新高一数学必修一第二章双基训练一元二次函数、方程和不等式(二)(附解析)
- 格式:docx
- 大小:297.76 KB
- 文档页数:13
~第二章 一元二次函数、方程和不等式全章复习讲解 (含答案)【要点梳理】(不等式性质、解一元二次不等式、基本不等式) 一、不等式1.定义 不等式:用不等号(>,<,≥,≤,≠)表示不等关系的式子.2..不等式的性质不等式的性质可分为基本性质和运算性质两部分 基本性质有:性质1 对称性:a b b a >⇔<;】性质2 传递性:,a b b c a c >>⇒>;性质3 加法法则(同向不等式可加性):()a b a c b c c R >⇔+>+∈; 性质4 乘法法则:若a b >,则000c ac bc c ac bc c ac bc ,,.>⇒>⎧⎪=⇒=⎨⎪<⇒<⎩补充:除法法则:若a b >且0c =,则00a bc c ca b c c c⎧>⇒>⎪⎪⎨⎪<⇒<⎪⎩., 性质5 可加法则:,a b c d a c b d >>⇒+>+; 性质6 可乘法则:0,00a b c d a c b d >>>>⇒⋅>⋅>; 性质7 可乘方性:()*00n n a b n a b N >>∈⇒>>;可开方性:()01a b n n N 且+>>∈>⇒!要点诠释:不等式的性质是不等式同解变形的依据. 二、比较两代数式大小的方法 作差法:1. 任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小. ①0a b a b ->⇔>; ②0a b a b -<⇔<; ③0a b a b -=⇔=. 作商法:任意两个值为正的代数式a 、b ,可以作商a b ÷后比较ab与1的关系,进一步比较a 与b 的大小. ①1a a b b >⇔>; ②1a a b b <⇔<; ③1aa bb =⇔=. &要点诠释:若代数式a 、b 都为负数,也可以用作商法. 中间量法:若两个代数式a 、b 不容易直接判断大小,可引入第三个量c 分别与a 、b 作比较,若满足a b >且b c >,则a c >. 第三个量就是中间量. 这种方法就是中间量法,其实质是不等式的传递性.一般选择0或1为中间量.三、一元二次不等式与相应函数、方程之间的联系设()2f x ax bx c =++(0)a >,判别式24b ac ∆=-,按照0∆>,0∆=,0∆<该函数图象(抛物线)与x 轴的位置关系也分为三种情况,相应方程的解与不等式的解集形式也不尽相同. 如下表所示:24b ac ∆=-0∆>&0∆=0∆<函数()y f x = 的图象方程()=0f x?的解有两相异实根 1212,()x x x x <有两相等实根 122bx x a ==-无实根不等式()0f x >的解集 [{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R不等式()0f x <的解集{}12x xx x <<∅ ∅}要点诠释:(1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线y =2ax bx c ++与x 轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集. 四、解一元二次不等式1. 解一元二次不等式()2ax +bx+c a ≠>00的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数;(2)写出相应的方程20ax bx c ++=(0)a >,计算判别式∆:%①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法); ②0∆=时,求根122bx x a==-; ③0∆<时,方程无解(3)根据不等式,写出解集. 五、基本不等式1.对公式222a b ab +≥及2a b+≥. (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数; (2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”.~2.由公式222a b ab +≥和2a b+≥①2b aa b +≥(,a b 同号); ②2b aa b+≤-(,a b 异号);③20,0)112a b a b a b+≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>> 要点诠释: 222a b ab +≥可以变形为:222a b ab +≤,2a b +≥可以变形为:2()2a b ab +≤.2a b+≤求最大(小)值 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等. ① 一正:函数的解析式中,各项均为正数;>② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三取等:函数的解析式中,含变数的各项均相等,取得最值. 要点诠释:1.基本不等式的功能在于“和积互化”.若所证不等式可整理成一边是和,另一边是积的形式,则考虑使用平均不等式;若对于所给的“和式”中的各项的“积”为定值,则“和”有最小值,对于给出的“积式”中的各项的“和”为定值,则“积”有最大值.2.利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③各项能取得相等的值./【典型例题】类型一 不等式性质/例1.对于实数a b c ,,判断以下说法的对错.(1)若a b >,则ac bc <; (2)若22ac bc >,则a b >; (3)若0a b <<, 则22a ab b >>; (4)若0a b <<, 则a b >; (5)若a b >,1a >1b, 则00a b ,><. 举一反三:【变式1】如果a <b <0,那么下列不等式成立的是( ) A .B .a+c <b+cC .a ﹣c >b ﹣cD .a •c <b •c 例2、比较下列两代数式的大小:。
第二章 一元二次函数、方程和不等式全章复习讲解 (含答案)【要点梳理】(不等式性质、解一元二次不等式、基本不等式) 一、不等式1.定义 不等式:用不等号(>,<,≥,≤,≠)表示不等关系的式子.2..不等式的性质不等式的性质可分为基本性质和运算性质两部分 基本性质有:性质1 对称性:a b b a >⇔<; 性质2 传递性:,a b b c a c >>⇒>;性质3 加法法则(同向不等式可加性):()a b a c b c c R >⇔+>+∈; 性质4 乘法法则:若a b >,则000c ac bc c ac bc c ac bc ,,.>⇒>⎧⎪=⇒=⎨⎪<⇒<⎩补充:除法法则:若a b >且0c =,则00a bc c ca b c c c⎧>⇒>⎪⎪⎨⎪<⇒<⎪⎩., 性质5 可加法则:,a b c d a c b d >>⇒+>+; 性质6 可乘法则:0,00a b c d a c b d >>>>⇒⋅>⋅>; 性质7 可乘方性:()*00n n a b n a b N >>∈⇒>>;可开方性:()01a b n n N 且+>>∈>⇒要点诠释:不等式的性质是不等式同解变形的依据. 二、比较两代数式大小的方法 作差法:1. 任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小. ①0a b a b ->⇔>; ②0a b a b -<⇔<; ③0a b a b -=⇔=. 作商法:任意两个值为正的代数式a 、b ,可以作商a b ÷后比较ab与1的关系,进一步比较a 与b 的大小. ①1a a b b >⇔>; ②1a a b b <⇔<; ③1aa bb =⇔=. 要点诠释:若代数式a 、b 都为负数,也可以用作商法. 中间量法:若两个代数式a 、b 不容易直接判断大小,可引入第三个量c 分别与a 、b 作比较,若满足a b >且b c >,则a c >. 第三个量就是中间量. 这种方法就是中间量法,其实质是不等式的传递性.一般选择0或1为中间量.三、一元二次不等式与相应函数、方程之间的联系设()2f x ax bx c =++(0)a >,判别式24b ac ∆=-,按照0∆>,0∆=,0∆<该函数图象(抛物线)与x 轴的位置关系也分为三种情况,相应方程的解与不等式的解集形式也不尽相同. 如下表所示:24b ac ∆=-0∆>0∆=0∆<函数()y f x = 的图象方程()=0f x的解 有两相异实根 1212,()x x x x <有两相等实根 122bx x a ==-无实根不等式()0f x >的解集 {}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R不等式()0f x <的解集{}12x xx x <<∅ ∅要点诠释:(1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线y =2ax bx c ++与x 轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集. 四、解一元二次不等式1. 解一元二次不等式()2ax +bx+c a ≠>00的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式∆:①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法); ②0∆=时,求根122bx x a==-; ③0∆<时,方程无解 (3)根据不等式,写出解集.五、基本不等式 1.对公式222a b ab +≥及2a b+≥. (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数; (2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”. 2.由公式222a b ab +≥和2a b+≥ ①2b aa b +≥(,a b 同号); ②2b aa b+≤-(,a b 异号);③20,0)112a b a b a b+≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>> 要点诠释: 222a b ab +≥可以变形为:222a b ab +≤,2a b +≥可以变形为:2()2a b ab +≤.2a b+≤求最大(小)值 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等. ① 一正:函数的解析式中,各项均为正数;② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三取等:函数的解析式中,含变数的各项均相等,取得最值. 要点诠释:1.基本不等式的功能在于“和积互化”.若所证不等式可整理成一边是和,另一边是积的形式,则考虑使用平均不等式;若对于所给的“和式”中的各项的“积”为定值,则“和”有最小值,对于给出的“积式”中的各项的“和”为定值,则“积”有最大值.2.利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③各项能取得相等的值.【典型例题】类型一 不等式性质例1.对于实数a b c ,,判断以下说法的对错.(1)若a b >,则ac bc <; (2)若22ac bc >,则a b >; (3)若0a b <<, 则22a ab b >>; (4)若0a b <<, 则a b >; (5)若a b >,1a >1b, 则00a b ,><. 举一反三:【变式1】如果a <b <0,那么下列不等式成立的是( ) A .B .a+c <b+cC .a ﹣c >b ﹣cD .a •c <b •c 例2、比较下列两代数式的大小:(1)(5)(9)x x ++与2(7)x +;举一反三:【变式1】比较22x x +与2x +的大小【变式2】已知0a b >>,则2222a b a b -+ _________a ba b-+ (填,,><=)类型二 解二次不等式例3. 解下列一元二次不等式(1)250x x -<; (2)2440x x -+>; (3)2450x x -+->举一反三:【变式1】已知函数222,0,()2,0x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩解不等式f (x )>3.【变式2】 不等式组⎩⎪⎨⎪⎧x 2-1<0x 2-3x <0的解集为( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3} 【变式3】下列选项中,使不等式x <1x <x 2成立的x 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)例4. 不等式20x mx n +-<的解集为(4,5)x ∈,求关于x 的不等式210nx mx +->的解集.【总结升华】二次方程的根是二次函数的零点,也是相应的不等式的解集的端点.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系,这一点是解此类题的关键. 举一反三:【变式1】不等式ax 2+bx+12>0的解集为{x|-3<x<2},则a=_______, b=________.【变式2】已知关于x 的不等式20x ax b ++<的解集为(1,2),求x 的不等式210bx ax ++>的解集.【变式3】 若关于x 的不等式2260ax x a -+<的解集为(1,)m ,则实数m 等于 . 【变式4】 已知关于x 的不等式x 2+bx +c >0的解集为{x |x <-1或x >2},则b 2+c 2=( )A .5B .4C .1D .2例5.已知不等式ax2+4x+a>1-2x2对一切实数x恒成立,求实数a的取值范围.【思路点拨】不等式对一切实数恒成立,即不等式的解集为R,要解决这个问题还需要讨论二次项的系数。
一、选择题1.已知0x >,0y >,且1x y xy +=-,则( )A .xy 的最大值为3+B .xy 的最大值为6C .2x y +的最小值为3+D .2x y +的最小值为72.已知0a >,0b >,若不等式122m a b a b+≥+恒成立,则实数m 的最大值为( ) A .10 B .9 C .8 D .73.已知关于x 的不等式210mx mx ++>恒成立,则m 的取值范围为( ).A .()0,4B .[)0,4C .[]0,4D .(](),04,-∞⋃+∞4.对于任意实数x ,不等式210ax ax -+>恒成立,则实数a 的取值范围是( )A .(]0,4B .[)0,4C .(][),04,-∞+∞ D .()(),04,-∞+∞5.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2463450x x -+<成立的x 的取值范围是( ) A .[)1,15B .[]2,8C .[)2,8D .[)2,15 6.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测: 甲预测说:获奖者在乙、丙、丁三人中; 乙预测说:我不会获奖,丙获奖 丙预测说:甲和丁中有一人获奖; 丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是() A .甲和丁 B .乙和丁 C .乙和丙 D .甲和丙7.已知A 、B 、C 为ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为( ) A .13B .12C .23D .18.若不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -=( ) A .4-B .14C .10-D .109.若关于x 的不等式20x px q ++<的解集为{|23}x x <<,则关于x 的不等式22028x px qx x ++>--的解集是( ) A .()2,3 B .()(),24,-∞-+∞C .()()2,23,4-D .()()(),22,34,-∞-+∞10.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,90ACB ∠=︒,D 为AB 边上的一点,30ACD ∠=︒,且2CD =,则3a b +的最小值为( ) A .4B .423+C .8D .823+11.下列命题中正确的是( ) A .若ac bc >22,则a b >B .若a b >,则11a b< C .若a b >,c d >,则a c b d ->-D .若a b >,c d <,则a b c d> 12.集合{}2230A x x x =--≤,{}1B x x =>,则A B =( ).A .()1,3B .(]1,3C .[)1,-+∞D .()1,+∞二、填空题13.设m ,a R ∈,()()211f x x a x =+-+,2()24mg x mx ax =++,若“对于一切实数x ,()0f x >”是“对于一切实数x ,()0g x >”的充分条件,则实数m 的取值范围是___________.14.已知正数,x y 满足10xy y -+=,则4y x+的最小值为___________. 15.已知a 、b 、c 为正实数,则代数式938432a b cb c c a a b+++++的最小值是_________. 16.已知函数121()22x x f x +-+=+,如果对任意t ∈R ,f (3t 2+2t )+f (k 2﹣2t 2)<0恒成立,则满足条件的k 的取值范围是_____.17.设2020a b +=,0b >,则当a =____________时,12020a a b+取得最小值.18.已知()f x 是定义在R 上的奇函数,当0x >时,2()4f x x x =-,则不等式()f x x >的解集用区间表示为__________. 19.函数()10y x x x=->的图象上一点到坐标原点的距离的平方的最小值为________. 20.若关于x 的方程的两根都大于2,则m 的取值范围是________三、解答题21.对于四个正数x y z w ,,,,如果xw yz <,那么称()x y ,是()z w ,的“下位序对”. (1)对于23711,,,,试求()27,的“下位序对”; (2)设a b c d ,,,均为正数,且()a b ,是()c d ,的“下位序对”,试判断c a a cd b b d++,,之间的大小关系.22.已知函数2()(,)f x x bx c b c =++∈R ,且()0f x ≤的解集为[1,2]-. (1)求函数()f x 的解析式;(2)设函数()f x 在[,1]x t t ∈+上的最小值为()g t ,求()g t 的表达式.23.(1)解不等式24502x x x --≥-;(2)解关于x 的不等式:210()x ax a a R -+-<∈ .24.已知正实数x ,y 满足等式2520x y +=. (1)求lg lg u x y =+的最大值;(2)若不等式21014m m x y+≥+恒成立,求实数m 的取值范围.25.解关于x 的不等式:()2220ax x ax a -≥-<.26.若关于x 的不等式(1-a )x 2-4x +6<0的解集是x| x<-3或x> 1}. (1)求实数a 的值;(2)解关于x 的不等式2x 2+(2-a )x -a>0.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用公式x y +≥,将等式转化为不等式,求xy 的范围;由条件转化为11x y x +=-,代入2x y +后,利用基本不等式求最小值.【详解】0,0x y >>,x y +≥1xy ∴-≥210-≥,10x y xy +=->1>1t =>,即2210t t --≥,解得:1t ≥或1t ≤1≥,(213xy ≥=+,所以xy 的最小值是3+AB 不正确;10,0,1011x x y x y xy y x x +>>+=-⇒=>⇒>- ()11222222121111x x x y x x x x x x +-++=+=+=-+++---()2213371x x =-++≥=-,当()2211x x -=-时,即2x =时等号成立,所以2x y +的最小值是7,故D 正确. 故选:D 【点睛】关键点点睛:本题考查根据条件等式,利用基本不等式求最值,条件等式除了基本变形,同时也需注意变量的范围,比如本题中的1,1xy x >>等条件.2.C解析:C 【分析】 由已知可得()122m a b a b ⎛⎫≤++ ⎪⎝⎭,即求()122a b a b ⎛⎫++ ⎪⎝⎭的最小值,由基本不等式可得答案. 【详解】因为0a >,0b >,则()122m a b a b ⎛⎫≤++ ⎪⎝⎭,所以()1242448b a a b a b a b ⎛⎫++=++≥+⎪⎝⎭,当且仅当4b aa b=即2b a =等号成立,要使不等式恒成立,所以8m ≤ 所以实数m 的最大值为8.故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.B解析:B 【分析】分0m =和0m ≠两种情况讨论,结合已知条件可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】因为关于x 的不等式210mx mx ++>恒成立,分以下两种情况讨论: (1)当0m =时,可得10>,合乎题意; (2)当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,实数m 的取值范围是[)0,4. 故选:B. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩; ②()0f x <在R 上恒成立,则0a <⎧⎨∆<⎩; ③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则0a <⎧⎨∆≤⎩. 4.B解析:B 【分析】讨论0a =和0a ≠情况,再根据一元二次不等式与二次函数的关系,解不等式得解. 【详解】 关于x 的不等式210ax ax -+>恒成立,当0a =时,10>恒成立,满足题意当0a ≠时,即函数()21f x ax ax =-+恒在x 轴上方即可, 所以00a >⎧⎨∆<⎩,即2040a a a >⎧⎨-<⎩,解得04a <<,所以实数a 的取值范围是[0,4).故选:B 【点睛】本题考查了一元二次不等式恒成立求参数的取值范围,考查了一元二次不等式的解法,属于基础题.5.A解析:A 【分析】先由不等式[][]2463450x x -+<得出[]x 的取值范围,再由[]x 的定义得出x 的取值范围. 【详解】不等式[][]2463450x x -+<即为[]()[]()43150x x --<,解得[]3154x <<, 则[]{}1,2,3,,14x ∈,因此,115x ≤<,故选A.【点睛】本题考查一元二次不等式的解法,同时也考查了取整函数的定义,解题的关键要结合不等式得出[]x 的取值,考查计算能力,属于中等题.6.B解析:B 【分析】从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断 【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁 答案选B 【点睛】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证7.C解析:C 【分析】将11tan tan B C +化为关于tan A 的式子,然后利用基本不等式可以求出最小值. 【详解】在ABC 中,()tan tan C A B =-+,111111tan tan tan tan tan tan tan tan tan A BB C B A B B A B,tan 2tan B A =,211tan tan 112tan 12tan tan tan tan 2tan 3tan 6tan 3A B AAB A B A AA ,角A 为锐角,tan 0A ∴>,12tan 12tan 226tan 36tan 33A AA A , 当且仅当12tan 6tan 3A A ,即1tan 2A =时,等号成立,∴11tan tan B C +的最小值为23. 故选:C. 【点睛】本题考查三角形中角的互化,和的正切公式的应用,以及利用基本不等式求最值,属于中档题.8.C解析:C 【分析】由题意可知方程220ax bx ++=的根为11,23-,结合根与系数的关系得出12,2a b =-=-,从而得出-a b 的值.【详解】由题意可知方程220ax bx ++=的根为11,23- 由根与系数的关系可知,11112,2323b a a-+=--⨯= 解得12,2a b =-=- 即12210a b -=-+=- 故选:C 【点睛】本题主要考查了根据一元二次不等式的解集求参数的值,属于中档题.9.D解析:D 【分析】根据关于x 的不等式20x px q ++<的解集为{|23}x x <<,利用韦达定理得到5,6p q =-=,则不等式22028x px q x x ++>--转化为 2256028x x x x -+>--,再利用穿根法求解.【详解】因为关于x 的不等式20x px q ++<的解集为{|23}x x <<, 所以由韦达定理得:5,6p q =-=,所以22028x px q x x ++>--,即为2256028x x x x -+>--,即为()()()()23042x x x x -->-+,即为()()()()23420x x x x ---+>用穿根法得不等式的解集为:()()(),22,34,-∞-+∞,故选:D 【点睛】本题主要考查一元二次不等式的解集的应用以及穿根法求高次不等式,属于中档题.10.B解析:B 【分析】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,利用正弦定理得()2sin 150sin b αα=︒-,化简得到1tan b α=ABC 中,有tan a b α=⋅,然后将a +转化为4ta n a αα=++利用基本不等式求解. 【详解】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,由正弦定理得:()2sin 150sin b αα=︒-,所以()2sin 1501sin tan b ααα︒-==+,在直角ABC 中,tan a b α=⋅,所以(1tan tan 4tan tan a b ααααα⎛⋅==+⎝+=44≥+=+an α=,即4πα=时取等号,故选:B【点睛】本题主要考查正弦定理和基本不等式的解三角形中的应用,还考查了运算求解的能力,属于中档题.11.A解析:A 【分析】对于选项A ,由不等式性质得该选项正确;对于选项B ,11b a a b ab--=符号不能确定,所以该选项错误;通过举反例说明选项C 和选项D 错误. 【详解】对于选项A ,若ac bc >22,所以20c >,则a b >,所以该选项正确;对于选项B ,11b aa b ab--=符号不能确定,所以该选项错误; 对于选项C ,设1,0,1,3,2,3a b c d a c b d ===-=--=-=,所以a c b d -<-,所以该选项错误;对于选项D ,设0,1,2,1,0,1,a b a ba b c d c d c d==-=-=-==∴<,所以该选项错误; 故选:A 【点睛】本题主要考查不等式的性质,考查实数大小的比较,意在考查学生对这些知识的理解掌握水平.12.B解析:B 【分析】求得集合{}|13A x x =-≤≤,结合集合交集的概念及运算,即可求解. 【详解】由题意,集合{}{}2230|13A x x x x x =--≤=-≤≤,{}1B x x =>,根据集合交集的概念及运算,可得{}(]|131,3A B x x =<≤=.故选:B. 【点睛】本题主要考查了集合交集的概念及运算,其中解答中正确求解集合A ,结合集合交集的概念及运算求解是解答的关键,着重考查推理与运算能力.二、填空题13.【分析】先求出和恒成立时的范围然后根据充分条件的定义求解【详解】在上恒成立则解得在上恒成立首先都不可能恒成立因此解得∵对于一切实数x 是对于一切实数x 的充分条件∴解得故答案为:【点睛】思路点睛:本题考 解析:[6,)+∞【分析】先求出()0f x >和()0>g x 恒成立时a 的范围,然后根据充分条件的定义求解. 【详解】()0f x >在R 上恒成立,则2(1)40a ∆=--<,解得13a -<<,()0>g x 在R 上恒成立,首先0m ≤都不可能恒成立,因此2240m a m >⎧⎨∆=-<⎩,解得22m ma -<<, ∵“对于一切实数x ,()0f x >”是“对于一切实数x ,()0g x >”的充分条件,∴12320mmm ⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,解得6m ≥. 故答案为:[6,)+∞.【点睛】思路点睛:本题考查一元二次不等式恒成立问题,考查由充分条件求参数范围,一元二次不等式恒成立问题,注意讨论最高次项系数(若最高次项系数为0,则不等式不是二次不等式),充分条件与必要条件问题可以利用集合的包含关系进行求解.14.9【分析】由已知条件得出将代数式与相乘展开后利用基本不等式可求得的最小值【详解】因为正数满足所以即所以当且仅当即时等号成立故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条解析:9 【分析】 由已知条件得出11x y +=,将代数式1x y +与4y x+相乘,展开后利用基本不等式可求得4y x +的最小值. 【详解】因为正数,x y 满足10xy y -+=, 所以1xy y +=,即11x y+=,所以4144()()559y x y xy x y x xy +=++=++≥+=, 当且仅当2xy =,即3y =,23x =时,等号成立. 故答案为:9 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】先由题意令得到代入所求式子化简整理根据基本不等式即可求出结果【详解】因为abc 为正实数不妨令则所以当且仅当即即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三 解析:4748【分析】先由题意,令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,得到111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩,代入所求式子,化简整理,根据基本不等式,即可求出结果.【详解】因为a 、b 、c 为正实数,不妨令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,则111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩, 所以11113139393862164216438432x y z x y z x y z a b c b c c a a b x y z-++-++-++=+++++ 1339338621642164y z x z x y x x y y z z =-+++-+++- 6139488262164y x z x y z x y x z z y ⎛⎫⎛⎫⎛⎫=-++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭61474848≥-+=, 当且仅当823629164y x x y z x x z y z z y ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,即::1:2:3x y z =,即::10:21:1a b c =时,等号成立.故答案为:4748. 【点睛】易错点睛: 利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.k<-1或k>1【分析】利用定义先求出函数为单调减函数与奇函数然后化简得到然后利用不等式得恒成立条件求出答案【详解】对于函数定义域为且所以为奇函数且对求导可得则在时为减函数可得利用为奇函数化简得利用 解析:k <-1或k >1.【分析】利用定义,先求出函数()f x 为单调减函数与奇函数,然后化简()()2223220f t t f k t ++-<得到222t t k --<,然后利用不等式得恒成立条件求出答案【详解】对于函数()f x ,定义域为R ,且()12122x x f x ---+-=+1122222xx x x+-+=+()12122x x f x +-==-+,所以,()f x 为奇函数,且对()f x 求导可得()'0f x <,则()f x 在x ∈R 时为减函数, ()()2223220f t t f k t ++-<,可得()()222322f t t f k t +<--,利用()f x 为奇函数 化简得()()222322f t t f t k +-<,利用()f x 在x ∈R 时为减函数,得222322t t t k +->,化简得222t t k --<恒成立,令()22g t t t =--,则有()2max g t k <,而()()max 11g t g =-=,所以21k <,得到1k >或1k <-答案:1k >或1k <-【点睛】本题考查函数的单调性、奇偶性以及不等式的恒成立问题,属于中档题17.【分析】根据题中所给的式子结合已知条件将式子进行整理结合绝对值的意义以及基本不等式求得结果【详解】由已知有:当且仅当时等号成立即故答案为:【点睛】该题考查的是有关求最值的问题涉及到的知识点有基本不等解析:20202019-【分析】 根据题中所给的式子,结合已知条件,将式子进行整理,结合绝对值的意义以及基本不等式求得结果.【详解】由已知有:22212020202020202020a a a a b a b a b a b a a b++=+=++212020≥-+ 221140392202020202020=-+⨯=, 当且仅当0a <,22020a b a b=时,等号成立. 即222202020192020a a b ⇒=-=. 故答案为:20202019-. 【点睛】该题考查的是有关求最值的问题,涉及到的知识点有基本不等式,属于简单题目. 18.或【解析】试题分析:当x>0时不等式f (x )>x 转化为由函数是奇函数图像关于原点对称因此当时不等式f (x )>x 的解集为综上不等式的解为(-50)∪(5+∞)考点:函数奇偶性解不等式解析:{|5x x >或50}x -<<【解析】试题分析:当x>0时,不等式f (x )>x 转化为245xx x x ->∴>,由函数是奇函数,图像关于原点对称,因此当0x <时不等式f (x )>x 的解集为50x -<<,综上不等式的解为(-5,0)∪(5,+∞)考点:函数奇偶性解不等式19.【分析】设曲线上任一点坐标为求出它是原点距离的平方用基本不等式求得最小值【详解】设曲线上作一点的坐标为则当且仅当即时等号成立故答案为:【点睛】本题考查用基本不等式求最值属于基础题解析:2【分析】设曲线上任一点坐标为1,x x x ⎛⎫-⎪⎝⎭,求出它是原点距离的平方,用基本不等式求得最小值.【详解】 设曲线上作一点P 的坐标为1,(0)x x x x ⎛⎫-> ⎪⎝⎭,则2222211222OP x x x x x ⎛⎫=+-=+-≥ ⎪⎝⎭,当且仅当2212x x =,即142x -=时等号成立,故答案为:2.【点睛】本题考查用基本不等式求最值,属于基础题. 20.;【详解】令由条件可得:解得: 解析:(5,4]--;【详解】令2()(2)5f x x m x m =+-+-, 由条件可得:22(2)042(2)5022222(2)4(5)040f m m b m a m m b ac >+-+->⎧⎧⎪⎪-⎪⎪->⇒->⎨⎨⎪⎪---≥-≥⎪⎪⎩⎩ 解得:(5,4]--三、解答题21.无22.无23.无24.无25.无26.无。
一、选择题1.现有以下结论: ①函数1y x x=+的最小值是2; ②若a 、b R ∈且0ab >,则2b aa b+≥;③y =2;④函数()4230y x x x=-->的最小值为2-. 其中,正确的有( )个A .0B .1C .2D .32.设实数x 满足0x >,函数4231y x x =+++的最小值为( )A .1B .2C .1D .63.已知关于x 的不等式210mx mx ++>恒成立,则m 的取值范围为( ).A .()0,4B .[)0,4C .[]0,4D .(](),04,-∞⋃+∞4.小明从甲地到乙地前后半程的速度分别为a 和()b a b <,其全程的平均速度为v ,则下列不正确的是( )A .a v <<B .v <C 2a bv +<<D .2abv a b=+ 5.已知不等式20ax bx c ++>的解集是{}41x x -<<,则不等式2(1)(3)0b x a x c -+++>的解集为( )A .{}14x x -<< B .413x x ⎧⎫-<<⎨⎬⎩⎭C .413x x x⎧⎫⎨⎬⎩⎭或 D .{}21x x x -或6.设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z +-的最大值为( ) A .0B .3C .94D .17.已知m >0,xy >0,当x +y =2时,不等式4m x y +≥92恒成立,则m 的取值范围是( ) A .1,)2⎡+∞⎢⎣B .[1,)+∞C .](01,D .1(02⎤⎥⎦,8.若不等式2210ax ax ++>对任意的x ∈R 恒成立,则实数a 的取值范围是( ) A .[)0,1B .[)0,+∞C .(](),01,-∞+∞ D .()0,19.不等式28610x x -+<的解集为( ) A .11(,)42B .11(,)(,)42-∞+∞ C .11(,)34--D .11(,)(,)34-∞--+∞ 10.下列命题正确的是( ) A .若a bc c>,则a b > B .若22a b >,则a b >C .若2211a b>,则a b < D <a b <11.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,90ACB ∠=︒,D 为AB 边上的一点,30ACD ∠=︒,且2CD =,则a 的最小值为( )A .4B .4+C .8D .8+12.若直线20(,1)ax by a b +-=>始终把圆222220x y x y +---=的周长分为1:2.则11a b+的最大值为( )A .4-B .2-C 1D二、填空题13.若对(,1]x ∈-∞-时,不等式21()2()12xxm m --<恒成立,则实数m 的取值范围是____________..14.对于实数m ,若两函数()f x ,()g x 满足:①[,)x m ∀∈+∞,()0f x <或()0<g x ;②(,]x m ∃∈-∞,()()0f x g x <,则称函数()f x 和()g x 互为“m 相异”函数.若2()1f x ax ax =+-和()1g x x =-互为“1相异”函数,则实数a 的取值范围是___________.15.已知a ,b 为正实数,且39ab a b ++=,则3a b +的最小值为_________.16.已知a 、b 、c 为正实数,则代数式938432a b cb c c a a b +++++的最小值是_________. 17.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.18.设x ,y 为正实数,若2241x y xy ++=,则266x yxy++的最大值是______.19.如图:已知树顶A 离地面212米,树上另一点B 离地面112米,某人在离地面32米的C 处看此树,则该人离此树_________米时,看A 、B 的视角最大.20.已知a ,b 均为正实数,且1a b +=,则231a ab+的最小值为__________,此时a 的值为__________.三、解答题21.设函数2()(1)()f x x m x m m R =-++∈. (1)求不等式()0f x <的解集;(2)若当[0,4]x ∈时,不等式()40f x +>恒成立,求m 的取值范围.22.已知不等式2320mx x +->的解集为{2}xn x <<∣ (1)求,m n 的值;(2)解关于x 的不等式2()0( , 1)ax n a x m a R a -+->∈<23.设0,0,0a b c >>>,证明: (1)114a b a b+≥+; (2)111111222a b c a b b c a c++≥+++++.24.已知二次函数2()f x ax bx c =++,满足(1)(1)f x f x +=-且不等式()2f x x ≤的解集为[1,3].(1)求函数()f x 的解析式;(2)方程()2f x x k =+在(0,3]上有解,求实数k 的取值范围.25.解关于x 的不等式ax 2-(a +1)x +1<0.26.若关于x 的不等式(1-a )x 2-4x +6<0的解集是x| x<-3或x> 1}. (1)求实数a 的值;(2)解关于x 的不等式2x 2+(2-a )x -a>0.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】取0x <,可判断①的正误;利用基本不等式可判断②③④的正误. 【详解】对于①,当0x <时,10y x x=+<,①错误;对于②,若a ,b R ∈且0ab >,说明0b a >,0a b >,则2b a a b +≥=,当且仅当22a b =时取等号,显然成立,②正确;对于③,2y =≥=,=231x +=,显然这样的x 不存在,所以结论不正确,③错误;对于④,因为0x >,所以43x x+≥函数()4230y x x x=-->的最大值为2-,所以结论不正确,④错误. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.A解析:A 【分析】将函数变形为()43111y x x =++-+,再根据基本不等式求解即可得答案. 【详解】解:由题意0x >,所以10x +>, 所以()4423231311y x x x x =++=++-+++()4311111x x =++-≥=+,当且仅当()4311x x +=+,即10x =->时等号成立,所以函数4231y x x =+++的最小值为1. 故选:A . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方3.B解析:B 【分析】分0m =和0m ≠两种情况讨论,结合已知条件可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】因为关于x 的不等式210mx mx ++>恒成立,分以下两种情况讨论: (1)当0m =时,可得10>,合乎题意; (2)当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,实数m 的取值范围是[)0,4. 故选:B. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩;②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩;③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩.4.C解析:C 【分析】根据题意,求得v ,结合基本不等式即可比较大小. 【详解】设甲、乙两地之间的距离为2s ,则全程所需的时间为s sa b+, 22s abv s s a b a b∴==++,故D 正确;0b a >>2a b+<,2ab v a b ∴=<=+C 错误;又22222a b ab a b v a b a b +⎛⎫⋅ ⎪+⎝⎭=<=<++B 正确; 22220ab ab a a a v a a a b a b a b---=-=>=+++,v a ∴>,则a v <<A 正确.故选:C 【点睛】关键点点睛:由基本不等式可得22ab a b a b +≤≤≤+等式比较大小,属中档题.5.B解析:B 【分析】根据不等式的解集与对应的方程根的关系的关系求得3,4b a c a ==-且0a <,化简不等式为2340x x +-<,结合一元二次不等式的解法,即可求解. 【详解】由题意,不等式20ax bx c ++>的解集是{}41x x -<<, 可得4x =-和1x =是方程20ax bx c ++=的两根,且0a <,所以4141b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,可得3,4b a c a ==-,所以不等式2(1)(3)0b x a x c -+++>可化为23(1)(3)40a x a x a -++->, 因为0a <,所以不等式等价于23(1)(3)40x x -++-<, 即234(1)(34)0x x x x +-=-+<,解得413x -<<, 即不等式2(1)(3)0b x a x c -+++>的解集为413x x ⎧⎫-<<⎨⎬⎩⎭. 故选:B. 【点睛】解答中注意解一元二次不等式的步骤:(1)变:把不等式变形为二次项系数大于零的标准形式; (2)判:计算对应方程的判别式;(3)求出对应的一元二次方程的根,或根据判别式说明方程有没有实根; (4)利用“大于取两边,小于取中间”写出不等式的解集.6.D解析:D 【分析】利用22340x xy y z -+-=可得143xy x y z y x =+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴2211434432?xy xy x y zx xy y x y y x===-++-, 当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212x y z+-的最大值是1. 故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.7.B解析:B 【分析】根据“乘1法”,可得()4142m m x y x y x y ⎛⎫+=++ ⎪⎝⎭,展开后,利用基本不等式可推出其最小值,则可得不等式(19422m ++≥,解不等式即可. 【详解】 解:xy >0,且x +y =2,0,0x y ∴>>,()(41414114442222m m y mx x y m m m x y x y x y ⎛⎛⎫⎛⎫∴+=++=+++≥++=++ ⎪ ⎪ ⎝⎭⎝⎭⎝当且仅当4y mxx y =2y =时,等号成立, 不等式4m x y +≥92恒成立, (19422m ∴++≥,化简得50m +≥ 解得m 1≥.∴m 的取值范围是[1,)+∞故选:B . 【点睛】本题考查利用基本不等式解决最值问题,熟练掌握“乘1法”是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题8.A解析:A 【分析】设函数()221f x ax ax =++,把不等式2210ax ax ++>在x ∈R 上恒成立,转化为()0f x >对于x R ∀∈恒成立,结合函数的性质,即可求解.【详解】解:设函数()221f x ax ax =++,则不等式2210ax ax ++>在x ∈R 上恒成立,即()0f x >对于x R ∀∈恒成立, 当0a =时,()10f x =>,显然成立; 当0a ≠时,要使()0f x >在x ∈R 上恒成立,需函数()221f x ax ax =++开口向上,且与x 轴没有交点,即20(2)410a a a >⎧⎨∆=-⨯⨯<⎩,解得01a <<, 综上知,实数a 的取值范围为[0,1).故选:A. 【点睛】本题主要考查了不等式的恒成立问题,以及二次函数的图象与性质的应用,其中解答中把不等式的恒成立问题转化为利用二次函数的性质求解是解答的关键,着重考查转化思想,以及推理与计算能力.9.A解析:A 【分析】运用因式分解法,化为一元一次不等式组,解不等式,求并集即可得到所求解集. 【详解】解:28610x x -+<即为(21)(41)0x x --<, 即有210410x x ->⎧⎨-<⎩或210410x x -<⎧⎨->⎩,可得x ∈∅或1142x <<, 即解集为1(4,1)2,故选A . 【点睛】本题考查一元二次不等式的解法,考查运算能力,属于基础题.10.D解析:D 【分析】A 项中,需要看分母的正负;B 项和C 项中,已知两个数平方的大小只能比较出两个数绝对值的大小. 【详解】A 项中,若0c <,则有a b <,故A 项错误;B 项中,若22a b >,则a b >,故B 项错误;C 项中,若2211a b>则22a b <即a b <,故C 项错误;D <定有a b <,故D 项正确.故选:D 【点睛】本题主要考查不等关系与不等式,属于基础题.11.B解析:B 【分析】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,利用正弦定理得()2sin 150sin b αα=︒-,化简得到1tan b α=ABC 中,有tan a b α=⋅,然后将a +转化为4a α=+利用基本不等式求解. 【详解】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,由正弦定理得:()2sin 150sin b αα=︒-,所以()2sin 150cos 1sin sin tan b αααααα︒-+===+,在直角ABC 中,tan a b α=⋅,所以(1tan tan 4tan a b αααα⎛⋅==+⎝+=44≥+=+当且仅当an tan αα=,即4πα=时取等号,故选:B【点睛】本题主要考查正弦定理和基本不等式的解三角形中的应用,还考查了运算求解的能力,属于中档题.12.B解析:B 【分析】由圆的方程得圆心和半径,根据圆的周长被分为1:2,可推出圆心到直线的距离为1,即2221a b a b +-=+,化简整理后,再结合基本不等式的性质可得ab 的最小值,再求出11a b+的最大值.【详解】把圆222220x y x y +---=化成标准形式为22(1)(1)4x y -+-=,其中圆心为(1,1),半径为2.设直线与圆交于A 、B 两点,圆心为C , 因为直线把圆的周长分为1:2,所以13601203ACB ∠=⨯︒=︒, 所以圆心(1,1)C 到直线20ax by +-=的距离为12221a b a b+-=+,因为a ,1b >,所以202()a ab b -++=,由基本不等式的性质可知,22()4ab a b ab +=+, 当且仅当a b =时,等号成立,此时有2(22)ab +,所以21(2)1111122222(22)ab a b a b ab ab ab+++===++=+. 所以11a b +的最大值为22- 故选:B . 【点评】本题主要考查直线与圆的综合问题,除圆的标准方程、点到直线的距离公式等基础知识外,还涉及利用基本不等式的性质求最值,考查学生的逻辑推理能力和运算能力,属于中档题.二、填空题13.【分析】运用换元法参变分离法来求解不等式恒成立问题【详解】不等式转化为化简为令又则即恒成立令又当时取最小值所以恒成立化简得解不等式得故答案为:【点睛】方法点晴:本题考查了不等式恒成立问题在求解过程中解析:()2,3-【分析】运用换元法,参变分离法来求解不等式恒成立问题. 【详解】不等式()21212xxm m ⎛⎫--< ⎪⎝⎭转化为2214x xm m +-<,化简为2211()22x x m m -<+, 令12x t =,又(],1x ∈-∞-,则[)2,t ∈+∞, 即22m m t t -<+恒成立,令2()f t t t =+,又[)2,t ∈+∞, 当2t =时,()f t 取最小值min ()(2)6f t f ==,所以,26m m -<恒成立,化简得260m m --<,解不等式得23m -<<. 故答案为:()2,3- 【点睛】方法点晴:本题考查了不等式恒成立问题,在求解过程中运用了参变分离法,注意题目中变量的取值范围.14.【分析】根据两个函数互为相异函数可得有恒成立且在上有解利用参变分离先讨论前者再结合二次函数的图象和性质可得所求的取值范围【详解】因为当时当时当时结合互为相异函数故有恒成立且在上有解先考虑有恒成立则在 解析:(),4-∞-【分析】根据两个函数互为“1相异”函数可得[1,)x ∀∈+∞,有()0f x <恒成立,且()0f x >在(),1-∞上有解,利用参变分离先讨论前者,再结合二次函数的图象和性质可得所求的取值范围. 【详解】因为当1x >时,()0g x >,当1x =时,()0g x =,当1x <时,()0g x <, 结合()(),f x g x 互为“1相异”函数,故[1,)x ∀∈+∞,有()0f x <恒成立,且()0f x >在(),1-∞上有解. 先考虑[1,)x ∀∈+∞,有()0f x <恒成立,则210ax ax 在[1,)+∞上恒成立,故2+1a x x<在[1,)+∞上恒成立, 因为22+x x ≥,故2+1102x x <≤,故0a ≤. 再考虑()0f x >在(),1-∞上有解,若0a =,则()10f x =-<,故()0f x >在(),1-∞上无解,若0a <,()f x 的对称轴为12x =-,且开口向下,由()0f x >在(),1-∞上有解可得240a a ∆=+>, 故4a或0a >(舍).故实数a 的取值范围是(),4-∞-, 故答案为:(),4-∞-. 【点睛】方法点睛:对于新定义背景下的函数性质的讨论,一般是先根据定义得到含参数的函数的性质,对于不等式的恒成立或有解问题,可优先考虑参变分离的方法,也可以结合函数图象的性质处理.15.6【分析】利用基本不等式得出的不等式解之可得的最小值【详解】∵∴∴当且仅当即时等号成立故答案为:6【点睛】方法点睛:本题考查用基本不等式求最小值解题方法是用基本不等式得出关于的不等式然后通过解不等式解析:6 【分析】利用基本不等式得出3a b +的不等式,解之可得3a b +的最小值. 【详解】∵0,0a b >>,∴211933(3)(3)(3)312ab a b a b a b a b a b =++=⋅++≤+++. (318)(36)0a b a b +++-≥,∴36a b +≥,当且仅当3a b =,即3,1a b ==时等号成立, 故答案为:6. 【点睛】方法点睛:本题考查用基本不等式求最小值,解题方法是用基本不等式得出关于3a b +的不等式,然后通过解不等式得出结论.不是直接由基本不等式得最小值,解题时也要注意基本不等式成立的条件.即最小值能否取到.16.【分析】先由题意令得到代入所求式子化简整理根据基本不等式即可求出结果【详解】因为abc 为正实数不妨令则所以当且仅当即即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三 解析:4748【分析】先由题意,令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,得到111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩,代入所求式子,化简整理,根据基本不等式,即可求出结果. 【详解】因为a 、b 、c 为正实数,不妨令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,则111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩, 所以11113139393862164216438432x y z x y z x y za b c b c c a a b x y z-++-++-++=+++++ 1339338621642164y z x z x y x x y y z z =-+++-+++-6139488262164y x z x y z x y x z z y ⎛⎫⎛⎫⎛⎫=-++++++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭61474848≥-+=, 当且仅当823629164yx x y z xx zy z z y ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,即::1:2:3x y z =,即::10:21:1a b c =时,等号成立. 故答案为:4748. 【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.17.9【分析】将分式展开利用基本不等式求解即可【详解】又x +2y =4即当且仅当等号成立故原式故填9【点睛】本题考查基本不等式求最值考查等价变换思想与求解能力注意等号成立条件解析:9 【分析】将分式展开,利用基本不等式求解即可 【详解】(4)(2)82416161x y xy x y xy xy xy xy xy++++++===+又x +2y =4≥即2xy ≤,当且仅当2,1x y ==等号成立,故原式9≥ 故填9 【点睛】本题考查基本不等式求最值,考查等价变换思想与求解能力,注意等号成立条件18.【分析】先得到当且仅当时接着得到当且仅当时从而化简得到再求取最小值最后求出的最大值【详解】解:∵即∵当且仅当即时取等号∴当且仅当时取等号∵即∴当且仅当时取等号令则∴∵当时取最小值此时最大为:故答案为解析:18【分析】先得到当且仅当2x y =时15xy ≤,接着得到当且仅当2x y =时2x y +=≤266x y xy ++得到142m m+,再求42m m +取最小值,最后求出266x yxy++的最大值.【详解】解:∵2241x y xy ++=,即2241x y xy =-+∵22414xy x x y y ≥=-=+,当且仅当224x y =即2x y =时,取等号, ∴15xy ≤,当且仅当2x y =时,取等号, ∵2241x y xy ++=,即2(2)31x y xy +-=∴2x y +=≤2x y =时,取等号,令2x y m +==≤231xy m =-, ∴221466242x y m xy m m m+==+++,∵当m =42m m +266x y xy ++故答案为:10 18.【点睛】本题考查基本不等式求最值,是基础题.19.6【分析】过点作设根据已知中树顶距地面米树上另一点距地面米人眼离地面米我们易求出即的表达式进而根据基本不等式求出的范围及取最大值时的值进而得到答案【详解】如图过点作则设由图可知:当且仅当时等号成立即解析:6【分析】过点C作CD AB⊥,设CD x=,根据已知中树顶A距地面212米,树上另一点B距地面112米,人眼C离地面32米.我们易求出tan ACB∠,即tan()ACD BCD∠-∠的表达式,进而根据基本不等式,求出tan ACB∠的范围及tan ACB∠取最大值时x的值,进而得到答案.【详解】如图,过点C作CD AB⊥,则213922AD=-=,113422BD=-=,设CD x=,由图可知:94tan tan555 tan tan()94361tan?tan26121?ACD BCD x xACB ACD BCDACD BCD xx x x-∠-∠∠=∠-∠====+∠∠⨯++,当且仅当6x=时,等号成立.即6x=时,tan ACB∠有最大值,此时ACB∠最大.故答案为: 6【点睛】本题考查的知识点是三角函数的实际应用,两角差的正切公式,及基本不等式,其中构造适当的三角形,将问题转化为一个三角函数问题是解答本题的关键.20.6【分析】首先由条件变形为化简后利用基本不等式求最小值【详解】所以当时等号成立即解得:所以即的最小值为6此时故答案为:6;【点睛】本题考查基本不等式求最值重点考查转化思想计算能力属于基础题型本题的关解析:6 13【分析】首先由条件变形为()222331a a b a ab ab+++=,化简后利用基本不等式求最小值. 【详解】1a b +=,()21a b ∴+=所以()222223314242a a b a a b ab a b ab ab ab b a+++++===++,44a b b a +≥=, 当4a b b a =时,等号成立,即120,0a b b a a b +=⎧⎪=⎨⎪>>⎩,解得:12,33a b ==, 所以231426a ab+≥+=,即231a ab+的最小值为6,此时13a =.故答案为:6;13【点睛】本题考查基本不等式求最值,重点考查转化思想,计算能力,属于基础题型,本题的关键是利用()21a b =+变形,化简.三、解答题 21.无 22.无 23.无 24.无 25.无26.无。
第2章一元二次函数、方程和不等式2.1 相等关系与不等关系2.1.1 等式与不等式必备知识基础练1.(广东中山高一期末)已知0<=<NB.M>NC.M=ND.M与N的大小关系不确定2.(北京顺义高一期末)已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是( )A.1b >1aB.a2>b2C.b-a>0D.|b|a<|a|b3.设实数a=√5−√3,b=√3-1,c=√7−√5,则( )A.b>a>cB.c>b>aC.a>b>cD.c>a>b4.(吉林辽源高一期末)已知实数a,b,c满足c<b<a,ac<0,那么下列选项正确的是( )A.ab>acB.ac>bcC.ab 2>cb 2D.ca 2>ac 25.(河北唐山高二期中)已知=x 2x+2y,N=4(x -y )5,则M 和N 的大小关系为( )A.M>NB.M<NC.M=ND.以上都有可能6.若bc-ad≥0,bd>0,求证:a+b b≤c+d d.关键能力提升练7.(安徽宣城高一期末)下列结论正确的是( ) A.若ac>bc,则a>b B.若a>b,c>d,则a+c>b+d C.若a<b,则1a>1bD.若a>b,c<d,则a c>bd8.(多选题)已知a,b,c 为非零实数,且a-b≥0,则下列结论正确的有( ) A.a+c≥b+c B.-a≤-b C.a 2≥b 2D.1a≤1b10.已知0<a<b,且a+b=1,试比较:(1)a2+b2与b的大小;(2)2ab与12的大小.答案:1.B M-N=xy-x-y+1=x(y-1)-(y-1)=(x-1)(y-1).∵0<>N.故选B.2.A 由实数a,b在数轴上对应的点可知b<a<0,因此1b >1a,故A正确;由b<a<0可知a2<b2,故B错误;由b<a,可得b-a<0,故C错误;由b<a<0,可得|b|a=|a|b,故D错误.故选A.3.A √5−√3=√5+√3,√3-1=√3+1√7−√5=√7+√5,∵√3+1<√3+√5<√5+√7,∴√3+1>√5+√3>√7+√5,即b>a>c.4.A ∵c<b<a,且ac<0,∴c<0,a>0,b-a<0.∴ab>ac,故A正确;因为a>b,c<0,所以ac<bc,故B错误;当b=0时,ab2=cb2,故C错误;因为a>c,ac<0,所以ca2<ac2,故D错误.故选A.5.A ∵M-N=x 2x+2y−4(x -y )5=x 2+8y 2-4xy 5(x+2y )=x 2+4y 2-4xy+4y 25(x+2y )=(x -2y )2+4y 25(x+2y )>0,∴M>N.故选A.6.证明因为bc-ad≥0,所以ad≤bc.因为bd>0, 所以ab≤cd,所以ab+1≤cd+1,所以a+b b≤c+d d.7.B 若ac>bc,c<0,则a<b,A 错误; 若a>b,c>d,则a+c>b+d,B 正确; 若a<b,a<0,b>0,则1a <1b ,C 错误;若a>b,c<d,c=0,则ac不存在,D 错误.故选B.8.AB 因为a-b≥0,则a≥b,根据不等式性质可知A,B 正确;因为a,b 符号不确定,所以C,D 选项无法确定,故不正确.故选AB. 10.解(1)因为0<a<b,且a+b=1,所以0<a<12<b,则a 2+b 2-b=a 2+b(b-1)=a 2-ab=a(a-b)<0, 所以a 2+b 2<b.(2)因为2ab-12=2a(1-a)-12=-2a 2+2a-12=-2a 2-a+14=-2(a -12)2<0,所以2ab<12.。
高中数学必修一第二章一、单选题1.已知a>b>0,c>d,下列不等式中必成立的一个是( )A.a c>bdB.ad<bc C.a+c>b+d D.a―c>b―d2.已知x,y均为正实数,且1x+2+4y+3=12,则x+y的最小值为( )A.10B.11C.12D.133.若两个正实数x,y满足2x+1y=1,且x+2y>m2+2m恒成立,则实数m的取值范围是( )A.(―∞,―2)∪[4,+∞)B.(―∞,―4)∪[2,+∞)C.(―2,4)D.(―4,2)4.若x,y∈R+,且x+3y=5xy,则3x+4y的最小值是( )A.5B.245C.235D.1955.小明从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则( )A.a<v<ab B.v=ab C.ab<v<a+b2D.v=a+b26.已知a>0,b>0,若不等式m3a+b ―3a―1b≤0恒成立,则m的最大值为( )A.4B.16C.9D.37.已知x,y∈(―2,2),且xy=1,则22―x2+44―y2的最小值是( )A.207B.127C.16+427D.16―4278.已知函数f(x)=2x|2x―a|,若0≤x≤1时f(x)≤1,则实数a的取值范围为( )A.[74,2]B.[53,2]C.[32,2]D.[32,53]二、多选题9.已知a>b>c>0,则( )A.a+c>b+c B.ac>bc C.aa+c>bb+cD.a x<b c10.已知a>0,b>0,且a+b=ab,则( )A.(a―1)(b―1)=1B.ab的最大值为4C.a+4b的最小值为9D.1a2+2b2的最小值为2311.已知a,b∈R∗,a+2b=1,则b2a +12b+12ab的值可能为( )A.6B.315C.132D.5212. 现有图形如图所示,C 为线段AB 上的点,且AC =a ,BC =b ,O 为AB 的中点,以AB 为直径作半圆.过点.C 作AB 的垂线交半圆于点D ,连结OD ,AD ,BD ,过点C 作OD 的垂线,垂足为E.则该图形可以完成的无字证明有( )A .a +b 2≥ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0)C .a 2+b 22≥a +b2(a ≥0,b >0)D .ab ≥21a+1b(a >0,b >0)三、填空题13.已知不等式|x ―1|+|x +2|≥5的解集为 .14. 已知实数x ,y 满足―1≤x +y ≤4且2≤x ―y ≤3,则x +3y 的取值范围是 .15.若关于x 的不等式x 2+mx ―2<0在区间[1,2]上有解,则实数m 的取值范围为 .16.设正实数x ,y ,z 满足x 2―3xy +4y 2―z =0,则当xyZ 取得最大值时,2x+1y ―2z的最大值为 .四、解答题17.U =R ,非空集合 A ={x |x 2―5x +6<0} ,集合 B ={x |(x ―a )(x ―a 2―2)<0} .(1)a =12时,求 (∁ U B )∩A ;(2)若 x ∈B 是 x ∈A 的必要条件,求实数 a 的取值范围.18.已知 p :|1―x ―13|≤2 , q :x 2―2x +1―m 2≤0(m >0) ,若 ¬p 是 ¬q 的充分而不必要条件,求实数m 的取值范围.19.求解不等式x 2―a ≥|x ―1|―120.已知a ,b ,c 都为正实数,满足abc (a +b +c )=1(1)求S =(a +c )(b +c )的最小值(2)当S 取最小值时,求c 的最大值.21.某项研究表明;在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位;辆∕时)与车流速度v (假设车辆以相同速度v 行驶,单位米∕秒)、平均车长l (单位:米)的值有关,其公式为F =76000νv 2+18v +20l(1)如果不限定车型,l =6.05,则最大车流量为多少.(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加多少.22.已知a ,b ,c 为实数且a +2b +5c =10.(1)若a ,b ,c 均为正数,当2ab +5ac +10bc =10时,求a +b +c 的值;(2)证明:(2b +5c )2+(a +b +5c )2+(a +2b +4c )2≥4903.答案解析部分1.C已知a>b>0,c>d,由不等式的同向相加的性质得到a+c>b+d正确;当a=2,b=1,c=-1,d=-2时,a c<bd, ,a―c=b―d A,D不正确;c=2,d=1时,ad=bc,B不正确. 2.D解:因为x,y>0,且1x+2+4y+3=12,则x+y=(x+2)+(y+3)―5=2(1x+2+4y+3)[(x+2)+(y+3)]―5=2(5+y+3x+2+4(x+2)y+3)―5≥2(5+2y+3x+2⋅4(x+2)y+3―5=13,当且仅当y+3x+2=4(x+2)y+3,即x=4,y=9时等号成立,则x+y的最小值为13.3.D由基本不等式得x+2y=(x+2y)(2x +1y)=4yx+xy+4≥24yx⋅xy+4=8,当且仅当4yx=xy,由于x>0,y>0,即当x=2y时,等号成立,所以,x+2y的最小值为8,由题意可得m2+2m<8,即m2+2m―8<0,解得―4<m<2,因此,实数m的取值范围是(―4,2),4.A从题设可得15y+35x=1,则3x+4y=15(3x+4y)(1y+3x)=15(3x y+12yx+13)≥15(12+13)=5,5.A6.B7.C8.C不等式f(x)≤1可化为|2x―a|≤2―x,有―2―x≤a―2x≤2―x,有2x―2―x≤a≤2x+2―x,当0≤x≤1时,2x+2―x≥22x×2―x=2(当且仅当x=0时取等号),2x―2―x≤2―12=32,故有32≤a≤2。
一、选择题1.若对(0,)t ∀∈+∞,都有22(1)3x t x t+<+成立,则x 的取值范围是( ) A .()2,6-B .(,3)(2,6)-∞--C .(,3)(2,)-∞-⋃-+∞D .(,3)(2,)-∞-⋃-+∞2.现有以下结论: ①函数1y x x=+的最小值是2; ②若a 、b R ∈且0ab >,则2b aa b+≥;③y =2;④函数()4230y x x x=-->的最小值为2-. 其中,正确的有( )个A .0B .1C .2D .33.已知a ,b 均为正数,且20a b ab +-=,则22124b a a b -+-的最大值为( )A .9-B .8-C .7-D .6-4.已知(1,0),(1,0)A B -,点M 是曲线x =上异于B 的任意一点,令,MAB MBA αβ∠=∠=,则下列式子中最大的是( )A .|tan tan |αβ⋅B .|tan tan |αβ+C .|tan tan |αβ-D .tan tan αβ5.小明从甲地到乙地前后半程的速度分别为a 和()b a b <,其全程的平均速度为v ,则下列不正确的是( )A .a v <<B .v <C 2a bv +<<D .2abv a b=+ 6.若正数a ,b 满足1a >,1b >,且3a b +=,则1411a b +--的最小值为( ) A .4B .6C .9D .167.若直线220ax by +-=(),a b R +∈平分圆222460xy x y +---=,则21a b+的最小值是( ).A .1B .5C .D .3+8.若对于任意的x >0,不等式231xa x x ≤++恒成立,则实数a 的取值范围是( )A .a ≥15B .a >15 C .a <15 D .a ≤159.不等式28610x x -+<的解集为( ) A .11(,)42B .11(,)(,)42-∞+∞ C .11(,)34--D .11(,)(,)34-∞--+∞ 10.已知1x >,则41x x +-的最小值为 A .3B .4C .5D .611.已知01a <<,1b >,则下列不等式中成立的是( )A .4aba b a b+<+ B 2aba b<+C <D .a b +12.已知3x >,13y x x =+-,则y 的最小值为( ) A .2B .3C .4D .5二、填空题13.若对(,1]x ∈-∞-时,不等式21()2()12xxm m --<恒成立,则实数m 的取值范围是____________.. 14.已知,x y R +∈,且1112x y+=,则x y +的最小值为________ 15.已知向量()2,1a y =-,(),3b x =,且a b ⊥,若x ,y 均为正数,则32x y+的最小值是______.16.已知a ,b ,c 均为正数,且abc =4a +9b ,则a +b +c 的最小值为_____.17.已知实数0a >,0b >是8a 与2b 的等比中项,则62a b+的最小值是_________. 18.已知向量1a =,向量b 满足4a b a b -++=,则b 的最小值为______.19.函数()2436x x f x x ++=-的值域为__________.20.已知正实数,x y 满足3x+y+=xy ,则x y +的最小值为__________.三、解答题21.已知0,0x y >>,且440x y +=. (1)求xy 的最大值;(2)求11x y+的最小值.22.已知不等式()()2330,ax a x b a b R +--<∈的解集为{}31A x x =-<<.(1)求实数a ,b 的值;(2)设()22()2ax bx f x x A x +-=∈-,当x 为何值时()f x 取得最大值,并求出其最大值.23.已知命题p :方程240x mx ++=无实数根:命题q :不等式()2310x m x +-+>在x ∈R 上恒成立.(1)如果命题p 是假命题,请求出实数m 的取值范围;(2)如果命题p q ∨为真命题,且命题p q ∧为假命题,请求出实数m 的取值范围.24.设m ∈R ,不等式()()231210mx m x m -+++>的解集记为集合P .(1)若{}12P x x =-<<,求m 的值; (2)当0m >时,求集合P .25.(理)已知关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >. (1)求实数a ,b 的值;(2)解关于x 的不等式()()0ax b x c -->(c 为常数).26.已知正数,,a b c 满足3a b c ++=. (Ⅰ)若221a b +=,求c 的取值范围; (Ⅱ)求证:3bc ac aba b c++≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先利用基本不等式得到2(1)4t t +≥,再根据题意得到243x x <+,解不等式即可.【详解】令()2(1)t t t f +=,()0,t ∈+∞,()2)2(11t t f t t t==+++,因为()0,t ∈+∞,所以()1224f t t t=++≥=, 当1t t=即1t =时取等号,又因为(0,)t ∀∈+∞,都有22(1)3x t x t +<+,所以243x x <+即可.由243x x <+得()243033x x x x +-<++,即241203x x x --<+, ()()241230xx x --+<,所以()()()6230x x x -++<,解得3x <-或26x -<<. 故选:B. 【点睛】易错点点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】取0x <,可判断①的正误;利用基本不等式可判断②③④的正误. 【详解】对于①,当0x <时,10y x x=+<,①错误;对于②,若a ,b R ∈且0ab >,说明0b a >,0a b >,则2b a a b +≥=,当且仅当22a b =时取等号,显然成立,②正确;对于③,2y =≥=,=231x +=,显然这样的x 不存在,所以结论不正确,③错误;对于④,因为0x >,所以43x x+≥ 函数()4230y x x x=-->的最大值为2-,所以结论不正确,④错误. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.C解析:C 【分析】先利用条件化简222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,巧用“1”的代换证明42b a +≥,再证明222242b a b a ⎛⎫+ ⎪⎝⎭≥+,即得到2214b a ⎛⎫- ⎪⎝⎭+的取值范围,根据等号条件成立得到最值. 【详解】依题意,0,0a b >>,20a b ab +-=可知121a b+=,则222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,122224222b b b a a a a b a b ⎛⎫⎛⎫+=+⋅+=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当22b a a b=时,即2ba =时等号成立.22242b ba a ab ≥⋅⋅=+,当且仅当2b a =时,等号成立,则左右同时加上224b a +得,则222222442b b b a a ab a ⎛⎫≥+=⎛⎫+++ ⎪⎝⎝⎭⎭ ⎪,即222242b a b a ⎛⎫+ ⎪⎝⎭≥+,当且仅当2b a =时等号成立, 故2222428422b a b a ⎛⎫+ ⎪⎝⎭≥≥=+,当且仅当2b a =时,即2,4a b ==时等号成立, 故2222121744b b a a a b ⎛⎫-+-=-≤- ⎪⎝⎭+当且仅当2b a =时,即2,4a b ==时等号成立. 即22124b a a b -+-的最大值为7-. 故选:C. 【点睛】 关键点点睛:本题解题关键在于利用基本不等式证明的常用方法证明42b a +≥和222242b a b a ⎛⎫+ ⎪⎝⎭≥+,进而突破难点,取最值时要保证取等号条件成立.4.C解析:C 【分析】化简曲线为221(1)x y x -=≥,易知该曲线为双曲线,分别计算选项的取值范围,即可得答案; 【详解】设直线MA ,MB 的斜率分别为12,k k ,11(,)M x y ,则12tan ,tan k k αβ==-, 对A ,1111|tan tan |||111y yx x αβ⋅=⋅=+-; 对B ,C ,tan 0,tan 0αβ><,∴|tan tan |αβ->|tan tan |αβ+,1|tan tan ||tan |2tan αβαα-=+≥, 对D ,1k 小于双曲线渐近线的斜率,∴2tan tan 1tan ααβ=<, ∴|tan tan |αβ-最大,故选:C. 【点睛】通过将斜率转化为直线倾斜角的正切值,再结合基本不等式是求解的关键.5.C解析:C根据题意,求得v ,结合基本不等式即可比较大小. 【详解】设甲、乙两地之间的距离为2s ,则全程所需的时间为s s a b+, 22s abv s s a b a b∴==++,故D 正确;0b a >>2a b+<,2ab v a b ∴=<=+C 错误;又22222a b ab a b v a b a b +⎛⎫⋅ ⎪+⎝⎭=<=<++B 正确; 22220ab ab a a a v a a a b a b a b---=-=>=+++,v a ∴>,则a v <<A 正确.故选:C 【点睛】关键点点睛:由基本不等式可得22ab a b a b +≤≤≤+等式比较大小,属中档题.6.C解析:C 【分析】由等式3a b +=可以得到111a b -+-=,由1411a b +--乘以111a b -+-=所求得式子和基本不等式进行求解即可. 【详解】由3a b +=,可得111a b -+-=,10,10a b ->->,所以()141414(1)511111111a b a a b b a b a b --⎛⎫+=+=++ ⎪------⎝⎭-+-59≥+= 当且仅当12(1)b a -=-,即54,33b a ==时等号成立. 故选:C关键点点睛:本题注意观察待求式的分母,1,1a b --,结合已知条件,可变形为关于分母的式子111a b -+-=,这样就转化为“1”的常规技巧的应用.7.D解析:D 【分析】根据条件可知直线过圆心,求解出,a b 的关系式,利用常数代换法以及基本不等式求解出21a b +的最小值. 【详解】因为直线220ax by +-=(),a b R+∈平分圆222460xy x y +---=,所以直线220ax by +-=过圆心,又因为圆的方程()()221211x y -+-=,所以圆心为()1,2,所以222a b +=,即1a b +=,所以()21212333b a a b a b a b a b ⎛⎫+=+⋅+=++≥+=+ ⎪⎝⎭ 取等号时222a b =即a =,此时21a b ==,故选:D. 【点睛】本题考查圆的对称性与基本不等式的综合应用,其中涉及到利用常数代换法求解最小值,对学生的理解与计算能力要求较高,难度一般.利用基本不等式求解最值时注意说明取等号的条件.8.A解析:A 【分析】由于x >0,对不等式左侧分子分母同时除以x ,再求出左侧最大值即可求解. 【详解】由题:对于任意的x >0,不等式231xa x x ≤++恒成立,即对于任意的x >0,不等式113ax x≤++恒成立,根据基本不等式:10,335x x x >++≥+=,当且仅当1x =时,取得等号, 所以113x x++的最大值为15,所以15a ≥. 故选:A【点睛】此题考查不等式恒成立求参数范围,通过转化成求解函数的最值问题,结合已学过的函数模型进行求解,平常学习中积累常见函数处理办法可以事半功倍.9.A解析:A 【分析】运用因式分解法,化为一元一次不等式组,解不等式,求并集即可得到所求解集. 【详解】解:28610x x -+<即为(21)(41)0x x --<,即有210410x x ->⎧⎨-<⎩或210410x x -<⎧⎨->⎩,可得x ∈∅或1142x <<, 即解集为1(4,1)2,故选A . 【点睛】本题考查一元二次不等式的解法,考查运算能力,属于基础题.10.C解析:C 【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.11.D解析:D【分析】本题先根据完全平方公式与基本不等式得到()22224a b a ab b ab +=++>,所以排除选项A2211aba b a b>=++,所以排除选项B ;接着根据基本>=,所以排除选项C ;最后根据基本不等式得到选项D 正确. 【详解】解:对于选项A :因为01a <<,1b >,所以()22224a b a ab b ab +=++>,故选项A 错误;对于选项B 2211aba b a b>=++,故选项B 错误;对于选项C>=C 错误;对于选项D :()22222222a b a ab b a b +>++=+, 所以a b +<,故选项D 正确. 故选:D . 【点评】本题考查基本不等式的应用、学生的运算能力和转换能力,是基础题.12.D解析:D 【分析】由3x >,得到30x ->,化简113333y x x x x =+=-++--,结合基本不等式,即可求解. 【详解】因为3x >,所以30x ->,则11333533y x x x x =+=-++≥=--, 当且仅当133x x -=-,即4x =时取等号, 故选:D. 【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中熟记基本不等式的“一正、二定、三相等”的条件,合理运算是解得的关键,着重考查推理与运算能力.二、填空题13.【分析】运用换元法参变分离法来求解不等式恒成立问题【详解】不等式转化为化简为令又则即恒成立令又当时取最小值所以恒成立化简得解不等式得故答案为:【点睛】方法点晴:本题考查了不等式恒成立问题在求解过程中 解析:()2,3-【分析】运用换元法,参变分离法来求解不等式恒成立问题.【详解】不等式()21212x xm m ⎛⎫--< ⎪⎝⎭转化为2214x x m m +-<,化简为2211()22x x m m -<+, 令12xt =,又(],1x ∈-∞-,则[)2,t ∈+∞, 即22m m t t -<+恒成立,令2()f t t t =+,又[)2,t ∈+∞, 当2t =时,()f t 取最小值min ()(2)6f t f ==,所以,26m m -<恒成立,化简得260m m --<,解不等式得23m -<<.故答案为:()2,3-【点睛】方法点晴:本题考查了不等式恒成立问题,在求解过程中运用了参变分离法,注意题目中变量的取值范围.14.【分析】由条件可得利用均值不等式可得答案【详解】当且仅当即也即时取等号故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必须为正数;(2)【分析】由条件可得()2112112x y x y x y x y y x ⎛⎫+=+=++⎪⎭+⎝+,利用均值不等式可得答案. 【详解】 ()11332122212x y x y y x x y x y ⎛⎫+=+=+++++≥+= ⎪⎝⎭当且仅当2x y y x =,即x =,也即x y ⎧=⎪⎪⎨⎪=⎪⎩时取等号.故答案为:32+ 【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方15.8【分析】由题意利用两个向量垂直的性质基本不等式求得的最大值可得要求式子的最小值【详解】解:向量且若均为正数则当且仅当时取等号则故答案为:8【点睛】本题主要考查两个向量垂直的性质基本不等式的应用属于 解析:8【分析】由题意利用两个向量垂直的性质,基本不等式,求得xy 的最大值,可得要求式子的最小值.【详解】 解:向量(2,1)a y =-,(,3)b x =,且a b ⊥,∴23(1)0a b x y =+-=.若x ,y 均为正数,则23326x y xy +=,38xy∴,当且仅当3232x y ==时,取等号. 则32233838y x x y xy ++==,故答案为:8.【点睛】本题主要考查两个向量垂直的性质,基本不等式的应用,属于中档题.16.10【分析】由得出利用基本不等式即可得出答案【详解】(当且仅当时取等号)故答案为:10【点睛】本题主要考查了基本不等式的应用属于中档题 解析:10【分析】由49abc a b =+得出94c a b=+,利用基本不等式即可得出答案. 【详解】 49abc a b =+4994a b c ab ab +∴==+9410a b c a b a b ++=+++≥=(当且仅当3,2a b ==时,取等号)故答案为:10【点睛】本题主要考查了基本不等式的应用,属于中档题.17.32【分析】由是与的等比中项求得化简结合基本不等式即可求解【详解】由题意实数是与的等比中项可得解得所以当且仅当时即时等号成立所以的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值以及等比 解析:32【分析】8a 与2b 的等比中项,求得31a b +=,化简626266()(3)20b a a b a b a b a b+=++=++,结合基本不等式,即可求解. 【详解】由题意,实数0a >,0b >8a 与2b 的等比中项,可得23228a b a b +=⨯=,解得31a b +=,所以626266()(3)202032b a a b a b a b a b +=++=++≥+=, 当且仅当66b a a b +时,即14a b ==时,等号成立, 所以62a b+的最小值是32. 故答案为:32.【点睛】本题主要考查了利用基本不等式求最值,以及等比中项公式的应用,其中解答中熟记等比中项公式,合理利用“1”的代换,结合基本不等式求解是解答的关键,着重考查推理与运算能力.18.【分析】根据平行四边形性质可得再结合基本不等式即可求出的最小值【详解】由平行四边形性质可得:由基本不等式可得:当且仅当时等号成立所以即所以所以的最小值为故答案为:【点睛】本题主要考查了向量的数量积的【分析】 根据平行四边形性质可得()22222a b a b a b++-=+,再结合基本不等式即可求出b 的最小值.【详解】 由平行四边形性质可得:()22222a b a b a b ++-=+,由基本不等式可得:()2222a b a b a b a b ++-++-≥,当且仅当a b a b +=-时等号成立, 所以()()22222a b ab a b ++-+≥,即()224212b +≥, 所以3b ≥,所以b 的最小值为.【点睛】 本题主要考查了向量的数量积的运算及基本不等式的应用,属于中档题.19.【分析】设将关于的函数利用基本不等式即可求出值域【详解】设当时当且仅当时等号成立;同理当时当且仅当时等号成立;所以函数的值域为故答案为:【点睛】本题考查函数的值域注意基本不等式的应用属于基础题解析:(),161667,⎡-∞-++∞⎣ 【分析】设6x t -=,将()f x 关于t 的函数,利用基本不等式,即可求出值域.【详解】设21663636,6,()16t t x t x t g t t t t++-==+==++, 当0t >时,()16g t ≥,当且仅当6t x ==时等号成立;同理当0t <时,()16g t ≤-,当且仅当6t x =-=-时等号成立;所以函数的值域为(),161667,⎡-∞-++∞⎣. 故答案为: (),161667,⎡-∞-++∞⎣. 【点睛】本题考查函数的值域,注意基本不等式的应用,属于基础题. 20.6【分析】由题得解不等式即得x+y 的最小值【详解】由题得所以所以所以x+y≥6或x+y≤-2(舍去)所以x+y 的最小值为6当且仅当x=y=3时取等故答案为6【点睛】本题主要考查基本不等式求最值意在考解析:6【分析】由题得2)34x y x+y+=xy +≤(,解不等式即得x+y 的最小值.【详解】 由题得2)34x y x+y+=xy +≤(, 所以2)4(x y x y +-+≥()-120, 所以6)(2)0x y x y +-++≥(, 所以x+y≥6或x+y≤-2(舍去),所以x+y 的最小值为6.当且仅当x=y=3时取等.故答案为6【点睛】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.三、解答题21.无22.无23.无24.无25.无26.无。
高中数学必修一第二章一元二次函数方程和不等式专项训练单选题1、若a>0,b>0,则下面结论正确的有()A.2(a2+b2)≤(a+b)2B.若1a +4b=2,则a+b≥92C.若ab+b2=2,则a+b≥4D.若a+b=1,则ab有最大值12答案:B分析:对于选项ABD利用基本不等式化简整理求解即可判断,对于选项C取特值即可判断即可. 对于选项A:若a>0,b>0,由基本不等式得a2+b2≥2ab,即2(a2+b2)≥(a+b)2,当且仅当a=b时取等号;所以选项A不正确;对于选项B:若a>0,b>0,1 2×(1a+4b)=1,a+b=12×(1a+4b)(a+b)=12(5+ba+4ab)≥12(5+2√ba⋅4ab)=92,当且仅当1a +4b=2且ba=4ab,即a=32,b=3时取等号,所以选项B正确;对于选项C:由a>0,b>0,ab+b2=b(a+b)=2,即a+b=2b,如b=2时,a+b=22=1<4,所以选项C不正确;对于选项D:ab≤(a+b2)2=14,当且仅当a=b=12时取等则ab有最大值14,所以选项D不正确;故选:B2、若不等式2x2+2mx+m4x2+6x+3<1对一切实数x均成立,则实数m的取值范围是()A .(1,3)B .(−∞,1)C .(−∞,1)∪(3,+∞)D .(3,+∞) 答案:A分析:因为4x 2+6x +3=4(x +34)2+34>0恒成立,则2x 2+2mx+m 4x 2+6x+3<1恒成立可转化为2x 2+(6−2m )x +(3−m )>0恒成立,则Δ<0,即可解得m 的取值范围 因为4x 2+6x +3=4(x +34)2+34>0恒成立 所以2x 2+2mx+m 4x 2+6x+3<1恒成立⇔2x 2+2mx +m <4x 2+6x +3恒成立 ⇔2x 2+(6−2m )x +(3−m )>0恒成立 故Δ=(6−2m )2−4×2×(3−m )<0 解之得:1<m <3 故选:A3、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( )A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞)答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13} 则根据对应方程的韦达定理得到:{(−12)+13=−ba(−12)⋅13=2a , 解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16) 故选:A4、不等式|5x −x 2|<6的解集为( )A .{x|x <2,或x >3}B .{x|−1<x <2,或3<x <6}C .{x|−1<x <6}D .{x|2<x <3}答案:B分析:按照绝对值不等式和一元二次不等式求解即可. 解:∵|5x−x2|<6,∴−6<5x−x2<6∴{x 2−5x−6<0x2−5x+6>0⇒{−1<x<6x<2或x>3⇒−1<x<2或3<x<6则不等式的解集为:{x|−1<x<2或3<x<6}故选:B.5、已知x>0,y>0,且x+y=2,则下列结论中正确的是()A.2x +2y有最小值4B.xy有最小值1C.2x+2y有最大值4D.√x+√y有最小值4答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可解:x>0,y>0,且x+y=2,对于A,2x +2y=12(x+y)(2x+2y)=2+xy+yx≥2+2√xy⋅yx=4,当且仅当x=y=1时取等号,所以A正确,对于B,因为2=x+y≥2√xy,所以xy≤1,当且仅当x=y=1时取等号,即xy有最大值1,所以B错误,对于C,因为2x+2y≥2√2x⋅2y=2√2x+y=4,当且仅当x=y=1时取等号,即2x+2y有最小值4,所以C错误,对于D,因为(√x+√y)2=x+y+2√xy≤2(x+y)=4,当且仅当x=y=1时取等号,即√x+√y有最大值4,所以D错误,故选:A6、已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=A.{x|−4<x<3}B.{x|−4<x<−2}C.{x|−2<x<2}D.{x|2<x<3}答案:C分析:本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.由题意得,M={x|−4<x<2},N={x|−2<x<3},则M∩N={x|−2<x<2}.故选C.小提示:不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.7、关于x的方程x2+(m−2)x+2m−1=0恰有一根在区间(0,1)内,则实数m的取值范围是()A.[12,32]B.(12,23]C.[12,2)D.(12,23]∪{6−2√7}答案:D分析:把方程的根转化为二次函数的零点问题,恰有一个零点属于(0,1),分为三种情况,即可得解. 方程x2+(m-2)x+2m-1=0对应的二次函数设为:f(x)=x2+(m-2)x+2m-1因为方程x2+(m-2)x+2m-1=0恰有一根属于(0,1),则需要满足:①f(0)⋅f(1)<0,(2m-1)(3m-2)<0,解得:12<m<23;②函数f(x)刚好经过点(0,0)或者(1,0),另一个零点属于(0,1),把点(0,0)代入f(x)=x2+(m-2)x+2m-1,解得:m=12,此时方程为x2-32x=0,两根为0,32,而32⋅(0,1),不合题意,舍去把点(1,0)代入f(x)=x2+(m-2)x+2m-1,解得:m=23,此时方程为3x2-4x+1=0,两根为1,13,而13⋅(0,1),故符合题意;③函数与x轴只有一个交点,Δ=(m-2)2-8m+4=0,解得m=6±2√7,经检验,当m=6-2√7时满足方程恰有一根在区间 (0,1) 内;综上:实数m的取值范围为(12,23]⋅{6-2√7}故选:D8、已知1a <1b<0,则下列结论正确的是()A.a<b B.a+b<ab C.|a|>|b|D.ab>b2答案:B分析:结合不等式的性质、差比较法对选项进行分析,从而确定正确选项.因为1a <1b<0,所以b<a<0,故A错误;因为b<a<0,所以a+b<0,ab>0,所以a+b<ab,故B正确;因为b<a<0,所以|a|>|b|不成立,故C错误;ab−b2=b(a−b),因为b<a<0,所以a−b>0,即ab−b2=b(a−b)<0,所以ab<b2成立,故D错误.故选:B多选题9、若a,b,c∈R,则下列命题正确的是()A.若ab≠0且a<b,则1a >1bB.若0<a<1,则a2<aC.若a>b>0且c>0,则b+ca+c >baD.a2+b2+1≥2(a−2b−2)答案:BCD分析:由不等式的性质逐一判断即可.解:对于A,当a<0<b时,结论不成立,故A错误;对于B,a2<a等价于a(a−1)<0,又0<a<1,故成立,故B正确;对于C,因为a>b>0且c>0,所以b+ca+c >ba等价于ab+ac>ab+bc,即(a−b)c>0,成立,故C正确;对于D,a2+b2+1≥2(a−2b−2)等价于(a−1)2+(b+2)2≥0,成立,故D正确. 故选:BCD.10、已知正实数a,b满足a+b=ab,则()A.a+b≥4B.ab≥6C.a+2b≥3+2√2D.ab2+ba2≥1答案:ACD分析:根据特殊值判断B,利用ab⩽(a+b)24判断A,利用换“1”法判断C,变形后利用基本不等式判断D. 对于B,当a=b=2时,满足a+b=ab,此时ab<6,B错误;对于A,ab⩽(a+b)24,则(a+b)24⩾a+b,变形可得a+b⩾4,当且仅当a=b=2时等号成立,A正确;对于C ,a +b =ab ,变形可得1a +1b =1,则有a +2b =(a +2b)(1a +1b )=3+2b a+ab ⩾3+2√2,当且仅当a =2b 时等号成立,C 正确; 对于D ,ab 2+ba 2=a 3+b 3a 2b 2=(a+b)(a 2+b 2−ab)a 2b 2=b a +ab −1⩾2−1=1,当且仅当a =b =2时等号成立,D 正确;故选:ACD11、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在[0,1]上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确. 故选:ABD填空题12、若不等式kx2+2kx+2<0的解集为空集,则实数k的取值范围是_____.答案:{k|0≤k≤2}分析:分k=0和k>0两种情况讨论,当k>0时需满足Δ≤0,即可得到不等式,解得即可;解:当k=0时,2<0不等式无解,满足题意;当k>0时,Δ=4k2−8k≤0,解得0<k≤2;综上,实数k的取值范围是{k|0≤k≤2}.所以答案是:{k|0≤k≤2}13、已知a,b,a+m均为大于0的实数,给出下列五个论断:①a>b,②a<b,③m>0,④m<0,⑤b+ma+m >ba.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题___________. 答案:①③推出⑤(答案不唯一还可以①⑤推出③等)解析:选择两个条件根据不等式性质推出第三个条件即可,答案不唯一.已知a,b,a+m均为大于0的实数,选择①③推出⑤.①a>b,③m>0,则b+ma+m −ba=ab+am−ab−bma(a+m)=am−bma(a+m)=(a−b)ma(a+m)>0,所以b+ma+m >ba.所以答案是:①③推出⑤小提示:此题考查根据不等式的性质比较大小,在已知条件中选择两个条件推出第三个条件,属于开放性试题,对思维能力要求比较高.14、已知不等式ax2+bx+c>0的解集为(2,4),则不等式cx2+bx+a<0的解集为___________.答案:{x|x>12或x<14}分析:先由不等式ax2+bx+c>0的解集为(2,4),判断出b=-6a,c=8a,把cx2+bx+a<0化为8x2−6x+ 1>0,即可解得.因为不等式ax2+bx+c>0的解集为(2,4),所以a<0且2和4是ax2+bx+c=0的两根.所以{2+4=−ba2×4=ca可得:{b=−6ac=8a,所以cx2+bx+a<0可化为:8ax2−6ax+a<0,因为a<0,所以8ax2−6ax+a<0可化为8x2−6x+1>0,即(2x−1)(4x−1)>0,解得:x>12或x<14,所以不等式cx2+bx+a<0的解集为{x|x>12或x<14}.所以答案是:{x|x>12或x<14}.解答题15、回答下列问题:(1)若a>b,且c>d,能否判断a−c与b−d的大小?举例说明.(2)若a>b,且c<d,能否判断a+c与b+d的大小?举例说明.(3)若a>b,且c>d,能否判断ac与bd的大小?举例说明.(4)若a>b,c<d,且c≠0,d≠0,能否判断ac 与bd的大小?举例说明.答案:(1)不能判断,举例见解析(2)不能判断,举例见解析(3)不能判断,举例见解析(4)不能判断,举例见解析分析:因为a,b,c,d的正负不确定,因此可举例说明每个小题中的两式的大小关系不定. (1)不能判断a−c与b−d的大小,举例:取a=5,b=3,c=1,d=0,满足条件a>b,且c>d,此时a−c>b−d;取a=5,b=4,c=3,d=0,满足条件a>b,且c>d,此时a−c<b−d;取a=5,b=4,c=3,d=2,满足条件a>b,且c>d,此时a−c=b−d;(2)不能判断a+c与b+d的大小,举例:取a=5,b=3,c=0,d=1,满足条件a>b,且c<d,此时a+c>b+d;取a=5,b=3,c=2,d=6,满足条件a>b,且c<d,此时a+c<b+d.取a=5,b=3,c=4,d=6,满足条件a>b,且c<d,此时a+c=b+d;(3)不能判断ac与bd的大小,举例:取a=5,b=3,c=1,d=0,满足条件a>b,且c>d,此时ac>bd;取a=5,b=3,c=−3,d=−5,满足条件a>b,且c>d,此时ac=bd;取a=5,b=−3,c=1,d=−2,满足条件a>b,且c>d,此时ac<bd;(4)不能判断ac 与bd的大小举例:取a=6,b=3,c=1,d=2,满足条件a>b,且c<d,此时ac >bd;取a=2,b=1,c=−1,d=2,满足条件a>b,且c<d,此时ac <bd;取a=6,b=3,c=−2,d=−1,满足条件a>b,且c<d,此时ac =bd;。
第2章一元二次函数、方程和不等式(原卷版)本卷满分150分,考试时间120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列命题是真命题的是A .若ac bc >.则a b >B .若22a b >,则a b>C .若a b >,则11a b<D .若c d >,a c b d ->-,则a b>2.已知242,65,M x x N x x R =+-=-∈,下列关系正确的是A .M N ≤B .M N <C .M N=D .M N>3.已知正数a,b ,满足2a b +=A .最小值1BC D .最大值14.已知关于x 的不等式220ax ax -+>在R 上恒成立,则实数a 的取值范围是A .()(),08,-∞+∞B .(][),08,-∞+∞C .[)0,8D .()0,85.已知0a >,0b >,且228a b ab ++=,则2+a b 的最小值为A .2B .C .4D .66.不等式()4421m m >-,则实数m 的取值范围是A .(),1-∞B .1,13⎛⎫⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭7.已知0x >,0y >且141x y+=,若不等式246x y m m +≥-对任意正数x ,y 恒成立,则实数m 的取值集合为A .{|28}m m -≤≤B .{|82}m m -≤≤C .{|8m m ≤-或2}m ≥D .{|2m m ≤-或8}m ≥8.若关于x 的不等式22840x x a --->在[1,4]内有解,则实数a 的取值范围是A .(4,)-+∞B .(,4)-∞-C .(12,)-+∞D .(,12)-∞-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知23x <<,23y <<,则下列说法正确的是A .2x y +的取值范围为(6,9)B .2x y -的取值范围为(2,3)C .x y的取值范围为23(,)32D .xy 的取值范围为(4,9)10.不等式20ax bx c ++≥的解集是122x x ⎧⎫≤≤⎨⎬⎩⎭,对于系数a ,b ,c ,下列结论正确的是A .0a b c -+>B .0b >C .0c >D .0a b c ++>11.现有以下结论①函数1y x x=+的最小值是2②若,a b ∈R 且0ab >,则2b a a b+≥③y =2④函数423(0)y x x x =-->的最小值为2-其中,不正确的是A .①B .②C .③D .④12.关于x 的一元二次不等式x 2-6x +a ≤0(a ∈Z)的解集中有且仅有3个整数,则a 的取值可以是A .6B .7C .8D .9三、填空题:本题共4小题,每小题5分,共20分.13.若方程()200ax bx c a ++=>有唯一的实数根-2,则不等式20ax bx c ++>的解集为________.14.已知正实数a ,b 满足196a b+=,则()()19a b ++的最小值是________.15.若关于x 的不等式223x x a -≥-+无解,则实数a 的取值范围是________.16.已知λ∈R ,函数24,()43,x x f x x x x λλ-≥⎧=⎨-+<⎩,当λ=2时,不等式()0f x <的解集是________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(1)试比较()()15x x ++与()23x +的大小;(2)已知a b >,11a b<,求证:0ab >.18.(12分)已知二次函数2()3f x ax bx =++,且1,3-是函数()f x 的零点.(1)求()f x 的解析式;(2)解不等式()3f x ≤.19.(12分)求解下列各题:(1)求()23402x x y x x ++=<的最大值;(2)求()2811x y x x +=>-的最小值.20.(12分)今年10月份,学校从某厂家购进了A 、B 型电脑共250台,A 、B 两种型号电脑的单价分别为7000元、9000元,其中购进A 型、B 型电脑的总金额和为205万元.(1)求学校10月份购进A 、B 型电脑各多少台?(2)为推进学校设备更新进程,学校决定11月份在同一厂家再次购进A 、B 两种型号的电脑,在此次采购中,比起10月份进购的同类型电脑,A 型电脑的单价下降了a %,A 型电脑数量增加了4%5a ,B 型电脑的单价上升了503a 元,B 型电脑数量下降了4%5a ,这次采购A 、B 两种型号电脑的总金额为205万元,求a 的值.21.(12分)已知实数0,0x y >>,且()()222,,R xy x y a x y b a b =++++∈.(1)当0,0a b ==时,求4x y +的最小值,并指出取最小值时x ,y 的值:(2)当0,3a b ==时,求x y +的最小值,并指出取最小值时x ,y 的值(3)当1,02a b ==时,求x y +的最小值,并指出取最小值时x ,y 的值.22.(12分)若()0,a b ∈+∞,则2223a b a b a b +≤++.(1)若存在常数M ,使得不等式2222a b a bM a b a b a b a b+++≤≤+++对任意正数a ,b 恒成立,试求常数M 的值,并证明不等式:22a bM a b a b++≤+;(2)证明不等式:32232332a b a ba b a b a b a b≤++++++.第2章一元二次函数、方程和不等式(解析版)本卷满分150分,考试时间120分钟。
第二章一元二次函数、方程和不等式2.1等式性质与不等式性质......................................................................................... - 1 - 2.2基本不等式 ............................................................................................................ - 8 -第一课时基本不等式.......................................................................................... - 8 - 第二课时基本不等式与最大值、最小值........................................................ - 13 - 2.3二次函数与一元二次方程、不等式(1) ................................................................. - 20 - 2.3二次函数与一元二次方程、不等式(2) ................................................................. - 30 -2.1等式性质与不等式性质内容标准学科素养1.通过具体情境,感受日常生活中的不等关系.数学抽象逻辑推理2.初步学会作差法比较两实数的大小.3.掌握不等式的基本性质,并能运用这些性质解决有关问题.授课提示:对应学生用书第18页[教材提炼]知识点一实数a、b大小预习教材,思考问题设a、b是两个实数,它们在数轴上所对应的点分别是A、B,那么A、B的位置与a、b的大小有什么关系?知识梳理关于实数a,b大小的比较,有以下基本事实:如果a-b是正数,那么a>b;如果a-b等于0,那么a=b;如果a-b是负数,那么a<b.反过来也对,这个基本事实可以表示为a>b⇔a-b>0;a=b⇔a -b=0;a<b⇔a-b<0.从上述基本事实可知,要比较两个实数的大小,可以转化为比较它们的差与0的大小.知识点二 等式的基本性质 预习教材,思考问题如果a =b ,那么a ±c 与b ±c 、ac 与bc 、a c 与bc 相等吗? 知识梳理 等式有下面的基本性质: 性质1 如果a =b ,那么b =a ; 性质2 如果a =b ,b =c ,那么a =c ; 性质3 如果a =b ,那么a ±c =b ±c ; 性质4 如果a =b ,那么ac =bc ; 性质5 如果a =b ,c ≠0,那么a c =b c . 知识点三 不等式的性质 预习教材,思考问题如果a >b ,那么a ±c 与b ±c ,ac 与bc 有什么关系? 知识梳理[自主检测]1.实数m不超过2,是指()A.m>2B.m≥ 2C.m< 2 D.m≤ 2答案:D2.已知a<b<0,c<d<0,那么下列判断中正确的是() A.a-c<b-d B.ac>bdC.ad<bc D.ad>bc答案:B3.设a>b,c>d,则下列不等式成立的是() A.a-c>b-d B.ac>bdC.ac>db D.b+d<a+c答案:D4.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是________.答案:f(x)>g(x)授课提示:对应学生用书第19页探究一作差法比较大小[例1]设x<y<0,试比较(x2+y2)(x-y)与(x2-y2)(x+y)的大小.[解析](x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)(x2+y2)-(x-y)(x+y)2=(x-y)[(x2+y2)-(x+y)2]=(x-y)(-2xy).由于x<y<0,所以x-y<0,-2xy<0,所以(x-y)(-2xy)>0,即(x2+y2)(x-y)>(x2-y2)(x+y).作差法比较两个数大小的步骤及变形方法(1)作差法比较的步骤:作差→变形→定号→结论.(2)变形的方法:①因式分解;②配方;③通分;④对数与指数的运算性质;⑤分母或分子有理化;⑥分类讨论.将本例中“x<y<0”变为“x>y>0”,这两个代数式的大小如何?解析:(x2+y2)(x-y)-(x2-y2)(x+y)=-2xy(x-y)由x>y>0得-2xy<0,x-y>0∴-2xy(x-y)<0∴(x2+y2)(x-y)<(x2-y2)(x+y)探究二用不等式的性质证明不等式[例2][教材P42例2拓展探究](1)已知a>b>0,c<d<0,e<0,求证:ea-c >eb-d.[证明]∵c<d<0,∴-c>-d>0,又∵a>b>0,∴a+(-c)>b+(-d)>0,即a-c>b-d>0,∴0<1a-c<1b-d,又∵e<0,∴ea-c >eb-d.(2)已知b克糖水中含有a克糖(b>a>0),再添加m克糖(m>0)(假设全部溶解),糖水变甜了.请将这一事实表示为一个不等式,并证明这个不等式成立.[证明]ab-a+mb+m=a(b+m)-b(a+m)b(b+m)=m(a-b)b(b+m),∵b>a>0,m>0,∴a-b<0,m(a-b)b(b+m)<0,∴ab<a+mb+m.利用不等式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.探究三求表达式的范围[例3]已知30<x<42,16<y<24,分别求x+y,x-3y及xx-3y的范围.[解析]因为30<x<42,16<y<24,所以30+16<x+y<42+24,故46<x+y<66.又30<x<42,-72<-3y<-48,所以30-72<x-3y<42-48,故-42<x-3y<-6.又30<x<42,-42<x-3y<-6,所以-16<1x-3y<-142,所以0<142<-1x-3y<16,所以3042<-xx-3y<426,故-426<xx-3y<-3042,得-7<xx-3y<-57.根据某些代数式的范围求其它代数式的范围,要整体应用已知的代数式,结合不等式的性质进行推理.已知1<a <2,3<b <4,求下列各式的取值范围. (1)2a +b ;(2)a -b ;(3)ab .解析:(1)∵1<a <2,∴2<2a <4.又3<b <4,∴5<2a +b <8; (2)∵3<b <4,∴-4<-b <-3.又∵1<a <2,∴-3<a -b <-1; (3)3<b <4;∴14<1b <13.又∵1<a <2,∴14<a b <23.授课提示:对应学生用书第20页一、借不等式性质之根“移花接木”——不等式性质的拓展►逻辑推理 1.由不等式性质4:a >b ,c >0,那么ac >bc 拓展为倒数性质:若⎩⎨⎧a >bab >0,则1a <1b .证明:∵ab >0,∴1ab >0 由a >b 得a ×1ab >b ×1ab . ∴1b >1a ,即1a <1b .2.由性质7:如果a >b >0,那么a n >b n .(n ∈N 且n ≥1). 拓展为开方性质:如果a >b >0,那么n a >nb .(n ∈N 且n ≥2). 证明:假设0<n a ≤nb .由性质7得(n a )n ≤(nb )n ∴a ≤b 与a >b 矛盾. ∴n a >n b .[典例] 已知a >b >0,求证a >b . [证明] ∵a =(a )2,b =(b )2. 由a >b 得:(a )2>(b )2>0 ∴a >b .二、同样正确用不等式性质,差别这么大[典例] 已知1≤a -b ≤2,2≤a +b ≤4,求4a -2b 的范围. [解析] 设4a -2b =m (a -b )+n (a +b ) =(m +n )a +(n -m )b ,于是得⎩⎨⎧ m +n =4n -m =-2,解得⎩⎨⎧m =3n =1, ∴4a -2b =3(a -b )+(a +b ) 1≤a -b ≤2,2≤a +b ≤4 ∴5≤3(a -b )+(a +b )≤10 ∴4a -2b 范围是[5,10].纠错心得 (1)使用不等式的性质时,一定要注意它们成立的前提条件,不可强化或弱化它们成立的条件,盲目套用.(2)注意同一个问题中应用同向不等式相加性质时不能多次使用(因多次使用时取等号的条件会发生改变),否则不等式范围将会扩大.2.2基本不等式第一课时基本不等式内容标准学科素养1.探索并了解基本不等式的证明过程.直观想象逻辑推理2.能熟练运用基本不等式来比较两个实数的大小.3.能初步运用基本不等式证明简单的不等式.授课提示:对应学生用书第20页[教材提炼]知识点基本不等式预习教材,思考问题(1)对∀a、b∈R.a2+b2与2ab的大小如何?在右图中,AB是圆的直径,点C是AB上一点,AC=a,BC=b.过点C作垂直于AB的弦DE,连接AD,BD.可得到CD=ab,12AB=a+b2,由CD小于或等于圆的半径,可得出什么样的不等关系?知识梳理(1)∀a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.(2)如果a>0,b>0,我们用a,b分别代替上式中的a,b,可得ab≤a+b 2,①当且仅当a=b时,等号成立.通常称不等式①为基本不等式(basic inequality).其中,a +b2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.[自主检测]1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( ) A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab | D .a 2+b 2>2|ab |答案:A2.若a ,b ∈R 且ab >0,则下列不等式中恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2ab D.b a +a b ≥2答案:D3.若x >0,y >0且x +y =4,则下列不等式中恒成立的是( ) A.1x +y >14B.1x +1y ≥1C.xy ≥2D.1xy ≥1 答案:B授课提示:对应学生用书第21页探究一 用基本不等式判断不等式的成立[例1] 有下列式子:①a 2+1>2a ;②⎪⎪⎪⎪⎪⎪x +1x ≥2;③a +b ab ≥2;④x 2+1x 2+1≥1,其中正确的个数是( )A .0B .1C .2D .3[解析] ∵a 2-2a +1=(a -1)2≥0,∴a 2+1≥2a ,故①不正确;对于②,当x >0时,⎪⎪⎪⎪⎪⎪x +1x =x +1x ≥2(当且仅当x =1时取“=”);当x <0时,⎪⎪⎪⎪⎪⎪x +1x =-x -1x ≥2(当且仅当x =-1时取“=”),∴②正确;对于③,若a =b =-1,则a +b ab =-2<2,故③不正确;对于④,x 2+1x 2+1=x 2+1+1x 2+1-1≥1(当且仅当x =0时取“=”),故④正确.∴选C.[答案] C利用基本不等式比较实数大小的注意事项(1)利用基本不等式比较大小,常常要注意观察其形式(和与积),同时要注意结合函数的性质(单调性).(2)利用基本不等式时,一定要注意条件是否满足a >0,b >0.设M =a +1a -2(2<a <3),N =x (43-3x )⎝⎛⎭⎪⎫0<x <433,则M ,N 的大小关系为( )A .M >NB .M <NC .M ≥ND .M ≤N解析:M =a +1a -2=a -2+1a -2+2>4, N =x (43-3x )=13×3x (43-3x )≤13×⎝⎛⎭⎪⎫3x +43-3x 22=4. ∴M >N . 答案:A探究二 用基本不等式证明不等式[例2] [教材P 44由公式a +b2≥ab 的证明过程探究](1)证明不等式a 2+b 2+c 2≥ab +bc +ca . [证明] ∵a 2+b 2≥2ab b 2+c 2≥2bc c 2+a 2≥2ac .∴2(a 2+b 2+c 2)≥2(ab +bc +ca )(当且仅当a =b =c 取等号) ∴a 2+b 2+c 2≥ab +bc +ca .(2)已知a >0,b >0,c >0,求证:bc a +ac b +abc ≥a +b +c . [证明] ∵a >0,b >0,c >0,∴bc a >0,ac b >0,abc >0. 则bc a +ac b ≥2abc 2ab =2c ,bc a +ab c ≥2b ,ac b +abc ≥2a .由不等式的性质知,2⎝ ⎛⎭⎪⎫bc a +ac b +ab c ≥2(a +b +c ),∴bc a +ac b +abc ≥a +b +c .利用基本不等式证明不等式的注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”.(2)注意事项:①多次使用基本不等式时,要注意等号能否成立;②累加法是不等式证明中的一种常用方法,在证明不等式时注意使用条件; ③对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型再使用.授课提示:对应学生用书第21页一、千变万化,不离其宗►逻辑推理 基本不等式的几种常见变形及结论 (1)a +b ≥2ab (a >0,b >0); (2)ab ≤a 2+b 22(a ,b ∈R ); (3)ab ≤⎝⎛⎭⎪⎫a +b 22,(a ,b ∈R ); (4)b a +ab ≥2(ab >0); (5)a +ka ≥2k (a >0,k >0); (6)21a +1b≤ab ≤a +b2≤ a 2+b 22(a ,b 都是正实数).[典例] 已知a ,b ,c ∈R ,a +b +c =1,求证:ab +ac +bc ≤1. [证明] ∵ab ≤a +b 2,bc ≤b +c 2,ac ≤a +c2, ∴ab +ac +bc ≤2(a +b +c )2=1. 故原不等式成立.二、忽视基本不等式的条件►逻辑推理 [典例] 设y =x +1x ,求y 的取值范围. [解析] 当x >0时,y =x +1x ≥2x ·1x =2.当且仅当x =1x ,即x =1时取“=”. 当x <0时,y =x +1x =-[(-x )+1-x ]∵(-x )+1-x≥2 ∴-[(-x )+1-x]≤-2. 当且仅当x =1x 时,即x =-1时取“=”.∴y的取值范围为{y|y≤-2或y≥2}.第二课时基本不等式与最大值、最小值内容标准学科素养1.熟练掌握基本不等式及变形的应用.逻辑推理、数学运算、数学建模2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.授课提示:对应学生用书第22页[教材提炼]知识点基本不等式求最大值、最小值预习教材,思考问题(1)当x>0,y=x+1x的最小值是几?(2)当x>0,y>0,x+y=1,xy的最大值是几?知识梳理(1)用基本不等式求最值.①设x,y为正实数,若x+y=s(s为定值),则当x=y=s2时,积xy有最大值为s24.②设x,y为正实数,若xy=p(p为定值),则当x=y=p时,和x+y有最小值为2p.(2)基本不等式求最值的条件①x,y必须是正数.②求积xy的最大值时,应看和x+y是否为定值;求和x+y的最小值时,应看积xy是否为定值.③等号成立的条件是否满足.[自主检测]1.x 2+y 2=4,则xy 的最大值是( ) A.12 B .1 C .2 D .4答案:C2.已知-1≤x ≤1,则1-x 2的最大值为________. 答案:13.当x >1时,x +1x -1的最小值为________. 答案:3授课提示:对应学生用书第22页探究一 用基本不等式求最值[例1] [教材P 45例1探究拓展](1)若x >0,求函数y =x +4x 的最小值,并求此时x 的值; [解析] ∵x >0. ∴x +4x ≥2x ·4x =4当且仅当x =4x ,即x 2=4,x =2时取等号. ∴函数y =x +4x (x >0)在x =2时取得最小值4. (2)设0<x <32,求函数y =4x (3-2x )的最大值; [解析] ∵0<x <32,∴3-2x >0, ∴y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92.当且仅当2x =3-2x ,即x =34时,等号成立. ∵34∈⎝ ⎛⎭⎪⎫0,32, ∴函数y =4x (3-2x )⎝ ⎛⎭⎪⎫0<x <32的最大值为92.(3)已知x >2,求x +4x -2的最小值; [解析] ∵x >2,∴x -2>0, ∴x +4x -2=x -2+4x -2+2 ≥2(x -2)·4x -2+2=6,当且仅当x -2=4x -2, 即x =4时,等号成立.∴x +4x -2的最小值为6. (4)已知x >0,y >0,且1x +9y =1,求x +y 的最小值. [解析] ∵x >0,y >0,1x +9y =1, ∴x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=y x +9x y +10≥2y x ·9xy +10=6+10=16,当且仅当y x =9x y ,1x +9y =1, 即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16.应用基本不等式的常用技巧(1)常值代替这种方法常用于“已知ax +by =m (a ,b ,x ,y 均为正数),求1x +1y 的最小值”和“已知a x +by =1(a ,b ,x ,y 均为正数),求x +y 的最小值”两类题型.(2)构造不等式当和与积同时出现在同一个等式中时,可利用基本不等式构造一个不等式从而求出和或积的取值范围.(3)利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创设应用基本不等式的条件.设x>0,y>0,且2x+y=1,求1x+1y的最小值.解析:∵x>0,y>0,2x+y=1,∴1x+1y=2x+yx+2x+yy=3+yx+2xy≥3+2yx·2xy=3+22,当且仅当yx=2xy,即y=2x时,等号成立,解得x=1-22,y=2-1,∴当x=1-22,y=2-1时,1x+1y有最小值3+2 2.探究二基本不等式的实际应用[例2]如图,汽车行驶时,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们把这段距离叫做“刹车距离”.在某公路上,“刹车距离”s(米)与汽车车速v(米/秒)之间有经验公式:s=340v2+58v.为保证安全行驶,要求在这条公路上行驶着的两车之间保持的“安全距离”为“刹车距离”再加25米.现假设行驶在这条公路上的汽车的平均身长5米,每辆车均以相同的速度v行驶,并且每两辆车之间的间隔均是“安全距离”.(1)试写出经过观测点A的每辆车之间的时间间隔T与速度v的函数关系式;(2)问v为多少时,经过观测点A的车流量(即单位时间通过的汽车数量)最大?[解析](1)T=s+25+5v=3v240+5v8+30v=3v40+30v+58.(2)经过A点的车流量最大,即每辆车之间的时间间隔T最小.∵T=3v40+30v+58≥230v·3v40+58=298,当且仅当3v40=30v,即v=20时取等号.∴当v=20米/秒时,经过观测点A的车流量最大.利用基本不等式解决实际问题时,一般是先建立关于目标量的函数关系,再利用基本不等式求解目标函数的最大(小)值及取最大(小)值的条件.某公司一年需要一种计算机元件8 000个,每天需同样多的元件用于组装整机,该元件每年分n次进货.每次购买元件的数量均为x,购一次货需手续费500元.已购进而未使用的元件要付库存费,假设平均库存量为12x件,每个元件的库存费为每年2元,如果不计其他费用,请你帮公司计算,每年进货几次花费最小?解析:设每年购进8 000个元件的总花费为S,一年总库存费用为E,手续费为H,每年分n次进货,则x=8 000n,E=2×12×8 000n,H=500 n.所以S=E+H=2×12×8 000n+500n=8 000n+500n=500⎝⎛⎭⎪⎫16n+n≥4 000.当且仅当16n=n,即n=4时总费用最少,故以每年进货4次为宜.授课提示:对应学生用书第23页一、用基本不等式求最值的策略►逻辑推理、数学运算1.配凑以拼凑出和是定值或积是定值的形式为目标,根据代数式的结构特征,利用系数的变化或对常数的调整进行巧妙变形,注意做到等价变形.一般地,形如f(x) =ax+b+ecx+d的函数求最值时可以考虑配凑法.[典例]函数y=x2x+1(x>-1)的最小值为________.[解析]因为y=x2-1+1x+1=x-1+1x+1=x+1+1x+1-2,因为x>-1,所以x+1>0,所以y≥21-2=0,当且仅当x=0时,等号成立.[答案]02.常值代换利用“1”的代换构造积为定值的形式,一般形如“已知ax+by(或ax+by)为定值,求cx+dy(或cx+dy)的最值(其中a,b,c,d均为常参数)”时可用常值代换处理.[典例]若正数x,y满足3x+y=5xy,则4x+3y的最小值是() A.2B.3C.4 D.5[解析]由3x+y=5xy,得3x+yxy=3y+1x=5,所以4x+3y=(4x+3y)·15(3y+1x)=15(4+9+3yx+12xy)≥15(4+9+236)=5,当且仅当3yx=12xy,即y=2x时,等号成立,故4x+3y的最小值为5.[答案] D3.探究通过换元法使得问题的求解得到简化,从而将复杂问题化为熟悉的最值问题处理,然后利用常值代换及基本不等式求最值.[典例] 设x ,y 是正实数,且x +y =1,则x 2x +2+y 2y +1的最小值为________.[解析] 令x +2=m ,y +1=n ,则m +n =4,且m >2,n >1, 所以x 2x +2+y 2y +1=(m -2)2m +(n -1)2n=4m +1n -2=(4m +1n )(m 4+n4)-2 =m 4n +n m -34≥2m 4n ·n m -34=14,当且仅当⎩⎪⎨⎪⎧m 4n =n m,m +n =4即m =83,n =43时取等号.所以x 2x +2+y 2y +1的最小值为14.[答案] 14 4.减元当题中出现了三个变元,我们要利用题中所给的条件构建不等关系,并减元,在减元后应注意新元的取值范围.[典例] 已知x ,y ,z 均为正实数,且x -2y +3z =0,则y 2xz 的最小值为________. [解析] 由x -2y +3z =0得y =x +3z 2,所以y 2xz =x 2+9z 2+6xz 4xz =x 4z +9z 4x +32.又x ,z 均为正实数,所以x 4z >0,9z 4x >0,所以y 2xz =x 4z +9z 4x +32≥2x 4z ·9z 4x +32=3,当且仅当x 4z =9z4x 即x =3z 时取等号. 所以y 2xz 的最小值为3. [答案] 3二、忽视基本不等式的应用条件►逻辑推理、数学运算[典例] 已知一次函数mx +ny =-2过点(-1,-2)(m >0,n >0).则1m +1n 的最小值为( )A .3B .2 2 C.3+222D.3-222[解析] 由题意得m2+n =1,所以1m +1n =(1m +1n )(m 2+n )=32+m 2n +n m ≥32+212=3+222,当且仅当m 2n =n m 即m =2n 时取等号.故选C.[答案] C纠错心得 应用基本不等式求最值时,必须遵循“一正、二定、三相等”的顺序.本题中求出m2+n =1后,若采用两次基本不等式,有如下错解:m2+n =1≥2mn 2,所以mn ≤22,1mn ≥2,① 又1m +1n ≥21mn ,②所以1m +1n ≥2 2.选B.此错解中,①式取等号的条件是m 2=n ,②式取等号的条件是1m =1n 即m =n ,两式的等号不可能同时取得,所以22不是1m +1n 的最小值.2.3二次函数与一元二次方程、不等式(1)2.掌握图象法解一元二次不等式.逻辑推理、数学运算3.会对含参数的一元二次不等式分类讨论.授课提示:对应学生用书第24页[教材提炼]知识点一一元二次不等式的概念预习教材,思考问题我们知道,方程x2=1的一个解是x=1,解集是{1,-1},解集中的每一个元素均可使等式成立.那么什么是不等式x2>1的解?你能举出一个解吗?你能写出不等式x2>1的解集吗?知识梳理(1)一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式(quadric inequality in one unknown).一元二次不等式的一般形式是ax2+bx+c>0或ax2+bx+c<0,其中a,b,c均为常数,a≠0.(2)一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x 叫做二次函数y=ax2+bx+c的零点.即一元二次方程的根是相应一元二次函数的零点.知识点二二次函数与一元二次方程、不等式的解的对应关系预习教材,思考问题函数y=x2-1的零点与方程x2-1=0及不等式x2-1>0解之间有什么关系?知识梳理(1)Δ=b2-4ac Δ>0Δ=0Δ<0y=ax2+bx+c(a>0)的图象ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根(2)不等式ax 2+bx +c >0(a >0)的求解方法将原不等式化成ax 2+bx +c >0(a >0)的形式计算Δ=b 2-4ac 的值Δ>0方程ax 2+bx +c =0有两个不相等的实数根,解得x 1,x 2(x 1<x 2) Δ=0方程ax 2+bx +c =0有两个相等的实数根,解得x 1=x 2=-b2a原不等式的解集为{x |x ≠-b 2aΔ<0方程ax 2+bx +c =0没有实数根原不等式的解集为R[自主检测]1.不等式x>x2的解集是()A.{x|x>1}B.{x|x<0}C.{x|0<x<1} D.R答案:C2.不等式x2+6x+10<0的解集是()A.∅B.RC.{x|x>5} D.{x|x<2}答案:A3.二次方程ax2+bx+c=0的两根为-2,3,a<0,那么ax2+bx+c>0的解集为()A.{x|x>3或x<-2} B.{x|x>2或x<-3}C.{x|-2<x<3} D.{x|-3<x<2}答案:C4.不等式-x2+x-2<0的解集为________.答案:R授课提示:对应学生用书第25页探究一一元二次不等式的解法[例1]解下列不等式.(1)-x2+2x-23>0;(2)-12x2+3x-5>0;(3)4x2-18x+814≤0.[解析](1)两边都乘以-3,得3x2-6x+2<0,∵3>0,Δ=36-24=12>0,且方程3x2-6x+2=0的根是x1=1-33,x2=1+33.∴原不等式的解集是{x |1-33<x <1+33}. (2)不等式可化为x 2-6x +10<0, Δ=(-6)2-4×10=-4<0, ∴原不等式的解集为∅.(3)不等式可化为16x 2-72x +81≤0, 即(4x -9)2≤0,∵4x -9=0时,x =94.∴原不等式的解集为{x |x =94}.解一元二次不等式的一般步骤(1)通过对不等式变形,使二次项系数大于零; (2)计算对应方程的判别式;(3)求出相应的一元二次方程的根,或根据判别式说明方程没有实根; (4)根据函数图象与x 轴的相关位置写出不等式的解集.1.求不等式2x 2-3x -2≥0的解集.解析:∵2x 2-3x -2=0的两解为x 1=-12,x 2=2,且a =2>0, ∴不等式2x 2-3x -2≥0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-12,或x ≥2. 2.解不等式-x 2+2x -3>0. 解析:不等式可化为x 2-2x +3<0. 因为Δ=(-2)2-4×3=-8<0, 方程x 2-2x +3=0无实数解, 而y =x 2-2x +3的图象开口向上, 所以原不等式的解集是∅.探究二 含参数的一元二次不等式[例2] 解关于x 的不等式x 2-(a +a 2)x +a 3>0(a ∈R ). [解析] 原不等式可化为(x -a )(x -a 2)>0.当a <0时,a <a 2,原不等式的解集为{x |x <a ,或x >a 2}; 当a =0时,x 2>0,原不等式的解集为{x |x ≠0};当0<a <1时,a 2<a ,原不等式的解集为{x |x <a 2,或x >a }; 当a =1时,a 2=a ,原不等式的解集为{x |x ≠1};当a >1时,a <a 2,原不等式的解集为{x |x <a ,或x >a 2}. 综上所述:当a <0或a >1时,原不等式的解集为{x |x <a ,或x >a 2}; 当0<a <1时,原不等式的解集为{x |x <a 2,或x >a }; 当a =0时,解集为{x |x ≠0}; 当a =1时,解集为{x |x ≠1}.解含参数的不等式,可以按常规思路进行:先考虑开口方向,再考虑判别式的正负,最后考虑两根的大小关系,当遇到不确定因素时再讨论.将本例不等式变为:解关于x 的不等式ax 2-(a +1)x +1<0(a ∈R ,a >0). 解析:因为a >0,所以原不等式等价于⎝ ⎛⎭⎪⎫x -1a (x -1)<0.①当a =1时,1a =1,⎝ ⎛⎭⎪⎫x -1a (x -1)<0无解;②当a >1时,1a <1,解⎝ ⎛⎭⎪⎫x -1a (x -1)<0,得1a <x <1;③当0<a <1时,1a >1,解⎝ ⎛⎭⎪⎫x -1a (x -1)<0,得1<x <1a . 综上,a >1时,不等式的解集为{x |1a <x <1}; a =1时,不等式的解集为∅;0<a <1时,不等式的解集为{x |1<x <1a }. 探究三 三个二次之间的关系[例3] [教材P 52例1、例2的拓展探究] (1)已知解集求函数若不等式y =ax 2-x -c >0的解集为(-2,1),则函数的图象为( )[解析] 因为不等式的解集为(-2,1),所以a <0,排除C ,D ;又与坐标轴交点的横坐标为-2,1,故选B.[答案] B(2)已知方程的根或函数零点求不等式若函数y =x 2-ax +1有负数零点,则a 的范围为________. [解析] 有零点, ∴Δ=a 2-4≥0, ∴a ≥2或a ≤-2,∵f (0)=1,要使x 2-ax +1=0有负根,则对称轴x =a2<0,即a <0.∴a ≤-2. [答案] a ≤-2 (3)已知解集求不等式 已知x 2+px +q <0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,解关于x 的不等式qx 2+px +1>0.[解析]由已知得,x1=-12,x2=13是方程x2+px+q=0的根,∴-p=-12+13,q=-12×13,∴p=16,q=-16.∵不等式qx2+px+1>0,∴-16x2+16x+1>0,即x2-x-6<0,∴-2<x<3,故不等式qx2+px+1>0的解集为{x|-2<x<3}.应用三个“二次”之间的关系解题的思想一元二次不等式与其对应的函数与方程之间存在着密切的联系,即给出了一元二次不等式的解集,则可知不等式二次项系数的符号和相应一元二次方程的根.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.授课提示:对应学生用书第26页分久必合——分类讨论思想解含参数不等式►逻辑推理含有参数的一元二次不等式,因为含有参数,便大大增加了问题的复杂程度.分类讨论是解决这类问题的主要方法,确定分类讨论的标准时,要着重处理好以下三点:(1)讨论的“时刻”,即在什么时候才开始进行讨论.要求转化必到位,过早或过晚讨论都会使问题更加复杂化.(2)讨论的“点”,即以哪个量为标准进行讨论.若把握不好这一类,问题就不能顺利解决.(3)考虑要周到,即讨论对象的各种情况都要加以分析,给出结论.1.讨论二次项系数型为主当二次项系数为字母时,首先要讨论二次项系数是否为0,若二次项系数为0,则该不等式变为一次不等式;若二次项系数不为0,解集则与二次项系数的正负相关.[典例]解关于x的不等式,ax2+(1-a)x-1>0.[解析]原不等式化为(x-1)(ax+1)>0(1)当a=0时,原不等式为x-1>0,∴x>1,(2)当a>0时,原不等式为(x-1)(x+1a)>0.两根为1与-1a且1>-1a,∴得x>1或x<-1 a;(3)当a<0时,原不等式化为(x-1)(x+1a)<0两根为1与-1 a,又∵当-1<a<0时,-1a>1,∴得1<x<-1 a.当a=-1时,不等式为(x-1)2<0,解集为∅,当a<-1时,-1a<1,∴得-1a<x<1.综上,当a>0时,解集为{x|x>1,或x<-1 a};当a=0时,解集为{x|x>1};当-1<a<0时,解集为{x|1<x<-1 a};当a=-1,解集为∅;当a<-1时,解集为{x|-1a<x<1}.规律总结解二次项含参数的一元二次不等式一定要对参数大于0,等于0和小于0展开讨论.2.讨论判别式型为主当二次不等式中有字母,且不易观察出所对应方程是否有实根,此时应对方程有无实根进行讨论.[典例] 解关于x 的不等式:2x 2+ax +2>0. [解析] Δ=a 2-16=(a -4)(a +4).(1)当a >4或a <-4时,Δ>0,方程2x 2+ax +2=0的两根为x 1=14(-a -a 2-16),x 2=14(-a +a 2-16). 原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <14(-a -a 2-16)或x >14(-a +a 2-16).(2)当a =±4时,Δ=0,方程只有一根x =-a4,∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R 且x ≠-a4. (3)当-4<a <4时,Δ<0,方程无根,∴原不等式的解集为R . 规律总结若一元二次方程判别式符号不确定,应分Δ>0、Δ=0、Δ<0讨论. 3.讨论根的大小型为主当一元二次不等式中有字母,而导致根的大小不易区别时,应通过作差法,由根的大小确定字母范围.[典例] 解关于x 的不等式:x 2-2x +1-a 2≥0. [解析] 原不等式等价于(x -1-a )(x -1+a )≥0.①当a >0时,1+a >1-a ,所以原不等式的解集为{x |x ≥1+a ,或x ≤1-a }. ②当a =0时,原不等式的解集为全体实数R .③当a <0时,1-a >1+a ,原不等式的解集为{x |x ≥1-a ,或x ≤1+a }. 规律总结当不等式对应方程根的大小不确定时,必须讨论根的大小,以确定不等式的解集.在解关于含参数的一元二次不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑:(1)关于不等式类型的讨论:二次项系数a>0,a<0,a=0.(2)关于不等式对应的方程是否有根的讨论:二根(Δ>0),一根(Δ=0),无根(Δ<0).(3)关于不等式对应的方程根的大小的讨论:x1>x2,x1=x2,x1<x2.2.3二次函数与一元二次方程、不等式(2)内容标准学科素养1.会解简单的分式不等式.数学运算数学建模2.通过三个“二次间的关系”解简单一元二次不等式恒成立问题.3.能够从实际生活和生产中抽象出一元二次不等式的模型,并加以求解.授课提示:对应学生用书第27页[教材提炼]知识点一分式不等式的解法预习教材,思考问题不等式1x>1与x<1等价吗?1x>1的解集应是什么?知识梳理一般的分式不等式的同解变形法则(1)f(x)g(x)>0⇔f(x)·g(x)>0;(2)f(x)g(x)≤0⇔⎩⎨⎧f(x)·g(x)≤0,g(x)≠0;(3)f (x )g (x )≥a ⇔f (x )-ag (x )g (x )≥0. 知识点二 一元二次不等式ax 2+bx +c >0(a ≠0)恒成立问题 预习教材,思考问题(1)∀x ∈R ,x 2-c >0,c 取何值?(2)∀x ∈R ,ax 2+1>0,a 取何值? 知识梳理 一元二次不等式恒成立的情况: (1)ax 2+bx +c >0(a ≠0)恒成立⇔⎩⎨⎧ a >0Δ<0;(2)ax 2+bx +c ≤0(a ≠0)恒成立⇔⎩⎨⎧a <0Δ≤0.[自主检测]1.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4 D .a <-4或a >4答案:A2. 不等式1x >1的解集为________. 答案:{x |0<x <1}3.对∀x ∈R ,x 2-a >0恒成立,则a 的取值范围为________. 答案:a <04.要使x 2-4x +9有意义,则x 的取值集合为________. 答案:R授课提示:对应学生用书第28页探究一 解简单的分式不等式 [例1] 解不等式. (1)x +21-x<0;(2)x +1x -2≤2. [解析] (1)由x +21-x <0,得x +2x -1>0.此不等式等价于(x +2)(x -1)>0.∴原不等式的解集为{x |x <-2或x >1}. (2)法一:移项,得x +1x -2-2≤0,左边通分并化简,得-x +5x -2≤0,即x -5x -2≥0,它的同解不等式为⎩⎨⎧(x -2)(x -5)≥0,x -2≠0,∴x <2或x ≥5.原不等式的解集为{x |x <2或x ≥5}. 法二:原不等式可化为x -5x -2≥0.此不等式等价于⎩⎨⎧x -5≥0,x -2>0,①或⎩⎨⎧x -5≤0,x -2<0.② 解①,得x ≥5. 解②,得x <2.∴原不等式的解集为{x |x <2或x ≥5}.1.对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.2.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.解不等式 (1)x 2-x -6x -1>0;(2)2x -13-4x>1. 解析:(1)原不等式等价于⇔⎩⎨⎧ x 2-x -6>0x -1>0,或⎩⎨⎧x 2-x -6<0x -1<0. 解得x >3或-2<x <1.∴原不等式的解集为{x |x >3,或-2<x <1}.(2)原不等式可化为2x -13-4x -1>0,即3x -24x -3<0,等价于(3x -2)(4x -3)<0.∴23<x <34.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x |23<x <34. 探究二 不等式恒成立问题[例2] [教材P 52例3拓展探究] (1)不等式x 2-2x +3>0的解集是什么?[解析] 由于x 2-2x +3=(x -1)2+2>0恒成立. ∴x ∈R .解集为R .(2)若不等式x 2+ax +3>0的解集为R ,求a 的范围. [解析] 设y =x 2+ax +3, 要使x 2+ax +3>0的解集为R∴Δ=a 2-4×3<0,解得-23<a <2 3.(3)若不等式ax 2+2ax +3>0的解集为R ,求a 的范围. [解析] 当a =0时,3>0,x ∈R . 当a >0时,Δ=4a 2-12a <0 ∴0<a <3.当a <0时,不成立. 综上,0≤a <3.对于一元二次型不等式恒成立,注意参数的讨论 ax 2+bx +c >0, ①a =0时,有c >0. ②⎩⎨⎧ a >0,Δ<0. ax 2+bx +c <0, ①a =0时,c <0. ②⎩⎨⎧a <0,Δ<0.探究三 一元二次不等式的实际应用[例3] 某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天能获得400元以上的销售收入,应怎样制订这批台灯的销售价格?[解析] 设每盏台灯售价x 元,则x ≥15,并且日销售收入为x [30-2(x -15)]元,由题意知,当x ≥15时,有x [30-2(x -15)]>400,解得15≤x <20.所以为了使这批台灯每天获得400元以上的销售收入,应当制订这批台灯的销售价格控制在集合{x |15≤x <20}.用一元二次不等式解决实际问题的操作步骤(1)理解题意,搞清量与量之间的关系;(2)建立相应的不等关系,把实际问题抽象为数学中的一元二次不等式问题; (3)解这个一元二次不等式,得到实际问题的解.某电动车生产企业,上年度生产电动车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内?解析:(1)由题意,得y =[1.2×(1+0.75x )-1×(1+x )]×1 000×(1+0.6x )(0<x <1),整理得y =-60x 2+20x +200(0<x <1).(2)要保证本年度的年利润比上年度有所增加, 当且仅当⎩⎨⎧y -(1.2-1)×1 000>0,0<x <1,即⎩⎨⎧-60x 2+20x >0,0<x <1,解不等式,得0<x <13,所以为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足0<x <13.授课提示:对应学生用书第29页一、一元二次不等式有解问题►逻辑推理 直观想象 一元二次不等式的有解(能成立)问题不等式ax 2+bx +c >0(a ≠0)有解的条件为a >0,或⎩⎨⎧a <0,Δ=b 2-4ac >0;不等式ax 2+bx +c <0(a ≠0)有解的条件为a <0,或⎩⎨⎧a >0,Δ=b 2-4ac >0. [典例] 若不等式x 2-ax +4<0有负数解,求a 的范围. [解析] 设y =x 2-ax +4,其抛物线开口向上,过定点(0,4).。
第二章 等式与不等式提升训练一、选择题1.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列不等式中不一定成立的是( )A .ab >acB .c (b -a )>0C .cb 2<ab 2D .ac (a -c )<0【答案】C【解析】由c <b <a 且ac <0,知a >0,c <0,而b 的取值不确定,当b =0时,C 不成立.2.若a >0,b >0,且a 2+3b 2=6,则ab 的最大值为( )A .1 B.2 C. 3D .2 【答案】C【解析】因为6=a 2+3b 2≥23ab ,所以ab ≤3,当且仅当a 2=3b 2,即a =3,b =1时等号成立,故选C.3.设m >1,P =m +4m -1,Q =5,则P ,Q 的大小关系为( ) A .P <QB .P =QC .P ≥QD .P ≤Q 【答案】C【解析】因为m >1,所以P =m +4m -1=m -1+4m -1+1≥2(m -1)·4m -1+1=5=Q ,当且仅当m -1=4m -1,即m =3时等号成立,故选C.4.不等式1+x >11-x的解集为( ) A .{x |x >0}B .{x |x ≥1}C .{x |x >1}D .{x |x >1或x =0} 【答案】C【解析】不等式可化为1+x -11-x >0,通分得-x 21-x >0,即x 2x -1>0, 因为x 2>0,所以x -1>0,即x >1.故选C.5.下列命题中,一定正确的是( )A .若a >b 且1a >1b,则a >0,b <0 B .若a >b ,b ≠0,则a b >1C .若a >b 且a +c >b +d ,则c >dD .若a >b 且ac >bd ,则c >d【答案】A【解析】A 正确,若ab >0,则a >b 与1a >1b 不能同时成立;B 错,如取a =1,b =-1时,有a b =-1<1;C 错,如a =5,b =1,c =1,d =2时,有a +c >b +d ,c <d ;D 错,取a =-1,b =-2,则a >b ,令c =-3,d =-1,有ac >bd ,c <d .6.不等式14-5x -x 2<0的解集为( )A .{x |-7<x <2}B .{x |x <-7或x >2}C .{x |x >2}D .{x |x <-7} 【答案】B【解析】原不等式等价于x 2+5x -14>0,所以(x +7)·(x -2)>0,即x <-7或x >2,故选B.7.不等式4x -2≤x -2的解集是( ) A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)【答案】B【解析】①当x -2>0,即x >2时,原不等式等价于(x -2)2≥4,解得x ≥4.②当x -2<0,即x <2时,原不等式等价于(x -2)2≤4,解得0≤x <2.8.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧ax +by =7,ax -by =1的解,则a -b 的值为( ) A .1B .-1C .2D .3【答案】B 【解析】把⎩⎪⎨⎪⎧x =2,y =1代入原方程组得⎩⎪⎨⎪⎧2a +b =7,2a -b =1,解得⎩⎪⎨⎪⎧a =2,b =3.所以a -b =-1,故选B. 9.已知关于x 的不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),则x 1+x 2+a x 1x 2的最大值是( ) A.63 B .-233C.433D .-433 【答案】D【解析】不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),根据根与系数的关系,可得:x 1x 2=3a 2,x 1+x 2=4a ,那么x 1+x 2+a x 1x 2=4a +13a, 因为a <0,所以-⎝⎛⎭⎫4a +13a ≥24a ×13a =433,即4a +13a ≤-433, 故x 1+x 2+a x 1x 2的最大值为-433,故选D. 二、填空题10.如果a >b ,ab >0,那么1a 与1b 的大小关系是________. 【答案】1a < 1b【解析】因为a >b ,ab >0,所以a ab >b ab ,即1b >1a. 11.已知x =1是不等式k 2x 2-6kx +8<0的解,则k 的取值范围是________.【答案】2<k <4【解析】x =1是不等式k 2x 2-6kx +8<0的解,把x =1代入不等式,得k 2-6k +8<0,解得2<k <4.12.若a ∈R ,则a 2+14a 2+5的最小值为________.【答案】6【解析】a 2+14a 2+5=(a 2+5)+9a 2+5=a 2+5+9a 2+5≥2a 2+5·9a 2+5=6,当且仅当a 2+5=9a 2+5,即a =±2时等号成立.13.若正数a ,b 满足a +b =1,则13a +2+13b +2的最小值为________. 【答案】47【解析】由a +b =1,知13a +2+13b +2=3b +2+3a +2(3a +2)(3b +2)=79ab +10,又ab ≤⎝⎛⎭⎫a +b 22=14(当且仅当a =b =12时等号成立),所以9ab +10≤494,所以79ab +10≥47. 三、解答题14.设集合A ={x |4-x 2>0},B ={x |-x 2-2x +3>0}.(1)求集合A ∩B ;(2)若不等式2x 2+ax +b <0的解集为B ,求a ,b 的值.【答案】(1)A ∩B ={x |-2<x <1}(2)a=4,b=6【解析】(1)A ={x |4-x 2>0}={x |-2<x <2},B ={x |-x 2-2x +3>0}={x |-3<x <1},故A ∩B ={x |-2<x <1}. (2)因为2x 2+ax +b <0的解集为B ={x |-3<x <1},所以-3和1为方程2x 2+ax +b =0的两个根.所以有⎩⎪⎨⎪⎧2×(-3)2-3a +b =0,2×12+a +b =0,解得⎩⎪⎨⎪⎧a =4,b =-6. 15.已知正数x ,y 满足1x +9y=1. (1)求xy 的最小值;(2)求x +2y 的最小值.【答案】(1)36 .(2)19+6 2.【解析】(1)由1=1x +9y ≥21x ·9y ,得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝⎛⎭⎫1x +9y =19+2y x +9x y≥19+22y x ·9x y =19+62,当且仅当2y x =9x y ,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.16.已知y =x 2-2x -8,若对一切x >2,均有y ≥(m +2)x -m -15,求实数m 的取值范围.【答案】m ≤2.【解析】当x >2时,y ≥(m +2)x -m -15恒成立,所以x 2-2x -8≥(m +2)x -m -15在x >2时恒成立,则x 2-4x +7≥m (x -1)在x >2时恒成立.所以对一切x >2,均有不等式x 2-4x +7x -1≥m 成立. 又x 2-4x +7x -1=(x -1)+4x -1-2 ≥2(x -1)×4x -1-2=2(当且仅当x =3时等号成立). 所以实数m 的取值范围是m ≤2.17.某渔业公司今年年初用98万元购进一艘渔船用于捕捞,第一年需要各种费用12万元.从第二年起,包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞收入50万元.(1)问捕捞几年后总利润最大,最大是多少?(2)问捕捞几年后平均利润最大,最大是多少?【答案】(1)捕捞10年后总利润最大,最大是102万元 (2)捕捞7年后平均利润最大,最大是12万元【解析】(1)设该船捕捞n 年后的总利润为y 万元.则y =50n -98-⎣⎡⎦⎤12×n +n (n -1)2×4 =-2n 2+40n -98=-2(n -10)2+102.所以当捕捞10年后总利润最大,最大是102万元.(2)年平均利润为y n=-2⎝⎛⎭⎫n +49n -20≤-2(2n ·49n -20)=12,当且仅当n =49n ,即n =7时等号成立.所以当捕捞7年后平均利润最大,最大是12万元.18.设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.【答案】见解析【解析】(1)当a =0时,不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}.(2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两个根分别为2和-1a. ①当a <-12时,解不等式得-1a <x <2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1a <x <2; ②当a =-12时,不等式无解,即原不等式的解集为∅; ③当-12<a <0时,解不等式得2<x <-1a ,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a 或x >2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1a 或x >2.。
必修第一册第二章双基训练金卷一元二次函数、方程和不等式(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b ,c ,d ∈R ,且a b >,c d >,则下列结论中正确的是( ) A .ac bd > B .a c b d ->- C .a c b d +>+ D .a bd c> 【答案】C【解析】∵a b >,c d >,∴a c b d +>+.2.不等式20(0)ax bx c a ++<≠的解集为R ,那么( ) A .0a <,0Δ< B .0a <,0Δ≤ C .0a >,0Δ≥D .0a >,0Δ>【答案】A【解析】结合与不等式对应的二次函数2y ax bx c =++图象可知,不等式恒成立需满足0a <,0Δ<.3.当a b c >>时,下列不等式恒成立的是( )A .ab ac >B .a c b c >C .ab bc <D .()0a b c b -->【答案】D【解析】选项A ,必须满足0a >,故不恒成立; 选项B ,0c =时,结论不成立; 选项C ,0b =时,结论显然不成立;选项D ,∵a b c >>,∴0a b ->,又∵0c b ->,∴D 正确. 4.不等式(5)(32)6x x +-≥的解集是( ) A .912x x x ⎧⎫≤-≥⎨⎬⎩⎭或 B .9|12x x ⎧⎫-≤≤⎨⎬⎩⎭C .912x x x ⎧⎫≤-≥⎨⎬⎩⎭或D .9|12x x ⎧⎫-≤≤⎨⎬⎩⎭【答案】D【解析】方法一:取1x =检验,满足排除A ; 取4x =检验,不满足排除B ,C .方法二:原不等式化为22790x x +-≤,即(1)(29)0x x -+≤,∴912x -≤≤. 5.若()0,2x ∈,则()2x x -的最大值是( ) A .2B .32C .1D .12此卷只装订不密封姓名 准考证号 考场号 座位号【答案】C【解析】因为()0,2x ∈,所以20x ->,22(2)()12x x x x +--≤=, 当且仅当2x x =-,即1x =时,等号成立. 6.下列选项中,使不等式21x x x<<成立的x 的取值范围是( ) A .{}1x x <- B .{}10x x -<< C .{}01x x <<D .{}1x x >【答案】A【解析】原不等式等价于2301x x x >⎧⎨<<⎩①,或231x x x <⎧⎨>>⎩②, ①无解,解②得1x <-.7.若0,0a b >>,则“4a b +≤”是“4ab ≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当0,0a b >>时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤; 当1,4a b ==时,满足4ab ≤,但此时54a b +=>, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.8.要制作一个容积为34m ,高为1m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元【答案】C【解析】由题意知,体积34m V =,高1m h =,所以底面积24m S =,设底面矩形的一条边长是m x ,则另一条边长是4m x, 又设总造价是y元,则820410(2)80160y x x =⨯+⨯+≥+=, 当且仅当82x x=,即2x =时,等号成立. 9.若对于任意的0x >,不等式231xa x x ≤++恒成立,则实数a 的取值范围是( ) A .15a ≥B .15a >C .15a <D .15a ≤【答案】A【解析】由0x >,得21113153x x x x x =≤=++++, 当且仅当1x =时,等号成立,则15a ≥. 10.已知关于x 的不等式24x x m -≥,对任意(0,1]x ∈恒成立,则有( ) A .3m ≤- B .3m ≥- C .30m -≤< D .4m ≥-【答案】A【解析】令224(2)4y x x x =-=--,则在(0,1]上,当1x =时,y 最小值为3-,所以3m ≤-.11.某金店用一杆不准确的天秤(两边臂不等长)称黄金,某顾客要购买10g 黄金,售货员先将5g 的砝码放在左盘,将黄金放于右盘使之平衡后给顾客,然后又将5g 的砝码放入右盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金( )(杠杆原理:动力×动力臂=阻力×阻力臂) A .大于10g B .小于10g C .大于等于10gD .小于等于10g【答案】A【解析】设右左两臂长分别为a ,b ,两次放入的黄金克数分别为是x ,y , 依题意有5ax b =,5by a =,∴25xy =, ∵2x yxy +≥10x y +≥, 又a b ≠,∴x y ≠,∴10x y +>,即两次所得黄金数大于10克. 12.设0a >,0b >,且不等式110k a b a b++≥+恒成立,则实数k 的最小值 等于( ) A .0 B .4C .4-D .2-【答案】C【解析】由110ka b a b ++≥+,得2()a b k ab +≥-,而()224a b b a ab a b+=++≥(a b =时,等号成立),所以()24a b ab+-≤-,因此要使()2a b k ab+≥-恒成立,应有4k ≥-,即实数k 的最小值等于4-.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.不等式276x x -+>的解集为 . 【答案】{}16x x <<【解析】不等式可化为()()160x x --<,解得16x <<, ∴不等式的解集为{}16x x <<.14.已知0a b >>,且0c d >>a d b c的大小关系是 . a bd c>【解析】∵0c d >>,∴110d c>>, ∵0a b >>,∴0a bd c>>a b d c > 15.若正数x ,y 满足x y xy +=,则4x y +的最小值等于 .【答案】9【解析】因为x y xy +=,所以111x y+=, 1144(4)()145249x yx y x y x y y x+=++=+++≥+=,当且仅当4x y y x=时,等号成立. 16.若0a >,0b >,2a b +=,则下列不等式:①1ab ≤;②2a b ;③222a b +≥;④112a b+≥,对满足条件的a ,b 恒成立的是 .(填序号)【答案】①③④ 【解析】2()12a b ab +≤=,所以①正确;因为2224a b a b =++=+≤++=,故②不正确;222()22a b a b ++≥=,所以③正确;1122a b a b ab ab++==≥,所以④正确.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)解不等式2228x x ≤-<.【答案】{}2114x x x -<≤+≤<.【解析】原不等式等价于22220280x x x x ⎧--≥⎪⎨--<⎪⎩①②,由①得1x ≤1x ≥24x -<<,∴21x -<≤14x +≤<,∴不等式的解集为{}2114x x x -<≤+≤<.18.(12分)已知常数0a >,0b >和变量0x >,0y >满足10a b +=,1a bx y+=,x y +的最小值为18,求a ,b 的值. 【答案】2a =,8b =或8a =,2b =.【解析】∵()1()a b ay bx x y x y x y a b x y x y ⎛⎫+=+⋅=+⋅+=+++⎪⎝⎭2a b ≥++=,当且仅当ay bxx y=,即y x =时,等号成立,∴x y +的最小值为218=.又10a b +=,∴16ab =,解得2a =,8b =或8a =,2b =. 19.(12分)设2(1)2y ax a x a =+-+-.(1)若不等式2y ≥-对一切实数x 恒成立,求实数a 的取值范围;(2)解关于x 的不等式1y a <-(a ∈R ). 【答案】(1)13a ≥;(2)见解析. 【解析】(1)由题意,不等式2y ≥-对于一切实数x 恒成立,等价于2(1)0ax a x a +-+≥对于一切实数x 恒成立.当0a =时,不等式可化为0x ≥,不满足题意;当0a ≠时,满足00a Δ>⎧⎨≤⎩,即()220140a a a >⎧⎪⎨--≤⎪⎩,解得13a ≥. (2)不等式1y a <-等价于2(1)10ax a x +--<.当0a =时,不等式可化为1x <,所以不等式的解集为{}1x x <; 当0a >时,不等式可化为(1)(1)0ax x +-<,此时11a-<,所以不等式的解集为11x x a ⎧⎫-<<⎨⎬⎩⎭;当0a <时,不等式可化为(1)(1)0ax x +-<,①当1a =-时,11a-=,不等式的解集为{|1}x x ≠;②当10a -<<时,11a ->,不等式的解集为11x x x a ⎧⎫>-<⎨⎬⎩⎭或;③当1a <-时,11a -<,不等式的解集为11x x x a ⎧⎫><-⎨⎬⎩⎭或.20.(12分)设a ,b均为正实数,求证:2211ab a b ++≥ 【答案】证明见解析.【解析】由于a ,b 均为正实数,∴22112a b ab +≥=,当且仅当2211a b =,即a b =时,等号成立.又∵2ab ab +≥=,当且仅当2ab ab=时,等号成立,∴22112ab ab a b ab++≥+≥ 当且仅当22112a b ab ab⎧=⎪⎪⎨⎪=⎪⎩,即a b ==时,等号成立.21.(12分)运货卡车以/x km h 的速度匀速行驶130km ,按交通法规限制50100x ≤≤(单位:/km h ).假设汽油的价格是每升2元,而汽车每小时耗油22360x ⎛⎫+ ⎪⎝⎭升,司机的工资是每小时14元.(1)这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.【答案】(1)见解析;(2)当/x km h =时,这次行车总费用最低,最低费用为【解析】(1)设行车所用时间为130(h)t x=, 由题意得21301302(2)14360x y x x=⨯⨯++⨯,50100x ≤≤, ∴这次行车总费用y 关于x 的表达式是130182130360y x x ⨯⨯=+,50100x ≤≤.(或23401318y x x =+,50100x ≤≤).(2)130182130360y x x ⨯⨯=+≥, 当且仅当130182130360x x ⨯⨯=,即x =故当/x km h =时,这次行车总费用最低,最低费用为 22.(12分)某建筑队在一块长30m AM =,宽20m AN =的矩形地块AMPN 上施工,规划建设占地如图中矩形ABCD 的学生公寓,要求顶点C 在地块的对角线MN 上,B ,D 分别在边AM ,AN 上,假设AB 的长度为m x ,(1)要使矩形学生公寓ABCD 的面积不小于2144m ,AB 的长度应该在什么范围?(2)长度AB 和宽度AD 分别为多少米时,矩形学生公寓ABCD 的面积最大? 最大值是多少2m ?【答案】(1)1218x ≤≤;(2)15m AB =,10m AD =时,学生公寓ABCD 的面积最大,最大值是2150m .【解析】(1)依题意知NDC △∽NAM △,∴DC NDAM NA=, 即203020x AD -=,则2203AD x =-. 故矩形ABCD 的面积2220(030)3S x x x =-<<.要使学生公寓ABCD 的面积不小于144平方米, 即22201443S x x =-≥,化简得2302160x x -+≤, 解得1218x ≤≤,故AB 的长度范围应在1218x ≤≤内.(2)222223020(30)1503332x x S x x x x -+⎛⎫=-=-≤= ⎪⎝⎭,当且仅当30x x =-,即15x =时等号成立.此时220103AD x =-=. 故15m AB =,10m AD =时,学生公寓ABCD 的面积最大,最大值是2150m .。
一、选择题1.已知,,(0,)x y t ∈+∞,且11tx y+=, A .当2t =时,当且仅当2x y ==时,2x y +有最小值 B .当8t =时,当且仅当253x y ==时,2x y +的最小值为25 C .若2x y +的最小值为9,则t 的值为2 D .若2x y +的最小值为25,则t 的值为62.如果两个正方形的边长之和为1,那么它们的面积之和的最小值是( ) A .14B .12C .1D .23.某单位计划今明两年购买某物品,现有甲、乙两种不同的购买方案,甲方案:每年购买的数量相等;乙方案:每年购买的金额相等,假设今明两年该物品的价格分别为1p 、2p ()12p p ≠,则这两种方案中平均价格比较低的是( )A .甲B .乙C .甲、乙一样D .无法确定4.若正数x ,y 满足40x y xy +-=,则3x y+的最大值为( ) A .1B .38C .37D .135.已知2x >,那么函数42y x x =+-的最小值是( ) A .5B .6C .4D .86.已知函数()24x x af x x++=,若对于任意[)1,x ∈+∞,()0f x >恒成立,则实数a的取值范围为( )A .[)5,+∞B .()5,-+∞C .()5,5-D .[]5,5-7.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测: 甲预测说:获奖者在乙、丙、丁三人中; 乙预测说:我不会获奖,丙获奖 丙预测说:甲和丁中有一人获奖; 丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是() A .甲和丁 B .乙和丁 C .乙和丙D .甲和丙8.已知2m >,0n >,3m n +=,则112m n+-的最小值为( ) A .3B .4C .5D .69.已知a≥0,b≥0,且a+b=2,则 ( ) A .ab≤ B .ab≥ C .a 2+b 2≥2D .a 2+b 2≤310.若直线20(,1)ax by a b +-=>始终把圆222220x y x y +---=的周长分为1:2.则11a b+的最大值为( ) A .423-B .22-C 21D 211.已知3x >,13y x x =+-,则y 的最小值为( ) A .2B .3C .4D .512.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知6B π=且1ABC S =△,则2a c ac a c+-+的最小值( ) A .12B .2C .14D .4二、填空题13.已知函数()221f x ax x =+-,若对任意x ∈R ,()0f f x ≤⎡⎤⎣⎦恒成立,则实数a 的取值范围是_______________.14.定义,,a a b a b b a b ≥⎧⊗=⎨<⎩,若,0x y >,则222241616xy y x xy x y μ⎛⎫⎛⎫++=⊗ ⎪ ⎪⎝⎭⎝⎭的最小值____________. 15.已知函数22()(32)(2)1f x m m x m x =-++-+的定义域为R ,则实数m 的取值范围是________. 16.x y a x y ≤+对任意0,0x y >>恒成立,则a 的最小值是_______.17.已知32310x x k --+⋅->对任意实数x 恒成立,则实数k 的取值范围是________. 18.已知实数0a b >>,且2a b +=,则22323a ba ab b -+-的最小值为____19.若对于(0,)2x π∈,不等式2219sin cos mx x+≥恒成立,则正实数m 的取值范围为__________20.已知方程210(0)x kx k ++=>有实根,则1k k+的最小值是______. 三、解答题21.选用恰当的证明方法,证明下列不等式. (1)已知实数x ,y 均为正数,求证:)(4925x y xy ⎛⎫++≥ ⎪⎭⎝. (2)已知a ,b 都是正数,并且ab ,求证:552332a b a b a b +>+.22.已知,(0,)a b ∈+∞,函数2()f x ax x b =-+满足(1)0f =. (1)求41a a b++的最小值; (2)解关于x 的不等式()0f x ≤.23.已知函数2(),(,)f x x ax b a b R =-+∈. (Ⅰ)不等式()0f x ≤的解集为[1,2]-,求a ,b 的值; (Ⅱ)令函数()()2xg x f =,对于任意的实数12,[1,2]x x∈,不等式()()125g x g x -≤恒成立,求a 的取值范围.24.如图,GH 是东西方向的公路北侧的边缘线,某公司准备在GH 上的一点B 的正北方向的A 处建一仓库,设km AB y =,并在公路同侧建造边长为km x 的正方形无顶中转站CDEF (其中边EF 在GH 上),现从仓库A 向GH 和中转站分别修两条道路AB ,AC ,已知1AB AC =+,且60ABC ∠=︒.(1)求y 关于x 的函数;(2)如果中转站四周围墙造价为1万元/km ,两条道路造价为3万元/km ,问:该公司建中转站围墙和两条道路总造价M 最低为多少?25.已知0a b c d >>>>,ad bc =. (Ⅰ)证明:a d b c +>+; (Ⅱ)证明:a b c b c a a b c a b c >.26.在平面直角坐标系xOy 中,已知射线OP :4y x =(0x ≥),过点()3,2M 的直线l 与x 轴正半轴、射线OP 分别相交于A ,B 两点,设AM MB λ=(0λ>). (1)当λ为何值时,OAB 的面积取得最小值?并求出此时直线l 的方程; (2)当λ为何值时,MA MB ⋅取得最小值?并求出MA MB ⋅的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 当2t =时,121x y +=,()1222x y x y x y ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可判断A ;当当8t =时,181x y +=,()2812x y x y x y ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可判断B ;()1221212122x y x y t t t x y x t y tx y ⎛⎫+=++=+++≥++=++ ⎪⎝⎭分别令129t ++=和1225t ++=即可求出t 的值,可判断选项C 、D ,进而可得正确选项. 【详解】对于选项A :当2t =时,121x y+=, ()122225259x x y x y x y x y y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当12122x y y x xy ⎧+=⎪⎪⎨⎪=⎪⎩即3x y ==时等号成立,所以3x y ==时,2x y +有最小值,故选项A 不正确; 对于选项B :当8t =时,181x y+=,()188222171725x x y x y x y x y y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当18128x y y x xy ⎧+=⎪⎪⎨⎪=⎪⎩即510x y =⎧⎨=⎩时等号成立,所以510x y =⎧⎨=⎩时,2x y +有最小值,故选项B 不正确;对于选项C :()12212221x y x t y tx y t t x y x y ⎛⎫+=++=+++≥++⎪⎝⎭12t =++129t ++=即0==即2t =,当且仅当12122x y y x xy ⎧+=⎪⎪⎨⎪=⎪⎩即3x y ==时等号成立,所以2t =,故选项C 正确;对于选项D :()12212221x y x t y tx y t t x y x y ⎛⎫+=++=+++≥++⎪⎝⎭12t =++1225t ++=即0==,即8t =,当且仅当12128x y y x xy ⎧+=⎪⎪⎨⎪=⎪⎩即510x y =⎧⎨=⎩时等号成立,所以8t =,故选项D 不正确;故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】设两个正方形的边长分别为x 、y ,可得1x y +=,利用基本不等式可求得两个正方形的面积之和22x y +的最小值.【详解】设两个正方形的边长分别为x 、y ,则0x >,0y >且1x y +=,由基本不等式可得222x y xy +≥,所以,()()22222221x yx y xy x y +≥++=+=,所以,2212x y +≥,当且仅当12x y ==时,等号成立,因此,两个正方形的面积之和22x y +的最小值为12. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.B解析:B 【分析】分别计算出两种方案的平均价格,然后利用作差法可得出结论. 【详解】对于甲方案,设每年购买的数量为x ,则两年的购买的总金额为12p x p x +, 平均价格为121222p x p x p p x ++=; 对于乙方案,设每年购买的总金额为y ,则总数量为12y yp p +, 平均价格为12121222p p yyy p p p p =++.因为()()()()221212121212121212420222p p p p p p p p p p p p p p p p +--+-==>+++,所以,12121222p p p p p p +>+. 因此,乙方案的平均价格较低. 故选:B. 【点睛】方法点睛:比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,作差法的主要步骤为:作差——变形——判断正负.在所给不等式是积、商、幂的形式时,可考虑比商4.D解析:D已知等式变形为411x y+=,然后用“1”的代换求出x y +的最小值即可得.【详解】∵x ,y 均为正数,40x y xy +-=,∴411x y+=,∴414()559y x x y x y x y x y ⎛⎫+=++=++≥+=⎪⎝⎭,当且仅当4y x x y =,即6,3x y ==时等号成立,∴33193x y ≤=+,所求最大值为13. 故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.B解析:B 【分析】根据基本不等式可求得最小值. 【详解】∵2x >,∴442+24+2622y x x x x =+=+-≥==--,当且仅当422x x =--,即4x =时等号成立.∴y 的最小值是6. 故选:B . 【点睛】本题考查用基本不等式求最值,利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.6.B【分析】根据条件将问题转化为“24a x x >--在[)1,+∞上恒成立”,再根据()2max4a x x>--求解出a 的范围. 【详解】因为对于任意[)1,x ∈+∞,()0f x >恒成立,所以240x x a ++>对[)1,x ∈+∞恒成立, 所以()2max4a x x>--,[)1,x ∈+∞,又因为24y x x =--的对称轴为2x =-,所以24y x x =--在[)1,+∞上单调递减, 所以()()2max4145x x --=--=-,所以5a >-,故选:B. 【点睛】方法点睛:一元二次不等式在指定区间上恒成立求解参数范围问题的处理方法: (1)分类讨论法:根据参数的临界值作分类讨论;(2)分离参数法:将自变量和参数分离开来,自变量部分构造新函数,分析新函数的最值与参数的大小关系.7.B解析:B 【分析】从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断 【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁 答案选B 【点睛】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证8.B解析:B 【分析】由2m >,0n >,3m n +=,所以21m n -+=,结合“1”的代换,结合基本不等式,即可求解. 【详解】因为2m >,0n >,3m n +=,所以21m n -+=, 则()1111222224222n m m n m n m n m n-⎛⎫+=+-+=++≥+= ⎪---⎝⎭,当且仅当22n mmn-=-且3m n+=,即51,22m n==时取等号,故选:B.【点睛】本题主要考查了利用基本不等式求最值问题,其中解答合理构造基本不等式的条件“一正、二定、三相等”,结合“1”的代换技巧是解答的关键,着重考查推理与运算能力.9.C解析:C【解析】选C.由≥得ab≤=1,当且仅当a=b=1时,等号成立.又a2+b2≥2ab⇒2(a2+b2)≥(a+b)2⇒a2+b2≥2,当且仅当a=b=1时,等号成立.10.B解析:B【分析】由圆的方程得圆心和半径,根据圆的周长被分为1:2,可推出圆心到直线的距离为1,即2221a ba b+-=+,化简整理后,再结合基本不等式的性质可得ab的最小值,再求出11a b+的最大值.【详解】把圆222220x y x y+---=化成标准形式为22(1)(1)4x y-+-=,其中圆心为(1,1),半径为2.设直线与圆交于A、B两点,圆心为C,因为直线把圆的周长分为1:2,所以13601203ACB∠=⨯︒=︒,所以圆心(1,1)C到直线20ax by+-=的距离为12221a ba b+-=+,因为a,1b>,所以202()aab b-++=,由基本不等式的性质可知,22()4ab a b ab+=+,当且仅当a b=时,等号成立,此时有2(22)ab+,所以1(2)111112222(2ab a b a b ab ab ab+++===++=+. 所以11a b +的最大值为2- 故选:B . 【点评】本题主要考查直线与圆的综合问题,除圆的标准方程、点到直线的距离公式等基础知识外,还涉及利用基本不等式的性质求最值,考查学生的逻辑推理能力和运算能力,属于中档题.11.D解析:D 【分析】由3x >,得到30x ->,化简113333y x x x x =+=-++--,结合基本不等式,即可求解. 【详解】因为3x >,所以30x ->, 则11333533y x x x x =+=-++≥=--, 当且仅当133x x -=-,即4x =时取等号, 故选:D. 【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中熟记基本不等式的“一正、二定、三相等”的条件,合理运算是解得的关键,着重考查推理与运算能力.12.A解析:A 【分析】由已知条件和三角形的面积公式得4ac =,再根据基本不等式可得+4a c ≥,令24a c y a c +=-+,+a c t =,24t y t =-(4t ≥),由此函数的单调性可得选项. 【详解】 由已知6B π=且1ABC S =△,得1sin 126ac π=,解得4ac =, 所以2+42a c ac ⎛⎫=≤ ⎪⎝⎭,即+4a c ≥,当且仅当a c =时取等号,所以224a c a c ac a c a c ++-=-++,令24a c y a c +=-+,+a c t =,则24t y t=-(4t ≥), 而24t y t =-在[)4+∞,单调递增,所以24214442t y t =-≥-=,所以2a c ac a c +-+的最小值为12. 故选:A.【点睛】本题考查三角形的面积公式,基本不等式的应用,以及运用函数的单调性求最值的问题,属于中档题.二、填空题13.【分析】根据二次函数的图象和性质分三种情况讨论结合已知条件可得出关于实数的不等式进而可求得实数的取值范围【详解】当时则令解得不满足对任意的恒成立;当时由于二次函数的图象开口向上不满足对任意恒成立;当解析:1,2⎛--∞ ⎝⎦【分析】根据二次函数的图象和性质,分0a =、0a >、0a <三种情况讨论,结合已知条件可得出关于实数a 的不等式,进而可求得实数a 的取值范围.【详解】当0a =时, ()21f x x =-,则()()221143f f x x x =--=-⎡⎤⎣⎦,令()0f f x ≤⎡⎤⎣⎦,解得34x ≤,不满足对任意的x ∈R ,()0f f x ≤⎡⎤⎣⎦恒成立; 当0a >时,()111f x f a a ⎛⎫≥-=-- ⎪⎝⎭, 由于二次函数()f x 的图象开口向上,不满足对任意x ∈R ,()0f f x ≤⎡⎤⎣⎦恒成立; 当0a <时,()1111f x f a a a ⎛⎫≤-=--<- ⎪⎝⎭, 由于二次函数()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭上单调递增, 则()221111112110a a f f x f a a a a a --⎛⎫⎛⎫⎛⎫≤--=⋅---+-=≤⎡⎤ ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭, 0a <,可得210a a --≥,解得152a .因此,实数a 的取值范围是⎛-∞ ⎝⎦.故答案为:1,2⎛--∞ ⎝⎦. 【点睛】关键点点睛:本题考查利用复合型二次不等式在实数集R 上恒成立求参数,要注意对实数a 的取值进行分类讨论,解题时要确定内层函数的值域结合二次函数的单调性求出()f f x ⎡⎤⎣⎦的最大值来求解.14.【分析】换元判定单调性利用基本不等式求解【详解】令则在为增函数在在为减函数从而当且仅当时取等号故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就 解析:94【分析】换元判定单调性,利用基本不等式求解【详解】 令y t x =,则 22244xy y t t x+=+在()0,∞+为增函数, 22216111616x xy y t t+=+在在()0,∞+为减函数, 从而22111942164t t t t μ⎛⎫≥+++≥ ⎪⎝⎭, 当且仅当12t =时取等号. 故答案为:94【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方15.【分析】因为函数的定义域为即不等式恒成立需按二次项系数:为零与不为零分类讨论当系数不为零时只需让系数大于零且根的判别式小于零解此不等式组即可求出的取值范围【详解】∵函数的定义域为∴对于任意恒有①若则解析:2(,)[2,)3-∞⋃+∞ 【分析】因为函数的定义域为R ,即不等式22(32)(2)10m m x m x -++-+>恒成立,需按二次项系数:232m m -+为零与不为零,分类讨论,当系数不为零时,只需让系数大于零且根的判别式小于零,解此不等式组,即可求出m 的取值范围.【详解】∵ 函数()f x 的定义域为R ,∴ 对于任意x ∈R ,恒有22(32)(2)10m m x m x -++-+>,① 若2320m m -+=,则2m =或1,当1m =时,不等式即为101x x -+>⇒<,不符合题意,当2m =时,不等式即为10>,符合题意,∴ 2m =符合题意;② 若2320m m -+≠,由题意得()22232024(32)0m m m m m ⎧-+>⎪⎨∆=---+<⎪⎩, 解得:2m >或23m <; 综上可得,m 的取值范围是2m ≥或23m <. 故答案为:2(,)[2,)3-∞⋃+∞.【点睛】关键点睛:本题主要考查二次不等式的恒成立问题.讨论二次项系数为零与不为零,当系数不为零时,只需让系数大于零且根的判别式小于零是解决本题的关键. 16.【分析】不等式变形为然后利用基本不等式求得的最大值可得的最小值【详解】原不等式可化为因为所以即时等号成立又所以时等号成立所以的最大值是即的最小值是故答案为:【点睛】易错点睛:利用基本不等式求最值时要【分析】不等式变形为a ≥的最大值,可得a 的最小值.【详解】原不等式可化为a ≥,因为222m n mn +≥,所以222222()2()m n m mn n m n +≥++=+,即m n +≤,m n =时等号成立.又0,0x y >>≤=x y =时等号成立.a ≥a【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.17.【分析】由题意可得利用基本不等式可求得的最小值由此可求得实数的取值范围【详解】由于不等式对任意实数恒成立则由基本不等式可得当且仅当时即当时等号成立所以因此实数的取值范围是故答案为:【点睛】本题考查利解析:(),1-∞【分析】由题意可得3231x x k -<+⋅-,利用基本不等式可求得3231x x -+⋅-的最小值,由此可求得实数k 的取值范围.【详解】由于不等式32310x x k --+⋅->对任意实数x 恒成立,则3231x x k -<+⋅-,由基本不等式可得323111x x -+⋅-≥=,当且仅当323x x -=⋅时,即当31log 22x =时,等号成立,所以,1k <,因此,实数k 的取值范围是(),1-∞.故答案为:(),1-∞.【点睛】本题考查利用基本不等式求解不等式恒成立问题,考查参变量分离法的应用,考查计算能力,属于中等题.18.【分析】由a+b =2得出b =2﹣a 代入代数式中化简后换元t =2a ﹣1得2a =t+1得出1<t <3再代入代数式化简后得出然后在分式分子分母中同时除以t 利用基本不等式即可求出该代数式的最小值【详解】解:解析:34+ 【分析】由a +b =2得出b =2﹣a ,代入代数式中,化简后换元t =2a ﹣1,得2a =t +1,得出1<t <3,再代入代数式化简后得出()2265t t t -+,然后在分式分子分母中同时除以t ,利用基本不等式即可求出该代数式的最小值.【详解】解:由于a +b =2,且a >b >0,则0<b <1<a <2, 所以,()()()()][()()()()()()2232221334223322622262232a a a a b a b a a ab b a b a b a a a a a a a a ------====+--+----⎡⎤--⋅+-⎣⎦,令t =2a ﹣1∈(1,3),则2a =t +1, 所以,()()()()()()()()22222132222523226215161656a a b t t t a ab b a a t t t t t t t t --=====+-----⎡⎤⎛⎫--+-+⎣⎦-+ ⎪⎝⎭.当且仅当()513t tt =<<,即当t = 因此,22323a b a abb -+-的最小值为34+. 【点睛】本题考查利用基本不等式求最值,解本题的关键就是对代数式进行化简变形,考查计算能力,属于中等题.19.【分析】由不等式恒成立转化为的最小值大于9构造利用基本不等式求的最小值【详解】当时等号成立若不等式恒成立则即即故答案为:【点睛】本题考查不等式恒成立求参数的取值范围重点考查利用1的变形利用基本不等式 解析:[)4,+∞【分析】由不等式恒成立,转化为221sin cos m x x+的最小值大于9,构造()22222211sin cos sin cos sin cos m m x x x x x x ⎛⎫+=++ ⎪⎝⎭,利用基本不等式求 221sin cos m x x+的最小值. 【详解】22sin cos 1x x += ,0m >()222222221cos sin sin cos 1sin cos sin cos m x m x x x m x x x x ⎛⎫∴++=+++ ⎪⎝⎭11m m ≥++=++ 当2222cos sin sin cos x m x x x=时,等号成立,若不等式2219sin cos m x x +≥恒成立,则19m ++≥,即)219≥134m ≥⇒≥. 故答案为:[)4,+∞【点睛】本题考查不等式恒成立求参数的取值范围,重点考查利用”1”的变形,利用基本不等式求最小值,属于中档题型,本题的关键是根据22sin cos 1x x +=,已知变形为()22222211sin cos sin cos sin cos m m x x x x x x ⎛⎫+=++ ⎪⎝⎭. 20.【分析】先根据一元二次方程有解得再根据函数的单调性求解即可【详解】解:方程有实根解得又在上单调递增 的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值的问题根据条件求出k 的范围利用对勾函 解析:52【分析】先根据一元二次方程有解得2k ≥,再根据函数1y k k=+的单调性求解即可. 【详解】 解:方程210(0)x kx k ++=>有实根, 240k ∴-≥,解得2k ≥, 又1y k k=+在[)2+∞,上单调递增, ∴ 1k k +的最小值是15222+=,故答案为:52. 【点睛】 本题主要考查了利用基本不等式求最值的问题,根据条件求出k 的范围,利用对勾函数在区间内的最值即可求出结果.三、解答题21.(1)证明见解析;(2)证明见解析.【分析】(1)化简后利用基本不等式证明即可;(2)利用作差法,()()552332a ba b a b +-+变形为()()()222a b a b a ab b +-++,然后判断符号可得结果【详解】(1))(4949494913y x y x x y x y x y xy ⎛⎛⎫⎫++=+++=++ ⎪⎪⎭⎭⎝⎝, 又因为0x >,0y >,所以40y x >,90x y >,由基本不等式得,4912y x x y +≥=,当且仅当49y x x y =时,取等号, 即23y x =时取等号,所以)(4925x y x y ⎛⎫++≥⎪⎭⎝. (2)()()552332a b a b a b +-+()()532523a ab b a b =-+- ()()322322a a b b b a =-+-()()2233a b a b =--()()()222a b a b a ab b =+-++ 因为a ,b 都是正数,所以0a b +>,220a ab b ++>又a b ≠,所以()20a b ->,所以()()()2220a b a b a ab b +-++>, 所以()()5523320a ba b a b +-+>,即552332a b a b a b +>+.【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方22.无23.无24.无25.无26.无。
一、选择题1.已知函数22(0)y ax bx c a =+->的图象与x 轴交于()2,0A 、()6,0B 两点,则不等式220cx bx a +-< 的解集为( ) A .(6,2)-- B .11,,62⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭C .11,26--⎛⎫⎪⎝⎭D .11,,26⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭2.设1a b +=,0b >,则2244||ab b a a b++的最小值为( )A .14B .34C .54D .743.已知2x >,那么函数42y x x =+-的最小值是( ) A .5B .6C .4D .84.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y-> D .ln x +ln y >0 5.若实数,x y 满足0xy >,则的最大值为( ) A .22-B .22+C .422+D .422-6.若对于任意的x >0,不等式231xa x x ≤++恒成立,则实数a 的取值范围是( ) A .a ≥15B .a >15 C .a <15D .a ≤157.已知a≥0,b≥0,且a+b=2,则 ( ) A .ab≤ B .ab≥ C .a 2+b 2≥2D .a 2+b 2≤38.若任意取[]1,1x ∈-,关于x 的不等式()2220x mx m ++-≤成立,则实数m 的取值范围为( )A .1515,22⎡-+⎢⎣⎦B .151522⎡-⎢⎣⎦C .1515,22⎡⎤-+⎢⎥⎣⎦D .1515,22⎡⎤---+⎢⎥⎣⎦9.若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是( ) A .B .5C .D .610.已知1x >,则41x x +-的最小值为 A .3B .4C .5D .611.若关于x 的不等式20x px q ++<的解集为{|23}x x <<,则关于x 的不等式22028x px qx x ++>--的解集是( ) A .()2,3 B .()(),24,-∞-+∞C .()()2,23,4-D .()()(),22,34,-∞-+∞12.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知6B π=且1ABC S =△,则2a c ac a c+-+的最小值( ) A .12B .2C .14D .4二、填空题13.对于实数m ,若两函数()f x ,()g x 满足:①[,)x m ∀∈+∞,()0f x <或()0<g x ;②(,]x m ∃∈-∞,()()0f x g x <,则称函数()f x 和()g x 互为“m 相异”函数.若2()1f x ax ax =+-和()1g x x =-互为“1相异”函数,则实数a 的取值范围是___________.14.设函数()()2,f x x ax b a b R =++∈,若关于x 的不等式()06f x x ≤≤-+的解集为[]{}2,36⋃,则b a -=__________.15.已知实数,a b 满足01,01a b <<<<,若1a b +=,则11(1)(1)a b++的最小值为__________.16.已知函数2()21f x x ax =-+,若对∀(]0,2x ∈,恒有()0f x ≥,则实数a 的取值范围是___________. 17.已知x ,0y >,且194x y+=,则x y +的最小值________. 18.若0x >,则函数()164f x x x=+的最小值是______.19.若正数a ,b 满足2ab =,则11112M a b=+++的最小值为________. 20.已知向量1a =,向量b 满足4a b a b -++=,则b 的最小值为______.三、解答题21.二次函数2()21(0)f x ax ax b a =-++>在区间[]0,3上有最大值4,最小值0. (1)求函数()f x 的解析式; (2)设()4()f x x g x x -=,若()0g x mx -≤在1,77x ⎡⎤∈⎢⎥⎣⎦时恒成立,求m 的取值范围.22.已知正实数x ,y 满足2520x y +=. (1)求xy 的最大值; (2)若不等式21014m m x y+≥+恒成立,求实数m 的取值范围.23.若不等式240ax bx -+≤的解集为{}12x x ≤≤ (1)求,a b 值 (2)求不等式111bx ax +<-的解集.24.解下列不等式: (1)2340x x -->; (2)122x x -≤+.25.已知函数2()1()f x ax ax a R =--∈.(1)若对任意实数x ,()0f x <恒成立,求实数a 的取值范围; (2)解关于x 的不等式()23f x x <-.26.若不等式2520ax x +->的解集是122x x ⎧⎫<<⎨⎬⎩⎭,求不等式22510ax x a -+->的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用函数图象与x 的交点,可知()2200ax bx c a +-=>的两个根分别为12x =或26x =,再利用根与系数的关系,转化为4b a =-,12c a =-,最后代入不等式220cx bx a +-<,求解集.【详解】由条件可知()2200ax bx c a +-=>的两个根分别为12x =或26x =,则226b a +=-,26ca⨯=-,得4b a =-,12c a =-, 22201280cx bx a ax ax a ∴+-<⇔---<,整理为:()()21281021610x x x x ++>⇔++>, 解得:16x >-或12x <-, 所以不等式的解集是11,,26⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭.故选:D 【点睛】思路点睛:本题的关键是利用根与系数的关系表示4b a =-,12c a =-,再代入不等式220cx bx a +-<化简后就容易求解.2.B解析:B 【分析】利用1a b +=,0b >,10b a =->,1a ∴>且0a ≠; 对a 进行分类讨论,分为10a >>和0a >,进行讨论,然后,求解即可得到2244||ab b a a b++的最小值【详解】1a b +=,0b >,10b a =->,1a ∴>且0a ≠;当10a >>,22224414||444ab b a ab b a b a a b ab a b ++++==++1544≥+=;当且仅当4b aa b =,又1b a =-,解得1a =-或13a =,又由10a >>,得13a =时,此时,23b =,2244||ab b a a b ++的最小值54;当0a >,222244134||4444ab b a ab b a b a a b ab a b ++++⎛⎫⎛⎫==-+-+-≥ ⎪ ⎪-⎝⎭⎝⎭,当且仅当4b aa b -=-时,解得1a =-或13a =,又由0a >,得1a =-,此时,2b =,2244||ab b a a b ++的最小值34;综上,2244||ab b a a b ++的最小值34;故选:B 【点睛】关键点睛:解题的关键在于利用1a b +=,0b >,10b a =->,可得1a >且0a ≠,对a 进行分类讨论,难点在于利用基本不等式进行求最值,本题属于中档题3.B解析:B 【分析】根据基本不等式可求得最小值. 【详解】∵2x >,∴442+24+2622y x x x x =+=+-≥==--,当且仅当422x x =--,即4x =时等号成立.∴y 的最小值是6. 故选:B . 【点睛】本题考查用基本不等式求最值,利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.A解析:A 【分析】结合选项逐个分析,可选出答案. 【详解】结合x ,y ∈R ,且x >y >0,对选项逐个分析:对于选项A ,0x y ->,110y x x y xy--=<,故A 正确; 对于选项B ,取2πx =,3π2y =,则3cos cos cos 2cos 1002x y -=π-π=->,故B 不正确;对于选项C ,110y xx y xy--=<,故C 错误; 对于选项D ,ln ln ln x y xy +=,当1xy <时,ln 0xy <,故D 不正确. 故选A. 【点睛】本题考查了不等式的性质,属于基础题.5.D解析:D 【解析】试题分析:由实数,x y 满足0xy >,,设{2m x y n x y=+=+,解得2{x m ny n m =-=-,则2222224()424222x y m n n m n m n mx y x y m n m n m n--+=+=-+≤-⋅=-++,当且仅当2n mm n=,及2n m =时等号成立,所以的最大值为422-,故选D.考点:基本不等式的应用.6.A解析:A 【分析】由于x >0,对不等式左侧分子分母同时除以x ,再求出左侧最大值即可求解. 【详解】由题:对于任意的x >0,不等式231xa x x ≤++恒成立,即对于任意的x >0,不等式113ax x≤++恒成立,根据基本不等式:110,335x x x x x>++≥+⋅=,当且仅当1x =时,取得等号, 所以113x x++的最大值为15,所以15a ≥. 故选:A【点睛】此题考查不等式恒成立求参数范围,通过转化成求解函数的最值问题,结合已学过的函数模型进行求解,平常学习中积累常见函数处理办法可以事半功倍.7.C解析:C 【解析】 选C.由≥得ab≤=1,当且仅当a=b=1时,等号成立.又a 2+b 2≥2ab ⇒2(a 2+b 2)≥(a+b)2⇒a 2+b 2≥2,当且仅当a=b=1时,等号成立.8.A解析:A 【分析】由已知结合二次函数的性质及特殊点所对应的函数值的正负即可求解 【详解】解:令()22()2,[1,1]f x x mx m x =++-∈-,由题意得22(1)120(1)120f m m f m m ⎧-=-+-≤⎪⎨=++-≤⎪⎩, 解得1515m --+≤≤, 故选:A 【点睛】此题考查了二次不等式在闭区间上恒成立问题的求解,二次函数性质的应用,属于中档题9.B解析:B 【解析】试题分析:已知两边同时除以,得到,那么等号成立的条件是,即,所以的最小值是5,故选B .考点:基本不等式10.C解析:C【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.11.D解析:D 【分析】根据关于x 的不等式20x px q ++<的解集为{|23}x x <<,利用韦达定理得到5,6p q =-=,则不等式22028x px q x x ++>--转化为 2256028x x x x -+>--,再利用穿根法求解.【详解】因为关于x 的不等式20x px q ++<的解集为{|23}x x <<, 所以由韦达定理得:5,6p q =-=,所以22028x px q x x ++>--,即为2256028x x x x -+>--,即为()()()()23042x x x x -->-+,即为()()()()23420x x x x ---+>用穿根法得不等式的解集为:()()(),22,34,-∞-+∞,故选:D 【点睛】本题主要考查一元二次不等式的解集的应用以及穿根法求高次不等式,属于中档题.12.A解析:A 【分析】由已知条件和三角形的面积公式得4ac =,再根据基本不等式可得+4a c ≥,令24a c y a c +=-+,+a c t =,24t y t =-(4t ≥),由此函数的单调性可得选项. 【详解】由已知6B π=且1ABC S =△,得1sin 126ac π=,解得4ac =, 所以2+42a c ac ⎛⎫=≤ ⎪⎝⎭,即+4a c ≥,当且仅当a c =时取等号, 所以224a c a c ac a c a c ++-=-++,令24a c y a c +=-+,+a c t =,则24t y t =-(4t ≥),而24t y t =-在[)4+∞,单调递增,所以24214442t y t =-≥-=,所以2a c ac a c+-+的最小值为12. 故选:A. 【点睛】本题考查三角形的面积公式,基本不等式的应用,以及运用函数的单调性求最值的问题,属于中档题.二、填空题13.【分析】根据两个函数互为相异函数可得有恒成立且在上有解利用参变分离先讨论前者再结合二次函数的图象和性质可得所求的取值范围【详解】因为当时当时当时结合互为相异函数故有恒成立且在上有解先考虑有恒成立则在 解析:(),4-∞-【分析】根据两个函数互为“1相异”函数可得[1,)x ∀∈+∞,有()0f x <恒成立,且()0f x >在(),1-∞上有解,利用参变分离先讨论前者,再结合二次函数的图象和性质可得所求的取值范围. 【详解】因为当1x >时,()0g x >,当1x =时,()0g x =,当1x <时,()0g x <, 结合()(),f x g x 互为“1相异”函数,故[1,)x ∀∈+∞,有()0f x <恒成立,且()0f x >在(),1-∞上有解. 先考虑[1,)x ∀∈+∞,有()0f x <恒成立,则210ax ax 在[1,)+∞上恒成立,故2+1a x x<在[1,)+∞上恒成立, 因为22+x x ≥,故2+1102x x <≤,故0a ≤. 再考虑()0f x >在(),1-∞上有解,若0a =,则()10f x =-<,故()0f x >在(),1-∞上无解,若0a <,()f x 的对称轴为12x =-,且开口向下,由()0f x >在(),1-∞上有解可得240a a ∆=+>, 故4a或0a >(舍).故实数a 的取值范围是(),4-∞-, 故答案为:(),4-∞-. 【点睛】方法点睛:对于新定义背景下的函数性质的讨论,一般是先根据定义得到含参数的函数的性质,对于不等式的恒成立或有解问题,可优先考虑参变分离的方法,也可以结合函数图象的性质处理.14.【分析】根据不等式的解集可得为对应方程的根分析两个不等式对应方程的根即可得解【详解】由于满足即可得所以所以方程的两根分别为而可化为即所以方程的两根分别为且不等式的解集为所以解得则因此故答案为:【点睛 解析:27【分析】根据不等式的解集可得2、3、6为对应方程的根,分析两个不等式对应方程的根,即可得解. 【详解】由于6x =满足()060f ≤≤,即()63660f a b =++=,可得636b a =--, 所以,()()()263666f x x ax a x x a =+--=-++,所以,方程()0f x =的两根分别为6、6a --,而()6f x x ≤-+可化为()()21670x a x a ++-+≤,即()()670x x a -++≤,所以,方程()6f x x =-+的两根分别为6、7a --,76a a --<--,且不等式()06f x x ≤≤-+的解集为[]{}2,36⋃,所以,6372a a --=⎧⎨--=⎩,解得9a =-,则18b =,因此,27b a -=.故答案为:27. 【点睛】关键点点睛:本题主要考查一元二次不等式与方程之间的关系,即不等式解集的端点即为对应方程的根,本题在理解2、3、6分别为方程()()660x x a -++=、()()670x x a -++=的根,而两方程含有公共根6,进而可得出关于实数a 的等式,即可求解.15.9【分析】应用基本不等式求得最小值【详解】∵若∴当且仅当时等号成立故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必须为正数;(2)二 解析:9【分析】应用基本不等式求得最小值.【详解】∵01,01a b <<<<,若1a b +=, ∴211111122(1)(1)111192a b a b b a ab ab ab ab a b +++=+++=++=+≥+=+⎛⎫ ⎪⎝⎭.当且仅当12a b ==时等号成立. 故答案为:9.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方16.【分析】利用参变分离得在上恒成立结合双勾函数性质求出的最小值即可【详解】解:由题意知:在上恒成立所以在上恒成立又因为函数在上单调递减在上单调递增所以当时最小为2所以即故答案为:【点睛】方法点睛:在解 解析:1a ≤【分析】 利用参变分离得2112x a x x x+≤=+在(]02x ∈,上恒成立,结合双勾函数性质求出1y x x=+的最小值即可. 【详解】 解:由题意知:()2210f x x ax =-+≥在(]02x ∈,上恒成立,所以2112x a x x x +≤=+在(]02x ∈,上恒成立, 又因为函数1y x x=+在()01x ∈,上单调递减,在()12x ∈,上单调递增,所以当1x =时,1x x+最小为2, 所以2a ≤2,即1a ≤,故答案为:1a ≤.【点睛】方法点睛:在解决二次函数的恒成立问题,常常采用参变分离法,如此可以避免对参数进行分类讨论.17.4【分析】根据x 且将利用1的代换转化为利用基本不等式求解【详解】因为x 且所以当且仅当即时取等号所以的最小值为4故答案为:4【点睛】本题主要考查基本不等式的应用还考查了运算求解的能力属于中档题解析:4【分析】根据x ,0y >,且194x y+=,将x y +利用“1”的代换,转化为x y +()119191044⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭y x x y x y x y ,利用基本不等式求解. 【详解】 因为x ,0y >,且194x y+=, 所以x y +()11919110104444⎛⎛⎫⎛⎫=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝y x x y x y x y 当且仅当9y x x y=,,即1,3x y ==时,取等号, 所以x y +的最小值为4,故答案为:4【点睛】本题主要考查基本不等式的应用,还考查了运算求解的能力,属于中档题.18.16【分析】本题先判断再求函数的最小值即可【详解】解:∵∴∴当且仅当即时取等号∴函数的最小值是16故答案为:16【点睛】本题考查基本不等式求最值是基础题解析:16【分析】本题先判断40x >,160x >,再求函数()164f x x x =+的最小值即可. 【详解】解:∵ 0x >,∴ 40x >,160x >, ∴ ()16416f x x x =+≥=, 当且仅当164x x=即2x =时,取等号,∴ 函数()164f x x x=+的最小值是16. 故答案为:16.【点睛】 本题考查基本不等式求最值,是基础题.19.【分析】求出设(当且仅当时成立)求出的最小值即可【详解】解:设(当且仅当时成立)的最小值为故答案为:【点睛】本题考查了基本不等式的性质考查转化思想属于中档题 解析:23【分析】 求出23154a M a a =-++,设254445259a a N a a a a a++==+++=(当且仅当2a =时“=”成立),求出M 的最小值即可.【详解】 解:2ab =,0a >,0b >,2b a ∴=, 21111114311411211414541a a M a b a a a a a a a a∴=+=+=+=+-=-++++++++++,设254445259a a N a a a a a ++==+++=(当且仅当2a =时“=”成立), 1109N ∴<,1303N--<,23113N -<, 11112M a b ∴=+++的最小值为23, 故答案为:23. 【点睛】 本题考查了基本不等式的性质,考查转化思想,属于中档题. 20.【分析】根据平行四边形性质可得再结合基本不等式即可求出的最小值【详解】由平行四边形性质可得:由基本不等式可得:当且仅当时等号成立所以即所以所以的最小值为故答案为:【点睛】本题主要考查了向量的数量积的【分析】 根据平行四边形性质可得()22222a b a b a b++-=+,再结合基本不等式即可求出b的最小值.【详解】由平行四边形性质可得:()22222a b a b a b ++-=+,由基本不等式可得:()2222a b a b a b a b ++-++-≥,当且仅当a b a b +=-时等号成立, 所以()()22222a b a ba b ++-+≥,即()224212b +≥, 所以3b ≥,所以b 的最小值为.【点睛】本题主要考查了向量的数量积的运算及基本不等式的应用,属于中档题.三、解答题21.无22.无23.无24.无25.无26.无。
第二章一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设b a<,则下列不等式中一定成立的是()A.22b a<B.b a<C.11b a+<+D.ab 2.不等式2200x x+-<的解集是()A.{}54x x-<<B.{}45x x-<<C.{5x x<-或}4x>D.{4x x<-或}5x>3.若1a>,1b>且a b≠,则a b+,22a b+,2ab中的最大值的是()A.a b+B.C.22a b+D.2ab 4.已知集合{}2(2)20,A x x a x a a=-++≤∈R,若集合A中所有整数元素之和为14,则实数a的取值范围是()A.56a≤<B.56a≤≤C.45a≤≤D.a≥5.已知102x <<,则(12)x x -的最大值为( ) A .12B .14C .18D .1166.若关于x 的不等式2210ax ax -+<的解集为∅,则实数a 的取值范围是( ) A .1a >B .1a ≥C .01a <≤D .01a ≤≤7.一元二次不等式20ax bx c ++>的解集为{}16x x -<<,则不等式20cx bx a ++<的解集为( ) A .132x x ⎧⎫-<<⎨⎬⎩⎭B .116x x ⎧⎫-<<⎨⎬⎩⎭C .116x x ⎧⎫-<<⎨⎬⎩⎭D .{}23x x -<<8.若正实数,x y 满足2x y xy +=,则2x y +的最小值为( ) A .8B .9C .10D .11二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.当x ∈R 且0x ≠时,下列不等式恒成立的是( ) A .12x x+≥B .12x x+≤- C .21012x x <≤+ D .12x x+≥ 10.已知集合{}23100A x x x =∈+-<Z ,{}22240B x x ax a =++-=.若A B 中恰有2个元素,则实数a 值可以为( ) A .2B .1C .1-D .2-11.当1x >-时,关于代数式2138x x x +++,下列说法正确的是( ) A .有最小值B .无最小值C .有最大值D .无最大值12.下列说法正确的是( ) A .1x x+的最小值为2 B .21x +的最小值为1C .3(2)x x -的最大值为2D .2272x x ++最小值为2三、填空题:本大题共4小题,每小题5分. 13.不等式222(2)40x m x m m -+++<的解集为 .14.已知函数226,254,2x x y x x x -≥⎧=⎨-+<⎩,则不等式0y <的解集是 .15.已知,0x y >,且22x y +=,则当x = 时,2242x y xy ++取得最小值为 .16.已知正数,x y 满足322310x y x y+++=,则23x y +的取值范围为 .四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)若不等式25140ax x ++>的解集为{}27x x -<<.(1)求a 的值;(2)求不等式222310ax x a +++<的解集.18.(12分)(1)若,0x y >,且3420x y xy +-=,求x y +的最小值;(2)若51x -<<-,求22571x x x +++的最大值.19.(12分)已知0,0x y>>且322x y+=,若266x y m m+≥+恒成立,求实数m的取值范围.20.(12分)某企业生产一种机器的固定成本(即固定投入)为1万元,但每生产1百台又需可变成本(即需另增加投入)0.5万元,市场对此产品的年需求量为6百台(即一年最多卖出6百台),销售的收入(单位:万元)函数为21()43R x x x=-,其中x(单位:百台)是产品的年产量.(1)把利润表示为年产量的函数;(2)求年产量为多少时,企业所得利润最大;(3)求年产量为多少时,企业至少盈利3.5万元.21.(12分)已知函数23(0)5kxy k x k=>+. (1)若y m >的解集为{5x x <-或}1x >-,求m ,k 的值;(2)若05x ∃>,使不等式3y >成立,求k 的取值范围.22.(12分)已知函数2x my x n+=+(,m n 为常数). (1)若1n =,解不等式0y <; (2)若1m =,当21x -≤≤时,21()y x n >-+恒成立,求n 的取值范围.第二章双基训练金卷一元二次函数、方程和不等式(二)答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】C【解析】根据不等式的性质可知11b a+<+.2.【答案】A【解析】不等式2200x x+-<可化为(5)(4)0x x+-<,解得{}54x x-<<.3.【答案】C【解析】由均值不等式可知,a b+>222a b ab+>,又1a>,1b>,可得22a b a b+>+,即22a b+的值最大.4.【答案】A【解析】2(2)20()(2)0x a x a x a x-++≤⇔--≤,且集合A中所有整数元素之和为14,2a∴>,即{}2A x x a=≤≤,又234514+++=,56a∴≤<.5.【答案】C【解析】2112121(12)2(12)()2228x xx x x x+--=⨯⨯-≤⨯=,当且仅当212x x=-,即14x=时,取等号.6.【答案】D【解析】当0a=时,10<,解集为空集,即0a=符合题意;当0a≠时,2(2)40aΔa a>⎧⎨=-≤⎩,解得01a<≤,综上可得01a≤≤.7.【答案】B【解析】由题意可知方程20ax bx c++=的两个根为1-,6,且0a<,根据韦达定理可得5b a=-,6c a=-,且0b>,0c>,所以不等式20cx bx a ++<等价于26510x x +-<, 可解得不等式的解集为116x x ⎧⎫-<<⎨⎬⎩⎭.8.【答案】B【解析】由题意知121y x+=,所以12222(2)()559y x x y x y y x x y +=++=++≥+=,当且仅当22y xx y=,即3x y ==时,取等号.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.【答案】CD【解析】当0x <时,12x x+≤-,当0x >时,12x x+≥,即A 、B 错误,D 正确; 对于C ,2110112x x x x <=≤++,即C 正确. 10.【答案】AB【解析】23100x x +-<,(5)(2)0x x +-<,解得52x -<<, 又x ∈Z ,可得{}4,3,2,1,0,1A =----.22240x ax a ++-=,可得(2)(2)0x a x a +-++=,解得2x a =-+或2x a =--,可得{}2,2B a a =-+--.由A B 中恰有2个元素,可知{}4,0B =-或{}3,1B =-,解得2a =或1a =. 11.【答案】BC 【解析】2211111436(1)(1)4415111x x x x x x x x ++==≤=+++++++++++, 当且仅当411x x +=+,即1x =时,取等号,可知代数式2138x x x +++有最大值无最小值.12.【答案】BD【解析】对于A ,当0x <时,不成立,A 错误; 对于B ,20x ≥,211x ∴+≥,即21x +的最小值为1,B 正确;对于C ,223(2)3()32x x x x +--≤⨯=,当且仅当2x x =-,即1x =时,取等号,即3(2)x x -的最大值为3,C 错误;对于D,22227722222x x x x +=++-≥++, 当且仅当22722x x +=+,即22x =时,取等号,D正确.三、填空题:本大题共4小题,每小题5分. 13.【答案】{}4x m x m <<+【解析】222(2)40x m x m m -+++<,()(4)0x m x m ∴---<,解得4m x m <<+. 14.【答案】{}13x x <<【解析】当2x ≥时,260y x =-<,解得3x <,即23x ≤<;当2x <时,2540y x x =-+<,解得14x <<,即12x <<, 综上可知,不等式0y <的解集是{}13x x <<. 15.【答案】12,3【解析】22x y +=≥21xy ∴≤,22242(2)2413x y xy x y xy ∴++=+-≥-=,当且仅当2x y =,即12x =时,取等号. 16.【答案】4236x y ≤+≤ 【解析】322310x y xy+++=,2232(23)10(23)(23)()0(23)10(23x y x y x y x y x yx y∴+-++++=≥+-+,即[][](23)4(23)60x y x y +-+-≤,解得4236x y ≤+≤.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)1-;(2){12x x <-或}2x >. 【解析】(1)由题意可知25140axx ++=的两个实根为2-和7,根据韦达定理得527a-+=-,1427a-⨯=,解得1a =-. (2)由题(1)知222310ax x a +++<,可化为22320x x -++<,解得12x <-或2x >,即不等式222310ax x a +++<的解集为{12xx <-或}2x >.18.【答案】(1)72+;(2)1-. 【解析】(1)3420x y xy +-=,432xy∴+=,即1437143()()()222y x x y x y xyx y +=++=++≥, 当且仅当43y xx y=时,取等号. (2)51x -<<-,410x ∴-<+<,即222572(1)(1)442(1)11111x x x x x x x x ++++++==+++≤-+++,当且仅当42(1)1x x +=+,即1x =时,取等号, 故22571x x x +++的最大值为1-.19.【答案】82m -≤≤.【解析】322x y+=, ∴13211236(6)()(182)1622x yx y x y xyy x+=++=+++≥, 当且仅当123x yy x=,即2x =,4y =时,取等号, 266x y m m +≥+恒成立,2min (6)6x y m m ∴+≥+,即2166m m ≥+,2021年新教材高中数学 第二章 一元二次函数、方程和不等式双基训练金卷(二)新人教A 版必修第一册单元训练卷答案 第9页(共14页) 单元训练卷答案 第10页(共14页)可得26160m m +-≤,解得82m -≤≤.20.【答案】(1)21 3.51(06)3110.5(6)x x x y xx ⎧-+-≤≤⎪=⎨⎪->⎩;(2)年产量为525台时,企业所得利润最大,最大利润为8.1875万元;(3)年产量在150台到1500台时.【解析】(1)设利润为y 万元.生产这种机器的固定成本为1万元,每生产1百台,需另增加投入0.5万元,∴当产量为x 百台时,成本为10.5x +,市场对此产品的年需求量为6百台,∴当6x ≤时,产品能售出x 百台,6x >时,只能售出6百台,故利润函数为()10.5(06)(6)10.5(6)R x x x y R x x --≤≤⎧=⎨-->⎩,整理可得21 3.51(06)3110.5(6)x x x y xx ⎧-+-≤≤⎪=⎨⎪->⎩. (2)当06x ≤≤时,21 3.513y x x =-+-, 即 3.5 5.2512()3x =-=⨯-时,max 8.1875y =万元;当5x >时,110.5y x =-,利润在110.568-⨯=万元以下, 故生产525台时,企业所得利润最大,最大利润为8.1875万元.(3)要使企业至少盈利3.5万元,则 3.5y ≥,当06x ≤≤时,213.51 3.53y x x =-+-≥,即210.513.50x x -+≥,解得1.59x ≤≤,故1.56x ≤≤; 当6x >时,110.5 3.5y x =-≥,解得15x ≤,即615x <≤,综上可知1.515x ≤≤,即年产量在150台到1500台时,企业至少盈利3.5万元.21.【答案】(1)12m =-,1k =;(2)20k >. 【解析】(1)0k >,23()5kxf x m x k∴=>+等价于2350mx kx mk -+<,又()f x m >的解集为{5x x <-或}1x >-,2021年新教材高中数学 第二章 一元二次函数、方程和不等式双基训练金卷(二)新人教A 版必修第一册单元训练卷答案 第11页(共14页) 单元训练卷答案 第12页(共14页)∴方程2350mx kx mk -+=的根为1-和5-,由韦达定理可知3655km k ⎧=-⎪⎨⎪=⎩,解得12m =-,1k =. (2)222333(0)50(5)5kx y k x kx k x k x x k>⇔>>⇔-+<⇔->+, 若05x ∃>,使不等式1y >成立,即05x ∃>,使得2005x k x >-, 令21,(5)5x y x x =>-,则1min ()k y >, 令5t x =-,则0t >,21(5)25101020t y t t t +==++≥=,当且仅当25t t =,即5t =,也即10x =时,取等号, 故1min ()20y =,从而得到20k >. 22.【答案】(1)见解析;(2)0n >.【解析】(1)2,1x m y n x n +==+,201x my x +∴=<+,等价于(2)(1)0x m x ++<,①当21m -<-,即12m >时,不等式的解集为{}21x m x -<<-;②当21m -=-,即12m =时,不等式解集为∅;③当21m ->-,即12m <时,不等式的解集为{}12x x m -<<-.(2)1m =,21()y x n >-+,221(2)()1()x x x n x n x n +-∴>⇔++>-++(※), 显然x n ≠-,易知当2x =-时,不等式(※)成立,21x -≤≤时,不等式21()y x n >-+恒成立, ∴当21x -<≤时,112(2)22n x x x x >--=-++++恒成立, 即max12(2)2n x x ⎡⎤>-++⎢⎥+⎣⎦成立,20x +>,1222x x ∴++≥+,2021年新教材高中数学 第二章 一元二次函数、方程和不等式双基训练金卷(二)新人教A 版必修第一册单元训练卷答案 第13页(共14页) 单元训练卷答案 第14页(共14页)当且仅当122x x =++,即1x =-时,取等号, 故0n >.。
高中数学新教材必修第一册2.2 基本不等式(南开题库)一、选择题(共40小题;共200分)1. 设是等差数列.下列结论中正确的是A. 若,则B. 若,则C. 若,则D. 若,则2. 已知命题;命题,则下列判断正确的是A. 是假命题B. 是真命题C. 是真命题D. 是真命题3. 若,,,则下列不等式中①;②;③;④.对一切满足条件的,恒成立的序号是A. ①②B. ①③C. ①③④D. ②③④4. 已知,,且,则A. B. C. D.5. 设,.若是与的等比中项,则的最小值为A. B. C. D.6. 已知,则函数有A. 最小值B. 最大值C. 最小值D. 最大值7. 若正数,满足,则的最小值是A. B. C. D.8. 过抛物线的焦点作直线,与抛物线交于,,,四点,且,则的最大值等于A. B. C. D.9. 已知,且,则的最小值是A. B. C. D.10. 已知函数,设,若关于的不等式在上恒成立,则的取值范围是A. B. C. D.11. 若函数有最大值,则的值是A. B. C. D.12. 设,、为正常数,则的最小值为A. B. C. D.13. 设,,,,若,,则的最大值为A. B. C. D.14. 在矩形中,,,为矩形内一点,且,若,则的最大值为A. B. C. D.15. 二次函数的值域为,则的最小值为A. B. C. D.16. 下列说法中错误的是A. 命题"若,则“的逆否命题是”若,则 "B. 若,则" “是” "的充要条件C. 已知命题和,若为假命题,则与中必一真一假D. 若命题:,,则:,17. 设,,.若,,则的最大值为A. B. C. D.18. 若,且恒成立,则的最小值是A. B. C. D.19. 已知直线将圆平分,则直线与两坐标轴围成的三角形的面积的最小值为A. B. C. D.20. 中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,,,三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦﹣秦九韶公式,现有一个三角形的边长满足,,则此三角形面积的最大值为A. B. C. D.21. 设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为A. B. C. D.22. 给出下列三个命题:①若,则;②若正整数和满足,则;③设为圆上任意一点,圆以为圆心且半径为.当时,圆与圆相切.其中假命题的个数为A. B. C. D.23. 设正实数,,满足,则当取得最大值时,的最大值为A. B. C. D.24. 已知,,若不等式恒成立,则的最大值为A. B. C. D.25. 一个篮球运动员投篮一次得分的概率为,得分的概率为,不得分的概率为,已知他投篮一次得分的数学期望为,则的最小值为A. B. C. D.26. 已知,,(为自然对数的底数),则A. B. C. D.27. “”是“”的A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件28. 若直线过点,则的最小值为A. B. C. D.29. 设向量,,,其中为坐标原点,>,>,若,,三点共线,则的最小值为A. B. C. D.30. 如图,在边长为的正三角形中,,分别为边,上的动点,且满足,,其中,,,分别是,的中点,则的最小值为A. B. C. D.31. 如图所示,正三角形的边长为,其外接圆为圆,点为劣弧上的一个动点(不与点、重合),过点与的中点的直线交圆于另一点,则的最小值为A. B. C. D.32. 已知函数,若恒成立,则的取值范围是A. B. C. D.33. 设,过定点的动直线和过定点的动直线交于点,则的取值范围是A. B. C. D.34. 函数且的图象恒过定点,且点在直线上,则的最小值为A. B. C. D.35. 在中,角,,的对边分别为,,,且,若的面积,则的最小值为A. B. C. D.36. 设正实数满足.则当取得最小值时,的最大值为A. B. C. D.37. 设,若直线与圆相切,则的取值范围是A.B.C.D.38. 设是内一点,且,,定义,其中,,分别是,,的面积,若,则的最小值是A. B. C. D.39. 如图,在长方体中,,,点在棱上,且,则当的面积最小时,棱的长为A. B. C. D.40. 已知棱长为的正四面体,在侧棱上任取一点(与,不重合),若点到平面与平面的距离分别为,,则的最小值为A. B. C. D.二、填空题(共40小题;共200分)41. 椭圆上一点到两焦点的距离之积是,当取最大值时,点坐标为.42. 已知,,,则的最小值为.43. 已知,则函数的最小值为.44. 已知,,分别为三个内角,,的对边,,且,则面积的最大值为.45. 若直线过点,则的最小值为.46. 已知,且,则的最小值为.47. 若,,则的最小值为.48. 已知正数,满足,那么使得取最小值的实数对是.49. 设,,,则的最大值为.50. 已知,则函数的值域是.51. 已知,且满足,则的最小值为.52. 已知,下列不等式:①,②,③,④,其中一定恒成立的是(填写序号).53. 若,均为正实数,且,则的最小值为.54. 函数的图象恒过定点,若点在直线上,则的最小值为.55. 已知,,且,若恒成立,则实数的取值范围是.56. 函数(且)的图象恒过定点,若点在直线上,其中,则的最小值为.57. 若对于,恒成立,则的取值范围是.58. 己知,,且,则的最小值为.59. 已知:,均为正,,则的最小值为.60. 已知,则的最小值为.61. 已知,,,则的最小值是.62. 已知,分别为三角形两个内角,满足,则取最大值时.63. 若对,,总有不等式成立,则实数的取值范围是.64. 设,,则的最小值为.65. 设,若直线与轴相交于点,与轴相交于点,且与圆相交所得弦的长为,为坐标原点,则面积的最小值为.66. 给出下列命题:①函数既有极大值又有极小值,则或;②若,则的单调递减区间为;③过点可作圆的两条切线,则实数的取值范围为或;④双曲线的离心率为,双曲线的离心率为,则的最小值为.其中为真命题的序号是.67. 已知集合,,则集合.68. 已知实数,,的等差中项为,设,,则的最小值为.69. 在等腰梯形中,已知,,,,动点和分别在线段和上,且,,则当时,有最小值为.70. 某公司一年购买某种货物吨,每次都购买吨,运费为万元/次,一年的总存储费用为万元,要使一年的总运费与总存储费用之和最小,则吨.71. 已知集合,,则集合.72. 已知,都是正实数,且满足,则的最小值为.73. 设,,则当时,取得最小值.74. 设,,则的最小值为.75. 若数列满足,,为非零常数,则称数列为“梦想数列”,已知正项数列为“梦想数列”,且,则的最小值是.76. 在三棱锥中,,,两两垂直,且,设是底面内一点.定义,其中分别是三棱锥,三棱锥,三棱锥的体积.若,且恒成立,则正数的最小值为.77. 已知函数,若函数有四个零点,,,,且,则的取值范围是.78. 已知,,分别为的三个内角,,的对边,,且,则面积的最大值为.79. 在等腰梯形中,已知,,,.动点和分别在线段和上,且,,则的最小值为.80. 已知为的外心,,,,若,则的最小值为三、解答题(共20小题;共260分)81. 已知函数的定义域为,且.设点是函数图象上的任意一点,过点分别作直线和轴的垂线,垂足分别为,.(1)求的值.(2)问:是否为定值?若是,则求出该定值;若不是,请说明理由.(3)设为坐标原点,求四边形面积的最小值.82. 已知直线与函数的图象相切于点.(1)求实数的值;(2)证明除切点外,直线总在函数的图象的上方;(3)设,,是两两不相等的正实数,且,,成等比数列,试判断与的大小关系,并证明你的结论.83. 某工厂生产某种产品,每日的成本(单位:元)与日产量(单位:吨)满足函数关系式,每日的销售额(单位:元)与日产量满足函数关系式,已知每日的利润,且当时,.(1)求的值;(2)当日产量为多少吨时,毎日的利润可以达到最大,并求出最大值.84. 已知函数的最小值为.(1)求的值以及此时的的取值范围;(2)若实数,,满足,证明:.85. 设函数的最小值为.(1)求的值;(2)已知,,求的最小值.86. 已知定义在上的函数,若存在实数使得成立.(1)求实数的值;(2)若,,求证:.87. 已知函数,.(1)求不等式的解集;(2)若的最小值为,正数,满足,求的最小值.88. 已知,,为正实数,且,证明:.89. 已知函数的最大值.(1)求的值;(2)若,试比较与的大小.90. 已知函数的最小值为,且.(1)求的值以及实数的取值集合;(2)若实数,,满足,证明:.91. 已知,.(1)求的最小值;(2)是否存在,,满足?并说明理由.92. 已知实数,,均大于.(1)求证:;(2)若,求证:.93. 已知椭圆的离心率,且点在椭圆上.(1)求椭圆的方程;(2)直线与椭圆交于,两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.94. 在一张足够大的纸板上截取一个面积为平方厘米的矩形纸板,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为厘米,矩形纸板的两边,的长分别为厘米和厘米,其中.(1)当时,求纸盒侧面积的最大值;(2)试确定,,的值,使得纸盒的体积最大,并求出最大值.95. 已知函数,其中.(1)当时,求曲线在点处切线的方程;(2)当时,求函数的单调区间;(3)若,证明对任意,恒成立.96. 给定椭圆,称圆为椭圆的“伴随圆”,已知椭圆的短轴长为,离心率为.(1)求椭圆的方程;(2)若直线与椭圆交于,两点,与其“伴随圆”交于,两点,当时,求面积的最大值.97. 已知是定义在上的单调递增函数.对于任意的正数、满足;对于满足.(1)求;(2)若,解不等式;(3)求证:.98. 已知抛物线:.(1)写出抛物线的准线方程,并求抛物线的焦点到准线的距离;(2)过点且斜率存在的直线与抛物线交于不同的两点,,且点关于轴的对称点为,直线与轴交于点.(i)求点的坐标;(ii)求与面积之和的最小值.99. 在平面直角坐标系中,,分别为椭圆的左、右焦点,为短轴的一个端点,是椭圆上的一点,满足,且的周长为.(1)求椭圆的方程,(2)设点是线段上的一点,过点且与轴不垂直的直线交椭圆于、两点,若是以为顶点的等腰三角形,求点到直线距离的取值范围.100. 设函数,.(1)解方程:;(2)令,求的值;(3)若是实数集上的奇函数,所以,且对任意实数恒成立,求实数的取值范围.答案第一部分1. C 【解析】因为为等差数列,所以.当时,得公差,所以,所以,所以,即.2. C 【解析】由题可知,是真,是假,为真.3. C 【解析】,所以,所以①正确;,所以②不正确;,所以③正确;,所以④正确.4. C5. B【解析】因为,所以,于是,当且仅当即时“ ” 成立.6. A7. C8. D 【解析】如图所示,由抛物线可得焦点.设直线的方程为:,因为,可得直线的方程为.设,,,.联立化为,得,.同理可得,.所以同理可得.所以当且仅当时取等号.所以的最大值等于.9. D10. A【解析】当时,关于的不等式在上恒成立,即为,即有,由的对称轴为,可得处取得最大值;由的对称轴为,可得处取得最小值,则当时,关于的不等式在上恒成立,即为,即有,由(当且仅当)取得最大值;由(当且仅当)取得最小值.则由可得,.11. B 12. C 【解析】,等号当且仅当,即时取得.13. C 【解析】因为,取对数,得 , , 所以.14. A 【解析】因为 ,两边平方得,所以 . 因为,所以. 15. C【解析】因为 的值域为 , 所以 , ,即 ,即 , 所以.16. C 【解析】对于(C ),若 为假命题,则 与 均为假命题,所以(C )错误. 17. C18. B 【解析】因为 恒成立,所以恒成立.两边同时平方,整理后得恒成立,即不等式左边的最大值 不等式右边的最小值.因为 (当且仅当" "时取" "),所以不等式左边的最大值为 ,所以 ,所以 . 19. B 20. B【解析】由题意, ,所以此三角形面积的最大值为 . 21. C 【解析】如图所示,设 ,则,即.设,由,得化简可得所以直线的斜率为(当且仅当时取等号).22. B 【解析】①在上为增函数,故①真;由均值不等式知②真;③由题意知点为圆的交点,得不出其他结论,故③假,假命题个数为.23. B 【解析】由,得.所以,当且仅当,即时取等号.此时,(当且仅当时等号成立).24. B 【解析】因为,且,,所以,又(当且仅当时等号成立),所以,故的最大值为.25. C26. A27. C28. D 【解析】因为直线过点,所以,即,因为,当且仅当,即时取等号,所以的最小值为.29. C30. C【解析】所以因为,所以,所以.31. D 【解析】由相交弦定理,.所以(当且仅当时,等号成立).32. C 【解析】因为恒成立,所以恒成立.①当时,恒成立,即恒成立.此时.②当时,恒成立,即恒成立,即恒成立.即.综上,的取值范围为.33. B 【解析】可得两条直线分别过定点和且垂直,可得.当点在点或点时,取得最小值,而由得的最大值为,当且仅当时等号成立.34. A 【解析】由题意知,于是有,所以35. B36. C 【解析】含三个参数,消元,利用基本不等式及配方法求最值.所以当且仅当,即时" "成立,此时.所以所以当时,取到最大值.37. D 【解析】直线与圆相切,圆心到直线的距离为所以设,则,解得38. D 【解析】在中,,,所以,,所以,因为是,,的面积之和,所以,所以,当且仅当,即时,即,时取等号.39. A 【解析】设,,则 .因为,根据勾股定理: . ,整理得 .又当且仅当时等号成立.此时,所以 .40. C【解析】如图,连接,,设为底面三角形的中心,连接,则正四面体的高.因为,所以,所以当且仅当,即时取等号.第二部分41. 或42.43.44.【解析】由正弦定理及,得.又因为,所以.所以.由余弦定理得.因为,所以.由,得,当且仅当时等号成立,即.所以.故面积的最大值为.45.46.47.【解析】,,所以当且仅当时等号成立,即即,或,时取“”;所以上式的最小值为.48.【解析】当且仅当即时等号成立.49.【解析】设,则,当且仅当时,等号成立,即,.所以的最大值为.50.51.52. ①②③53.【解析】由,得,因为,均为正实数,所以(当且仅当时等号成立),即,解得,即,故的最小值为 .54.【解析】由题意可知,因为点在直线上,所以.所以当且仅当时成立.55.【解析】若恒成立,只须的最小值大于..,.56.57.【解析】由题意恒成立,,所以.58.【解析】因为,,,所以又,则其中等号成立的条件:当且仅当解得,,,所以的最小值是.59.【解析】因为,均为正,,所以,当且仅当时,等号成立.60.【解析】由题意,,所以,所以,当,时取得最小值.61.62.【解析】,把代入得,当,即时取得最大值.63.【解析】因为,即恒成立.只需.而令,.因为,当且仅当时取等号,所以在上为减函数,所以当时,取最小.所以,所以.64.【解析】因为,所以.显然当,且时,上式取等号,此时,联立,解得,此时.所以的最小值为.65.【解析】根据直线方程,得.由直线被圆截得的弦长为,得圆心到直线的距离为,即,整理得.因此,根据均值不等式,得.当且仅当时,取得最小值.66. ①②④【解析】①正确,令,因为既有极大值又有极小值,所以,解出或;②正确,令,解出的单调递减区间为;③错误;由题意可说明点在圆外,点和圆心之间的距离大于半径,求出;④正确,,当且仅当时,取最小值为.67.【解析】集合,所以;集合,,当且仅当时取等号,所以,所以.68.69. ,【解析】由题意,易得.所以,(当且仅当时等号成立).70.71.【解析】因为,,所以.72.【解析】因为,所以,即,所以,当且仅当:,时,取“”,即的最小值为:.73.【解析】当,时,取得最小值.由,,解得.74.【解析】当时,当时,综上所述,的最小值是.75.【解析】因为为“梦想数列”,所以,即,是以为公比的等比数列.所以,所以,又因为,所以.76.77.【解析】由题意,画出函数的图象,如图所示,又函数有四个零点,,,,且,所以,且,所以,,所以,,所以,当且仅当时“”成立;所以的取值范围是.78.【解析】先由正弦定理,得;再由余弦定理,得,然后结合均值定理,得(当且仅当时取等号);最后由三角形面积公式,得.79.【解析】当且仅当,即时等号成立(舍去).80.【解析】利用向量投影的定义可得:由,代入整理后得:得整理得所以.第三部分81. (1)因为,所以.(2)设点的坐标为,则有,>,由点到直线的距离公式可知,,,所以有,即为定值,这个值为.(3)由题意可设,可知.因为与直线垂直,所以,即.解得.又,所以.所以,.所以四边形.当且仅当时,等号成立.此时四边形的面积有最小值:.82. (1)设切点为,则,由,有,解得,于是,得.(2)构造函数,其导数,当时,;当时,,所以在区间单调递减,在区间单调递增,所以,因此对于,总有,即除切点外,直线总在函数的图象的上方.(3)因为,,是两两不相等的正实数,所以,又因为,,成等比数列,所以,于是,而,,由于,且函数是增函数,因此,故.83. (1)由题意可得:.因为时,,所以,所以.(2)当时,,所以当且仅当即时取等号.当时,,所以当时,取得最大值,所以当日产量为吨时,毎日的利润可以达到最大值.84. (1)依题意,得,故的值为.当且仅当,即时等号成立,即的取值范围为.(2)因为,故.因为,当且仅当时等号成立,,当且仅当时等号成立,所以,故,当且仅当时等号成立.85. (1)函数,故函数的减区间为,增区间为,故当时,函数取得最小值为 .(2)已知,,所以当且仅当时,取等号,故的最小值为.86. (1)因为,所以要使有解,则,解得.因为,所以.(2),,所以,所以当且仅当,即,时“”成立,故.87. (1)当时,;当时,.所以不等式等价于或所以,或.所以所以原不等式的解集为.(2)由(1),得.可知的最小值为.所以.所以,变形得.因为,,所以当且仅当,即时,取等号.所以的最小值为.88. 因为,,为正实数,所以由基本不等式,得,,,当且仅当时取等号.三式相加,得:.又,所以.89. (1)函数,所以的最大值为,所以.(2)因为,且,,所以当且仅当,即,时等号成立;所以.90. (1)因为,当且仅当时,等号成立,所以的最小值等于,即,,则实数的取值集合为.(2)因为,所以,所以,因为,所以,所以,所以,当且仅当时取等号,所以,又因为,当且仅当时取等号,所以,所以,当且仅当或时取等号,综上所述,结果是:.91. (1),当且仅当时,等号成立.所以的最小值为.(2)不存在.因为,所以,所以,又,所以.从而有,因此不存在,,满足.92. (1)因为实数,,均大于,所以,,,三式相加,可得:.(2)因为,,,所以.93. (1)由已知,所以,因为点在椭圆上,所以,解得,.所以所求椭圆方程为.(2)设,,因为的垂直平分线过点,所以的斜率存在.当直线的斜率时,所以,,所以,当且仅当时取" ",所以时,,当直线的斜率时,设.所以消去得,由得①所以,,所以,所以,所以的中点为,由直线的垂直关系有,化简得②由①②得,所以,又到直线的距离为,,,所以时,.由于,所以,解得.即时,.综上,.94. (1)因为矩形纸板的面积为,故当时,,从而包装盒子的侧面积,.因为,故当时,侧面积最大,最大值为平方厘米.(2)包装盒子的体积,,.当且仅当时等号成立.设,.则.于是当时,,所以在上单调递增;当时,,所以在上单调递减.因此当时,有最大值,此时,.答:当,时纸盒的体积最大,最大值为立方厘米.95. (1)当时,,,所以,因为,所以切线方程为:,整理得:;(2),令,解得:或.①若,,当变化时,,的变化情况如表:增函数极大值减函数极小值增函数所以在区间和内是增函数,在内是减函数;②若,,当变化时,,的变化情况如表:增函数极大值减函数极小值增函数所以在区间和内是增函数,在内是减函数.(3)因为,所以在内是减函数,又,不妨设,则,.于是等价于,即,令,因为在内是减函数,故.从而在内是减函数,所以对任意,有,即,所以当,对任意,恒成立.96. (1)由题意得,又因为,所以.所以椭圆的方程为.(2)“伴随圆”的方程为,①当轴时,由,得圆心到的距离为,即、点的横坐标为,代入椭圆方程得、点的纵坐标为,.②当与轴不垂直时,由,得圆心到的距离为.设直线的方程为,得.设,,由得.所以,.当时,,当且仅当,即时等号成立,此时.当时,.综上所述:,此时的面积取最大值.97. (1)令,则,解得.(2)由,得由,得由在上单调递增,解得.因此,原不等式的解集为.(3)因为在上单调递增,且,所以时,;时,.由,得,从而由,在上递增,得.由,得,从而.由均值不等式,得从而.由,得由在上递增,得由,得由,得结合,解得.98. (1)由题可得,,所以准线方程为,抛物线的焦点到准线的距离为.(2)(i)令,,则,且令,令:,,所以,,则直线方程为,,,当时,,,,,所以.(ii),,则当且仅当时,即等号成立.99. (1)由已知,设,即,,所以,即,所以.得:.①又的周长为,所以.②由①②得:,,所以,所以所求椭圆的方程为:.(2)设点,直线的方程为,由消去,得:,设,,中点为,则,所以,所以,,即.因为是以为顶点的等腰三角形,所以即,所以.设点到直线距离为,则,所以.即点到直线距离的取值范围是.另解:,所以.法:因为是以为顶点的等腰三角形,所以.因为,,,所以.又,,所以.所以,所以.以下同解法一.100. (1)即:,解得或舍,.(2).因为,所以,.(3)因为是实数集上的奇函数,所以.,在实数集上单调递增.由得,又因为是实数集上的奇函数,所以,,又因为在实数集上单调递增,所以即对任意的都成立,即对任意的都成立,.。
一、选择题1.已知(1,0),(1,0)A B -,点M 是曲线21x y =+上异于B 的任意一点,令,MAB MBA αβ∠=∠=,则下列式子中最大的是( )A .|tan tan |αβ⋅B .|tan tan |αβ+C .|tan tan |αβ-D .tan tan αβ2.若正数a ,b 满足1a >,1b >,且3a b +=,则1411a b +--的最小值为( ) A .4B .6C .9D .163.对于任意实数x ,不等式210ax ax -+>恒成立,则实数a 的取值范围是( )A .(]0,4B .[)0,4C .(][),04,-∞+∞ D .()(),04,-∞+∞4.已知1x >,0y >,且1211x y+=-,则2x y +的最小值为( ) A .9B .10C .11D .726+5.已知正实数,a b 满足1a b +=,则11b a b ⎛⎫+ ⎪⎝⎭的最小值是( ) A .112B .5C .222+D .32+6.若不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -=( ) A .4-B .14C .10-D .107.如图,在ABC 中,23BD BC =,E 为线段AD 上的动点,且CE xCA yCB =+,则13x y+的最小值为( )A .16B .15C .12D .108.对于实数a 、b 、m ,下列说法:①若22am bm >,则a b >;②若a b >,则a ab b ;③若0b a >>,0m >,则a m ab m b+>+;④若0a b >>且ln ln a b =,则2a b +的最小值是2,正确的个数为( ) A .1B .2C .3D .49.已知a <b <0,c >d >0,则下列结论正确的是( ) A .ac >bdB .a +d >b +cC .a d <b cD .a 2<b 210.若对于任意的x >0,不等式231xa x x ≤++恒成立,则实数a 的取值范围是( )A .a ≥15B .a >15 C .a <15D .a ≤1511.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦12.集合{}2230A x x x =--≤,{}1B x x =>,则A B =( ).A .()1,3B .(]1,3C .[)1,-+∞D .()1,+∞二、填空题13.已知正实数,x y 满足48x y +=,则xy 的最大值为_______________. 14.对于实数m ,若两函数()f x ,()g x 满足:①[,)x m ∀∈+∞,()0f x <或()0<g x ;②(,]x m ∃∈-∞,()()0f x g x <,则称函数()f x 和()g x 互为“m 相异”函数.若2()1f x ax ax =+-和()1g x x =-互为“1相异”函数,则实数a 的取值范围是___________.15.设函数()()2,f x x ax b a b R =++∈,若关于x 的不等式()06f x x ≤≤-+的解集为[]{}2,36⋃,则b a -=__________.16.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.17.已知0,0a b >>,1a b +=,则14y a b=+的最小值是__________. 18.ABC 中,点M ,N 在线段AB 上,且满足AM BM =,2BN AN =,若6C π=,||4CA CB ⋅=∣∣,则CM NC ⋅的最大值为________.19.一批救灾物资随51辆汽车从某市以/vkm h 的速度匀速直达灾区,已知两地公路线长400km ,为了安全起见,两辆汽车的间距不得小于2800v km ,那么这批物资全部到达灾区,最少需要______.h20.已知,a b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则23a b+的最小值为__________.三、解答题21.解关于x 的不等式2(2)210()a x x a R -+-≥∈.22.已知0,0x y >>,且280x y xy +-=,求 (1)xy 的最小值; (2)x y +的最小值.23.若不等式240ax bx -+≤的解集为{}12x x ≤≤ (1)求,a b 值 (2)求不等式111bx ax +<-的解集.24.设全集U =R ,集合2A={x|x -4x-12<0},B={x|(x-a)(x-2a)<0}. (1)当a=1时,求集合UA B ⋂;(2)若B A ⊆,求实数a 的取值范围.25.当a 为何值时,不等式22(1)(1)10a x a x ----<的解集是全体实数?26.设矩形()ABCD AD AB >的周长为20,把ADC 沿AC 向ABC 折叠AD 折过去后交BC 于点P .设AD x =,求ABP △的最大面积及相应x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】化简曲线为221(1)x y x -=≥,易知该曲线为双曲线,分别计算选项的取值范围,即可得答案; 【详解】设直线MA ,MB 的斜率分别为12,k k ,11(,)M x y ,则12tan ,tan k k αβ==-, 对A ,1111|tan tan |||111y yx x αβ⋅=⋅=+-; 对B ,C ,tan 0,tan 0αβ><,∴|tan tan |αβ->|tan tan |αβ+,1|tan tan ||tan |2tan αβαα-=+≥, 对D ,1k 小于双曲线渐近线的斜率,∴2tan tan 1tan ααβ=<, ∴|tan tan |αβ-最大,故选:C. 【点睛】通过将斜率转化为直线倾斜角的正切值,再结合基本不等式是求解的关键.2.C解析:C 【分析】由等式3a b +=可以得到111a b -+-=,由1411a b +--乘以111a b -+-=所求得式子和基本不等式进行求解即可. 【详解】由3a b +=,可得111a b -+-=,10,10a b ->->, 所以()141414(1)511111111a b a a b b a b a b --⎛⎫+=+=++ ⎪------⎝⎭-+-59≥+= 当且仅当12(1)b a -=-,即54,33b a ==时等号成立. 故选:C 【点睛】关键点点睛:本题注意观察待求式的分母,1,1a b --,结合已知条件,可变形为关于分母的式子111a b -+-=,这样就转化为“1”的常规技巧的应用.3.B解析:B 【分析】讨论0a =和0a ≠情况,再根据一元二次不等式与二次函数的关系,解不等式得解. 【详解】 关于x 的不等式210ax ax -+>恒成立,当0a =时,10>恒成立,满足题意当0a ≠时,即函数()21f x ax ax =-+恒在x 轴上方即可,所以00a >⎧⎨∆<⎩,即2040a a a >⎧⎨-<⎩,解得04a <<,所以实数a 的取值范围是[0,4).故选:B 【点睛】本题考查了一元二次不等式恒成立求参数的取值范围,考查了一元二次不等式的解法,属于基础题.4.B解析:B 【分析】利用“乘1法”将问题转化为求[]12(1)211x y x y ⎛⎫-+++ ⎪-⎝⎭的最小值,然后展开利用基本不等式求解. 【详解】1x >,10x ->,又0y >,且1211x y+=-, 2(1)21x y x y ∴+=-++[]12(1)211x y x y ⎛⎫=-+++ ⎪-⎝⎭22(1)61y x x y-=++- 262x +-10=, 当且仅当22(1)1y x x y-=-,解得4x =,3y =时等号成立, 故2x y +的最小值为10. 故选:B . 【点睛】本题考查利用基本不等式求最和的最值,考查“1”的巧妙运用,难度一般,灵活转化是关键.5.C解析:C 【分析】将原式变形为()2211b a b b a b ab++⎛⎫+= ⎪⎝⎭,再利用基本不等式计算可得; 【详解】解:()222111b a b b b a b ab ab+++⎛⎫+== ⎪⎝⎭)()222222222a abab b a ab ababab++++==≥=,当且仅当a =时取等号,即2a =1b =时等号成立,故选:C . 【点睛】本题考查基本不等式的应用,属于中档题.6.C解析:C 【分析】由题意可知方程220ax bx ++=的根为11,23-,结合根与系数的关系得出12,2a b =-=-,从而得出-a b 的值.【详解】由题意可知方程220ax bx ++=的根为11,23- 由根与系数的关系可知,11112,2323b a a-+=--⨯=解得12,2a b =-=-即12210a b -=-+=- 故选:C 【点睛】本题主要考查了根据一元二次不等式的解集求参数的值,属于中档题.7.A解析:A 【分析】由已知可得A ,D ,E 三点共线,结合平面向量基本定理可得31x y +=,0x >,0y >,再利用基本不等式即可求解. 【详解】 解:∵23BD BC =, ∴3CB CD =,3CE xCA yCB xCA yCD =+=+,因为A ,D ,E 共线,所以31x y +=,则()3313333101016x y x y y x x y x y x y +++=+=++≥+. 当且仅当33y x x y =且31x y +=即14x y ==时取等号, 故选:A. 【点睛】本题主要考查三点共线的向量表示,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.8.C解析:C 【解析】分析:由不等式性质对其判定 详解:对于①,若22am bm >,20m >,则a b >,故正确对于②,若a b >,则a a b b >,正确 对于③,若0b a >>,0m >,则a m ab m b+>+,故正确 对于④,若0a b >>且lna lnb =,则1ab =,1b a=122a b a a∴+=+≥当12a a =时等号成立,即1a =< 这与a b >矛盾,故错误 综上所述,正确的个数为3 故选C点睛:由不等式性质对其判定,若能举出反例即可判断其错误,注意数值的符号,对于④中利用基本不等式求出最小值需要满足一正二定三相等,本题在取等号时是取不到的,故错误.9.C解析:C 【分析】取特殊值判断ABD ,根据不等式的性质判断C. 【详解】对A 项,当2,1,2,1a b c d =-=-==时,41ac bd -=<=-,则A 错误; 对B 项,当2,1,2,1a b c d =-=-==时,1a d b c +=+=-,则B 错误; 对C 项,0c d >>,11d c ∴>,又0a b <<,0a b ∴->->,则11a b d c-⋅>-⋅,即a d <bc,则C 正确; 对D 项,当2,1a b =-=-时,2241a b =>=,则D 错误; 故选:C 【点睛】本题主要考查了由已知条件判断所给不等式是否正确,属于中档题.10.A解析:A 【分析】由于x >0,对不等式左侧分子分母同时除以x ,再求出左侧最大值即可求解. 【详解】由题:对于任意的x >0,不等式231xa x x ≤++恒成立, 即对于任意的x >0,不等式113ax x≤++恒成立,根据基本不等式:10,335x x x >++≥+=,当且仅当1x =时,取得等号, 所以113x x++的最大值为15, 所以15a ≥. 故选:A【点睛】此题考查不等式恒成立求参数范围,通过转化成求解函数的最值问题,结合已学过的函数模型进行求解,平常学习中积累常见函数处理办法可以事半功倍.11.A解析:A 【分析】利用分离常数法得出不等式2a x x >-在[]15x ∈,上成立,根据函数()2f x x x=-在[]15x ∈,上的单调性,求出a 的取值范围【详解】关于x 的不等式220x ax +->在区间[]1,5上有解22ax x ∴>-在[]15x ∈,上有解 即2a x x>-在[]15x ∈,上成立,设函数数()2f x x x=-,[]15x ∈,()2210f x x∴'=--<恒成立 ()f x ∴在[]15x ∈,上是单调减函数且()f x 的值域为2315⎡⎤-⎢⎥⎣⎦,要2a x x >-在[]15x ∈,上有解,则235a >- 即a 的取值范围是23,5⎛⎫-+∞ ⎪⎝⎭故选A 【点睛】本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.12.B解析:B 【分析】求得集合{}|13A x x =-≤≤,结合集合交集的概念及运算,即可求解. 【详解】由题意,集合{}{}2230|13A x x x x x =--≤=-≤≤,{}1B x x =>,根据集合交集的概念及运算,可得{}(]|131,3A B x x =<≤=.故选:B. 【点睛】本题主要考查了集合交集的概念及运算,其中解答中正确求解集合A ,结合集合交集的概念及运算求解是解答的关键,着重考查推理与运算能力.二、填空题13.4【分析】由基本不等式求解【详解】因为所以所以当且仅当即时等号成立故答案为:4【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必须为正数;(2)二解析:4 【分析】由基本不等式求解. 【详解】因为0,0x y >>,所以48x y +=≥=, 所以4xy ≤,当且仅当4x y =,即1,4x y ==时等号成立. 故答案为:4. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14.【分析】根据两个函数互为相异函数可得有恒成立且在上有解利用参变分离先讨论前者再结合二次函数的图象和性质可得所求的取值范围【详解】因为当时当时当时结合互为相异函数故有恒成立且在上有解先考虑有恒成立则在 解析:(),4-∞-【分析】根据两个函数互为“1相异”函数可得[1,)x ∀∈+∞,有()0f x <恒成立,且()0f x >在(),1-∞上有解,利用参变分离先讨论前者,再结合二次函数的图象和性质可得所求的取值范围. 【详解】因为当1x >时,()0g x >,当1x =时,()0g x =,当1x <时,()0g x <, 结合()(),f x g x 互为“1相异”函数,故[1,)x ∀∈+∞,有()0f x <恒成立,且()0f x >在(),1-∞上有解. 先考虑[1,)x ∀∈+∞,有()0f x <恒成立,则210ax ax 在[1,)+∞上恒成立,故2+1a x x<在[1,)+∞上恒成立, 因为22+x x ≥,故2+1102x x <≤,故0a ≤. 再考虑()0f x >在(),1-∞上有解,若0a =,则()10f x =-<,故()0f x >在(),1-∞上无解, 若0a <,()f x 的对称轴为12x =-,且开口向下,由()0f x >在(),1-∞上有解可得240a a ∆=+>, 故4a或0a >(舍).故实数a 的取值范围是(),4-∞-, 故答案为:(),4-∞-. 【点睛】方法点睛:对于新定义背景下的函数性质的讨论,一般是先根据定义得到含参数的函数的性质,对于不等式的恒成立或有解问题,可优先考虑参变分离的方法,也可以结合函数图象的性质处理.15.【分析】根据不等式的解集可得为对应方程的根分析两个不等式对应方程的根即可得解【详解】由于满足即可得所以所以方程的两根分别为而可化为即所以方程的两根分别为且不等式的解集为所以解得则因此故答案为:【点睛 解析:27【分析】根据不等式的解集可得2、3、6为对应方程的根,分析两个不等式对应方程的根,即可得解.【详解】由于6x =满足()060f ≤≤,即()63660f a b =++=,可得636b a =--, 所以,()()()263666f x x ax a x x a =+--=-++, 所以,方程()0f x =的两根分别为6、6a --,而()6f x x ≤-+可化为()()21670x a x a ++-+≤,即()()670x x a -++≤, 所以,方程()6f x x =-+的两根分别为6、7a --,76a a --<--,且不等式()06f x x ≤≤-+的解集为[]{}2,36⋃,所以,6372a a --=⎧⎨--=⎩,解得9a =-,则18b =,因此,27b a -=. 故答案为:27.【点睛】关键点点睛:本题主要考查一元二次不等式与方程之间的关系,即不等式解集的端点即为对应方程的根,本题在理解2、3、6分别为方程()()660x x a -++=、()()670x x a -++=的根,而两方程含有公共根6,进而可得出关于实数a 的等式,即可求解.16.9【分析】将分式展开利用基本不等式求解即可【详解】又x +2y =4即当且仅当等号成立故原式故填9【点睛】本题考查基本不等式求最值考查等价变换思想与求解能力注意等号成立条件解析:9【分析】将分式展开,利用基本不等式求解即可【详解】(4)(2)82416161x y xy x y xy xy xy xy xy++++++===+又x +2y =4≥即2xy ≤,当且仅当2,1x y ==等号成立,故原式9≥ 故填9【点睛】本题考查基本不等式求最值,考查等价变换思想与求解能力,注意等号成立条件 17.9【分析】把看成的形式把1换成整理后积为定值然后用基本不等式求最小值【详解】∵等号成立的条件为所以的最小值为9即答案为9【点睛】本题考查了基本不等式在求最值中的应用解决本题的关键是1的代换解析:9【分析】把14a b +看成141a b +⨯() 的形式,把“1”换成a b +,整理后积为定值,然后用基本不等式求最小值.【详解】 ∵141444 1?4529b a b a y a b a b a b a b a b=+=+⨯+=+++≥+⋅=()() 等号成立的条件为4b a a b =. 所以14a b+的最小值为9. 即答案为9.【点睛】本题考查了基本不等式在求最值中的应用,解决本题的关键是“1”的代换.18.;【分析】由平面向量数量积的运算可知再根据平面向量的线性运算可分别得到故由基本不等式的性质可知将所得结论均代入的表达式即可得解【详解】解:根据题意作出如下图形由基本不等式的性质可知的最大值为故答案为 解析:4233--; 【分析】由平面向量数量积的运算可知23CA CB =,再根据平面向量的线性运算可分别得到1()2CM CA CB =+,1(2)3NC CA CB =-+,故221(23)6CM NC CA CB CA CB =-++,由基本不等式的性质可知,22222||||CA CBCA CB +,将所得结论均代入CM NC 的表达式即可得解.【详解】解:根据题意,作出如下图形,6C π=,||||4CA CB =,∴4cos 236CA CB π=⨯=AM BM =,∴1()2CM CA CB =+, 2BN AN =,∴111()(2)333NC AC AN AC AB CA CB CA CA CB =-=-=---=-+, ∴22111()[(2)](23)236CM NC CA CB CA CB CA CB CA CB =+-+=-++,由基本不等式的性质可知,222222||||22||||82CA CB CA CB CA CB +=+=, ∴1(836CM NC -⨯⨯=∴CM NC的最大值为- 故答案为:- 【点睛】 本题考查平面向量的线性运算和数量积运算、基本不等式的性质,熟练掌握平面向量的加法、减法、数乘和数量积的运算法则是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题. 19.10【分析】用速度v 表示时间结合基本不等式计算最小值即可【详解】当最后一辆车子出发第一辆车子走了小时最后一辆车走完全程共需要小时所以一共需要小时结合基本不等式计算最值可得故最小值为10小时【点睛】考 解析:10【分析】用速度v 表示时间,结合基本不等式,计算最小值,即可.【详解】当最后一辆车子出发,第一辆车子走了25080016v v v ⋅=小时,最后一辆车走完全程共需要400v 小时,所以一共需要40016v v +小时,结合基本不等式,计算最值,可得 4001016v v +≥=,故最小值为10小时 【点睛】考查了基本不等式计算函数最值问题,关键利用a b +≥中等.20.【分析】函数求导由切线方程可得再利用基本不等式求得最值【详解】的导数为由切线的方程可得切线的斜率为1可得切点的横坐标为切点为代入得为正实数则当且仅当即时取得最小值故答案为:【点睛】本题考查导数的运算 解析:5+【分析】函数求导,由切线方程y x a =-可得1a b +=,再利用基本不等式求得最值.【详解】ln()y x b =+的导数为1y x b'=+, 由切线的方程y x a =-可得切线的斜率为1,可得切点的横坐标为1b -,切点为(1,0)b -,代入y x a =-,得1a b +=,,a b 为正实数,则2323233()()2355b a a a b a b a b a b b+=++=+++≥+=+当且仅当3a b =,即2,3a b ==5+.故答案为:5+【点睛】 本题考查导数的运算、导数的几何意义及基本不等式求最值,属于基础题.三、解答题21.无22.无23.无24.无25.无26.无。