,得弄清楚电场的变化规律呀!这就好比我们要知道跑步比赛的规则,是每跑一圈加速,还是隔一段时间加速。
带电粒子在交变电场中的运动问题与带电体在等效场中的运动问题一、带电粒子在交变电场中的运动问题1.带电粒子在交变电场中运动的分析方法(1)注重全面分析(分析受力特点和运动规律),抓住粒子的运动具有周期性和在空间上具有对称性的特征,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的边界条件。
(2)分析时从两条思路出发:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系。
(3)注意对称性和周期性变化关系的应用。
2.常见的三类运动形式带电体做单向直线运动、直线往返运动或偏转运动。
【典例1】如图甲所示平行金属板AB 之间的距离为6 cm ,两板间电场强度随时间按图乙所示规律变化。
设场强垂直于金属板由A 指向B 为正,周期T =8×10-5 s 。
某带正电的粒子,电荷量为8.0×10-19C ,质量为1.6×10-26kg ,某时刻在两板间中点处由静止释放(不计粒子重力,粒子与金属板碰撞后即不再运动),则( )A .若粒子在t =0时释放,则一定能运动到B 板 B .若粒子在t =T2时释放,则一定能运动到B 板C .若粒子在t =T4时释放,则一定能运动到A 板D .若粒子在t =3T8时释放,则一定能运动到A 板【答案】 ADt =3T 8时释放,则在3T 8~T 2 的时间内粒子向B 板加速运动,位移为x 2′=12a ⎝⎛⎭⎫T 82=12×108×(10-5)2m =0.5×10-2m =0.5 cm ,在T 2~5T 8的时间内粒子向B 板减速运动,位移为x 3′=x 2′=0.5 cm ;在5T8~T 的时间内粒子向A板加速运动,位移为x 2″=12a ⎝⎛⎭⎫3T 82=12×108×(3×10-5)2m =4.5×10-2 m =4.5 cm ;因(4.5-2×0.5)cm =3.5 cm>3cm ,故粒子能到达A 板,选项D 正确。
高二B6班 2009.9.25带电粒子在电场中运动的应用——示波器如图所示,k 级发射出电子,经过KS 之间的加速电场加速后,进入AB 的偏转电场,AB 两板间的电压为U 2,射出电场后将射到电子屏幕上。
试分析电子的整个运动过程。
(1)电子穿越加速电场获得的速度1v设电子的质量为m ,电量为q ,经电压1U 加速后速度为1v 。
由动能定理有21121mv qU =,m qU v 112=(2)电子穿越偏转电场的时间t :电子以初速度1v 平行于两正对的平行金属板从两板正中间射入后,在偏转电场中运动时间为t ,则112qU m L v L t == (3)电子穿越偏转电场时沿电场方向的加速度a : 电子在偏转电场中运动时沿电场方向的加速度dm qU m F a 2='=(4)电子离开偏转电场时的侧移距离y :电子在偏转电场中运动时沿电场方向作初速度为0的做匀加速直线运动d U L U L qU m dm qU at y 1222122422121=⨯⨯==(5)电子离开偏转电场时沿电场方向的速度为y v :电子离开电场时沿电场方向的速度为y v ,则122mU q d L U at v y ==(6)电子离开偏转电场时的偏角ϕ:设飞出两板间时的速度方向与水平方向夹角为θ。
则dU L U v v x y122tan ==θ(7)电子在屏幕上的偏移位移Y :电子飞出电场以后将沿电子出场时速度方向做匀速直线运动,最后射到屏幕上。
所以:21=t a n 2y x v U L y L v U d θ'==' 则212U LL y U d ''= 所以2222111()4222U L U LL U L L Y y y L U d U d U d '''=+=+=+。
静电场考点突破微专题11 带电粒子在交变电场中的运动一、知能掌握1.常见的交变电场常见的产生交变电场的电压波形有方形波、锯齿波、正弦波等.2.常见的题目类型(1)粒子做单向直线运动(一般用牛顿运动定律求解).(2)粒子做往返运动(一般分段研究).(3)粒子做偏转运动(一般根据交变电场特点分段研究).3.思维方法(1)注重全面分析(分析受力特点和运动规律),抓住粒子的运动具有周期性和在空间上具有对称性的特征,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的边界条件.(2)分析时从两条思路出发:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系.(3)注意对称性和周期性变化关系的应用.(4)充分利用V-T图像结合运动过程示意图分析问题4.在解决交流电流综合问题时,应注意以下几点:1、由于交变电流的大小和方向、电压的大小和正负都随时间周期性变化,这就引起磁场、电场的强弱和方向周期性变化。
因此,在研究带电体在场中受力时,一定要细微地进行动态受力分析。
2、分析具体问题时,要在研究分析物体在整个过程中各个阶段的运动性质,建立起动态的物理图象上下功夫,不能简单地认为物体受力方向改变时,物体一定同时改变运动方向,要根据物体的初始状态和受力条件这两个决定因素来确定物体的运动性质。
3、分析时还应注意由于交流电的周期性变化引起的分析结果出现多解的可能。
4、因电场随时间变化,交变电场中带电粒子所受到电场力出现周期性变化,导致运动过程出现多个阶段,分段分析是常见的解题思路.若要分析运动的每个细节,一般采用牛顿运动定律的观点分析,借助速度图象能更全面直观地把握运动过程,处理起来比较方便.二、探索提升题型一交变电场作用下的直线运动【典例1】如图所示,AB两平行金属板,A板接地,B板的电势做如图的周期性变化,在两板间形成交变电场。
一电子以分别在下列各不同时刻从A板的缺口处进入场区,试分析电子的运动情况。