高中数学沪教版(上海)高一第一学期第二章2.3 基本不等式及其应用课件
- 格式:pptx
- 大小:197.67 KB
- 文档页数:15
高中数学教材(沪教版)目录高一上第一章集合与命题一集合1.1集合及其表示法1.2集合之间的关系1.3集合的运算二四种命题的形式1.4命题的形式及等价关系三充分条件与必要条件1.5充分条件、必要条件1.6子集与推出关系第二章不等式2.1不等式的基本性质2.2一元二次不等式的解法2.3其他不等式的解法2.4基本不等式及其应用*2.5不等式的证明第三章函数的基本性质3.1函数的概念3.2函数关系的建立3.3函数的运算3.4函数的基本性质第四章幂函数、指数函数和对数函数(上)一幂函数4.1幂函数的性质与图像二指数函数4.2指数函数的性质与图像*4.3借助计算器观察函数递增的快慢高一下第四章幂函数、指数函数和对数函数(下)三对数4.4对数的概念及其运算四反函数4.5反函数的概念五对数函数4.6对数函数的性质与图像六指数方程和对数方程4.7简单的指数方程4.8简单的对数方程第五章 三角比 一 任意角的三角比 5.1任意角及其度量 5.2任意角的三角比 二 三角恒等式5.3同角三角比的关系和诱导公式 5.4两角和与差的正弦、余弦和正切 5.5二倍角与半角的正弦、余弦和正切 三 解斜三角形5.6正弦定理、余弦定理和解斜三角形第六章 三角函数 一 三角函数的图像及性质6.1正弦函数和余弦函数的图像与性质 6.2正切函数的图像与性质6.3函数()sin y A x ωφ=+的图像与性质 二 反三角函数与最简三角方程 6.4反三角函数 6.5最简三角方程高二上第七章数列与数学归纳法一 数列 7.1数列 7.2等差数列 7.3等比数列 二 数学归纳法 7.4数学归纳法7.5数学归纳法的应用 7.6归纳—猜想—证明 三 数列的极限 7.7数列的极限7.8无穷等比数列各项的和第八章 平面向量的坐标表示 8.1向量的坐标表示及其运算 8.2向量的数量积8.3平面向量的分解定理 8.4向量的应用第九章 矩阵和行列式初步 一 矩阵9.1矩阵的概念 9.2矩阵的运算 二 行列式 9.3二阶行列式 9.4三阶行列式第十章算法初步10.1算法的概念10.2程序框图*10.3计算机语句和算法程序高二下第十一章坐标平面上的直线11.1直线的方程11.2直线的倾斜角和斜率11.3两条直线的位置关系11.4点到直线的距离第十二章圆锥曲线12.1曲线和方程12.2圆的方程12.3椭圆的标准方程12.4椭圆的性质12.5双曲线的标准方程12.6双曲线的性质12.7抛物线的标准方程12.8抛物线的性质第十三章复数13.1复试的概念13.2复数的坐标表示13.3复数的加法和减法13.4复数的乘法和除法13.5复数的平方根和立方根13.6实系数的一元二次方程高三上第十四章空间直线与平面14.1平面及其基本性质14.2空间直线与直线的位置关系14.3空间直线与平面的位置关系14.4空间平面与平面的位置关系第十五章简单集合体一多面体15.1多面体的概念15.2多面体的直观图二旋转体15.3旋转体的概念三几何体的表面积、体积和球面距离15.4几何体的表面积15.5几何体的体积15.6球面距离第十六章排列组合与二项式定理16.1计数原理Ⅰ——乘法原理16.2排列16.3计数原理Ⅱ——加法原理16.4组合16.5二项式定理高三下第十七章概率论初步17.1古典概型17.2频率与概率第十八章基本统计方法18.1总体和样本18.2抽样技术18.3统计估计18.4实例分析*18.5概率统计实验。
课 题:基本不等式应用(1)执教:知识技能:通过复习基本不等式应用这类特殊题型,获得一种探寻数学中“从具体到抽象,再从抽象到具体”的思维过程。
并能体验数学的逻辑之美。
通过掌握公式的结构特点,运用公式的适当变形,提高学生分析问题和解决问题的能力, 过程方法:在学生对认知过程的经历和体验中重视对实际问题的理解和应用推广,强调对探究过程和方法的掌握。
通过观察、抽象、概括、类比、归纳等方法进行学习。
情感价值态度观:体验、感悟知识的生成和发生过程,体会数学从特殊到一般再从一般到特殊的认识规律,体会数学应用之美。
培养学生的创新精神,进一步加强学生的总结概括能力。
一、复习引入:重要不等式:1、如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a2、如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab b a 显然,当且仅当ab b a b a =+=2,时 说明:ⅰ)我们称b a b a ,2为+的算术平均数,称b a ab ,为的几何平均数,因而,此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数 ⅱ)ab ba ab b a ≥+≥+2222和成立的条件是不同的:前者只要求a,b 都是实数,而后者要求a,b 都是正数ⅲ)“当且仅当”的含义是充要条件若x,y 都是正数,(1)如果积xy 是定值P,那么当x=y 时,和x +y 有最小值(2)如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值上述重要不等式有着广泛的应用,例如:证明不等式,求函数最值,判断变量或数学式子的取值范围等等它们涉及到的题目活,变形多,必须把握好凑形技巧今天,我们就来进一步学习均值不等式的应用三、讲解范例: 例:1b a =•,求 a+b 的范围1、2x 1x ≥+(x>0), 当且仅当x 1x =时取“=”号 正数与它的倒数之和不小于2 2x 1x -≤+(x<0), 当且仅当x 1x =时取“=”号 负数与它的倒数之和不大于-2 2. b a a b +≥2(ab >0),当且仅当a =b 时取“=”号; 例:1、x>0,y>0 3x+2Y=12 求xy 最大值2、x 〉1,求1x 1x y -+=的最小值。
基本不等式一、教学内容分析基本不等式及其应用是高中教材中的一个重要内容.尽管基本不等式本身的证明并不困难,但它却是今后学习诸如不等式证明、求函数最值等时的有力工具,因此牢固掌握这两个基本不等式的形成、关系和变式等都是十分重要的.二、教学目标设计1、知识与技能:掌握两个基本不等式:ab b a 222≥+(a 、R b ∈)、ab b a ≥+2(a 、b 为任意正数),并能用于解决一些简单问题.2、过程与方法:在公式的探求过程中,理解两个基本不等式相应的几何解释,领悟数形结合的数学思想,初步理解代换的数学方法。
3、情感态度与价值观:通过掌握公式的结构特点,运用公式的适当变形,提高学生分析问题的能力,培养学生的创新精神,进一步加强学生的实践能力,进一步体会事物之间互相联系及一定条件下互相转化的辩证唯物主义观点。
三、教学重点及难点重点 两个基本不等式的知识发生过程和证明;难点 基本不等式的应用.四、教学用具准备电脑、投影仪五、教学流程设计(一)讲授基本不等式1.引例:如右图,已知正方形ABCD ,在边AD 上任取一点E ,在边DC 上取点F ,使得DE DF =.分别过点E 、F 作EG BC ⊥、FH AB ⊥,垂足为G 、H ,EG 和HF 交于点M 。
设DF=a ,MG=b ,试比较红色部分面积之和与白色部分面积之和的大小,并说明理由。
2.基本不等式1的证明证明:因为()22220a b ab a b +-=-≥,所以ab b a 222≥+.当a b =时,()20a b -=.当a b ≠时,()20a b ->.所以,当且仅当a b =时,ab b a 222≥+的等号成立.充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a 、b∈R,那么a 2+b 2≥2ab(当且仅当a=b 时取“=”号).3.基本不等式的几何解释,讲解赵爽《勾股方圆图注》(二)讲授基本不等式21.引例:已知半圆O ,D 是半圆上任一点,AB是直径.过D 作DC AB ⊥,垂足为C .设AB b a +=,AC a =,CB b =,试用a 、b 来表示OD 、CD 的长度,你能发现什么结论吗?2.基本不等式2的证明(略)3.基本不等式2的扩充对于任意非负数a 、b ,有ab b a ≥+2,当且仅当a b =时等号成立. (三)基本不等式的简单应用 例1:已知0>ab ,求证:2≥+ba ab ,并指出等号成立的条件. 证明:因为0>ab ,所以 a 、b 同号,并有0>a b ,0>b a . 所以,22=⋅≥+b a a b b a a b .当且仅当 b a a b =,即0a b =≠时等号成立. [说明]1、体会代换的方法.2、用语言表述上述结论.3、思考:若0<ab ,则代数式ba ab +的取值范围是什么? 例2 在周长相等的矩形中,正方形的面积最大六、课堂小结 b a C O D七、作业布置1、练习册P19~20,习题2.4A组2、思考题(1)在面积保持不变的条件下,正方形的周长与矩形的周长之间有什么大小关系?(2)整理一些不等式的常用变式并给出证明八、教学设计说明本堂课是《基本不等式及其应用》的第一节课,在学生熟练掌握不等式性质的前提下,介绍了两个基本不等式及其初步应用.尽管对于基本不等式而言证明不困难,但它却是今后学习诸如不等式证明、求函数最值等时的有力工具,因此牢固掌握这两个基本不等式是十分重要的.为了避免单纯地讲授基本不等式,本堂课借助计算机软件,采用以几何图形辅助代数知识讲授,由形到数,再由数到形的设计思路,将两个基本不等式的证明、解释及其在应用时的注意点穿插其中,并通过几何解释加强对基本不等式的感性认识。
2.2不等式的基本性质一、教学目标设计理解用两个实数差的符号来规定两个实数大小的意义,建立不等式研究的基础;掌握不等式的基本性质,并能加以证明;会用不等式的基本性质判断不等关系和用比较法,反证法证明简单的不等式。
渗透分类讨论的数学思想。
二、教学重点及难点应用不等式的基本性质推理判断命题的真假;代数证明,特别是反证法。
三、教学流程设计四、教学过程设计一、引入公路有长有短,房屋有高有低,速度有快有慢......现实世界中充满着不等的数量关系,可以用不等式来处理。
在初中阶段,我们已经学习了用一元一次不等式描述并解决一些不等关系问题,为了今后学习函数的需要和培养代数论证能力,还要学习不等关系的证明。
而解决不等关系问题的基础是不等式的性质,为此我们先学习不等式的基本性质。
二、探究不等式的基本性质判断两个实数a与b之间的大小关系,可以通过将它们的差与零相比较来确定,即a>b的充分必要条件是a-b>0;a=b的充分必要条件是a-b=0;a<b的充分必要条件是a-b<0。
引出等式的性质:a=b,b=c⇒a=c;a=b⇒ac=bc;a=b,c=d⇒a+c=b+d。
1.通过类比等式的性质,得到关于不等式的三个结论:结论1 如果a>b,b>c,那么a>c。
结论2 如果a>b,c>d,那么a+c>b+d。
结论3 如果a>b,那么ac>bc。
[说明]引导学生判断三个结论的正确性并加以证明,体现数学的严谨性。
利用举反例是证明命题错误的主要方法。
继续让学生探究让结论3成为正确命题的条件。
得出不等式的三个性质:性质1 如果a>b,b>c,那么a>c。
性质2 如果a>b,那么a+c>b+c。
性质3 如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc。
性质4 如果a>b,c>d,那么a+c>b+d。
高中(一)数学教材(沪教版)目录高一上第一章集合与命题一集合1.1集合及其表示法1.2集合之间的关系1.3集合的运算二四种命题的形式1.4命题的形式及等价关系三充分条件与必要条件1.5充分条件、必要条件1.6子集与推出关系第二章不等式2.1不等式的基本性质2.2一元二次不等式的解法2.3其他不等式的解法2.4基本不等式及其应用*2.5不等式的证明第三章函数的基本性质3.1函数的概念3.2函数关系的建立3.3函数的运算3.4函数的基本性质第四章幂函数、指数函数和对数函数(上)一幂函数4.1幂函数的性质与图像二指数函数4.2指数函数的性质与图像*4.3借助计算器观察函数递增的快慢高一下第四章幂函数、指数函数和对数函数(下)三对数4.4对数的概念及其运算四反函数4.5反函数的概念五对数函数4.6对数函数的性质与图像六指数方程和对数方程4.7简单的指数方程4.8简单的对数方程第五章三角比一任意角的三角比5.1任意角及其度量5.2任意角的三角比二三角恒等式5.3同角三角比的关系和诱导公式5.4两角和与差的正弦、余弦和正切1/35.5二倍角与半角的正弦、余弦和正切三解斜三角形5.6正弦定理、余弦定理和解斜三角形第六章三角函数一三角函数的图像及性质6.1正弦函数和余弦函数的图像与性质6.2正切函数的图像与性质6.3函数()siny A xωφ=+的图像与性质二反三角函数与最简三角方程6.4反三角函数6.5最简三角方程高二上第七章数列与数学归纳法一数列7.1数列7.2等差数列7.3等比数列二数学归纳法7.4数学归纳法7.5数学归纳法的应用7.6归纳—猜想—证明三数列的极限7.7数列的极限7.8无穷等比数列各项的和第八章平面向量的坐标表示8.1向量的坐标表示及其运算8.2向量的数量积8.3平面向量的分解定理8.4向量的应用第九章矩阵和行列式初步一矩阵9.1矩阵的概念9.2矩阵的运算二行列式9.3二阶行列式9.4三阶行列式第十章算法初步10.1算法的概念10.2程序框图*10.3计算机语句和算法程序高二下第十一章坐标平面上的直线11.1直线的方程11.2直线的倾斜角和斜率11.3两条直线的位置关系11.4点到直线的距离第十二章圆锥曲线12.1曲线和方程12.2圆的方程2/312.3椭圆的方程12.4椭圆的性质12.5双曲线的方程12.6双曲线的性质12.7抛物线的方程12.8抛物线的性质第十三章复数13.1复试的概念13.2复数的坐标表示13.3复数的加法和减法13.4复数的乘法和除法13.5复数的平方根和立方根13.6实系数的一元二次方程高三上第十四章空间直线与平面14.1平面及其基本性质14.2空间直线与直线的位置关系14.3空间直线与平面的位置关系14.4空间平面与平面的位置关系第十五章简单集合体一多面体15.1多面体的概念15.2多面体的直观图二旋转体15.3旋转体的概念三几何体的表面积、体积和球面距离15.4几何体的表面积15.5几何体的体积15.6球面距离第十六章排列组合与二项式定理16.1计数原理Ⅰ——乘法原理16.2排列16.3计数原理Ⅱ——加法原理16.4组合16.5二项式定理高三下第十七章概率论初步17.1古典概型17.2频率与概率第十八章基本统计方法18.1总体和样本18.2抽样技术18.3统计估计18.4实例分析*18.5概率统计实验3/3。
2.1不等式的基本性质(1)学习目标:1.理解用两个实数差的符号来规定两个实数大小的意义,建立不等式研究的基础;2.掌握不等式的基本性质,并能加以证明;3.会用不等式的基本性质判断不等关系。
学习重点:应用不等式的基本性质推理判断命题的真假及代数证明。
学习难点:不等式的基本性质代数证明。
学习过程:一、课前练习:1. x>0是x>-1的 条件。
2. xy=0是x=0的 条件。
3. 设命题B A p ≠⊂:,命题A B A q = :,则p,q 之间的推出关系为 。
4. 设{}1≥=x x A ,{}a x x B ≤=,若R B A = ,则实数a 的取值范围是 。
5. 集合{}2,1,12--x x 中的x 不能取下列各数中的( )(A)2; (B)3; (C)4; (D)5.二、探究不等式的基本性质判断两个实数a 与b 之间的大小关系,可以通过将它们的差与零相比较来确定,即a >b 的充分必要条件是a =b 的充分必要条件是a <b 的充分必要条件是[说明]引导学生判断三个结论的正确性并加以证明,体现数学的严谨性。
利用举反例是证明命题错误的主要方法。
继续让学生探究让结论3成为正确命题的条件。
得出不等式的8个性质:性质1 。
性质2 。
性质3 。
性质4(例1) 如果a >b ,c >d ,那么a+c >b+d 。
性质5 。
性质6 。
性质7 。
性质8 。
说明:性质7、8先引进,下节课证明。
三、例题分析例1.判断下列命题的真假。
(1)若a >b ,那么ac >2bc 2。
(2)若ac >2bc 2,那么a >b 。
(3)若a >b ,c >d ,那么a-c >b-d 。
(4)若cd a b<,那么ad bc <。
四、反馈练习:书P30练习2.1(1)1-4五、小结:利用已经学过的不等式的性质证明命题的正确性,特别要注意性质的使用前提.(乘除法,求倒数)六、同步练习:1. 用适当符号填空:φ {0}2. 用列举法表示16以内的质数集合为3. 用描述法表示被4除余数为1的正整数集合4. 下列各式中,满足集合A=B 的序号是(){}{}Z k k x x B Z k k x x A ∈-==∈+==,12,,121;(){}{}N k k x x B N k k x x A ∈-==∈+==,12,,122;(){}{}Z k k x x B Z k k x x A ∈±==∈+==,14,,123;(){}{}Z k k x x B Z k k x x A ∈-==∈+==,23,,134;5. 设{}{}22,122++==-==x x y y B x y y A ,则A 与B 的关系是6. 设命题x :α是方程0232=+-x x 的根,2:=x β,则用合适的推出记号表示α β7. 一个命题的逆命题是“若实数b a ,满足1=a 且2=b ,则4<+b a ”,则原命题的否命题是 (并判断真假)8. 设U 为全集,M,N 是U 的子集,且M N M = ,则( )();N M C A U = ();M N C B U = ();N C M C C U U ⊆ ().M C N C D U U ⊆9. 命题“若M b M a ∉∈则,”的等价命题是( )()M b M a A ∉∈则若,; ()M a M b B ∈∉则若,; ()M b M a C ∈∉则若,;10.集合(){}012=-++=k x x k x M 是单元素集合,求实数k 的值组成的集合。