五年级下册《分数除法(一)》
- 格式:docx
- 大小:9.50 KB
- 文档页数:1
《分数除法》说课稿(15篇)《分数除法》说课稿1一、说教材这部分内容,是在学生学过分数除法的意义和计算法则、分数乘法应用题的基础上进行教学的。
这类应用题历来是学生学习的难点。
教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。
此外也加强了方程解与算术除法解的联系,使学生通过方程解领会此类应用题的特征,学会用算术法直接列式计算。
这样既培养学生灵活解答分数应用题的能力,也有助于发展学生思维的广度。
二、说教学目标和教学重、难点根据教材特点和学生实际我确定本节课的教学目标是:(1)会分析较复杂的分数除法应用题数量关系。
(2)能列方程正确解答稍复杂的分数除法应用题。
(3)培养学生初步的逻辑思维能力。
教学重点是:能用方程正确解答稍复杂分数除法应用题。
教学难点是:确定单位“1”、分析数量关系。
三、说教法、学法1.自主探究、寻求方法让学生充分自主探究、寻求分数除法的解题方法。
2.设计教法体现主体课堂设计以学生为主体,注重学生间的合作与交流各抒已见、取长补短、共同提高。
四、说过程1.复习铺垫(分两个内容)现价是原价的4/5;男生比女生多1/3;今年比去年少2/5;火车速度比汽车快2/9让学生来说说等量关系,找一找单位“1”合唱队有女生30人,男生比女生多1/3,女生有多少人?意图:解决问题中关键是找出题目中关键句的等量关系,所以安排了这一环节,一来是回顾,二来是在这里分散难点,以便在接下来出现一个完整题目,数量关系的分析能较为自然了。
2.教学新知改例题为男生比女生多1/3,女生有多少人?(补充)男生比女生少1/3,女生有多少人?比较的目的:为了让学生明白这里的等量关系不变,变的是其中的已知与未知的量,所以我们仍然可以顺着刚才的思路,把未知的量设为X,应该说学生是不会有困难的。
第五单元《分数除法》 第一课时 分数除法一一、填空。
1、913 ÷6的意义是( )。
2、58 ÷5表示把58 平均分成( )份,求( )份是多少,就是求58 的15 是多少。
所以, 58 ÷5=58 ×( )。
3、把49 吨煤平均分成两堆,每堆是多少吨?解决这个问题我们有两种思路:第一种思路,49 吨是( )个( )( ) 吨,平均分成两堆,每堆是( )个( )( ) 吨,也就是( )( ) 吨,列式并计算:( );第二种思路,“把49 吨平均分成两堆,求每堆是多少吨?”就是求( )吨的( )( ) 是多少,所以49 ÷2=49 ×( ),分数除以整数就转化成了分数乘这个整数的( )。
4、815 ÷4=( )÷( )15=815 ×( )= ( )( ) 5、把610 米的铁丝平均分成3段,每段的长是全长的( ),每段长( )米。
6、89 ÷4=( )×( )=( )7、710 ÷5=( )×( )=( ) 8、在○里填上“>”“<”或“=”。
512 ○512 ÷1 49 ÷4○49 35 ÷2○35 ×2 58 ○58 ÷5 63÷79 ○314 718 ÷9○421 ÷8 二、计算题。
53÷3= 74÷2= 72÷3= 103÷6= 52÷2=65÷4= 107÷7= 101÷2= 73÷4= 85÷5=119÷6= 65÷10= 98÷12= 31÷2= 75÷15= 1211÷11= 31÷3= 95÷5= 21÷4= 54÷4=53÷9= 74÷8= 145÷5= 1310÷1= 0÷103=三、列式计算。
《分数除法》说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作报告、合同协议、条据文书、规章制度、策划方案、心得体会、演讲致辞、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts, such as work plans, work reports, contract agreements, legal documents, rules and regulations, planning plans, insights, speeches, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!《分数除法》说课稿《分数除法》说课稿(精选13篇)在教学工作者开展教学活动前,总归要编写说课稿,编写说课稿助于积累教学经验,不断提高教学质量。
北师大版数学五年级下册《分数除法(一)》课后反思
《分数除法(一)》教学反思
《分数除法(一)》是北师大版五年级下册第五单元分数除法的第一课,内容涉及到整数除法的意义,以及在计算方法的探究中涉及到分数乘法的意义,因此,本节课一开始先设计了两个分一分,第一次分一分旨在让学生复习除法的意义,第二次分一分旨在让学生复习分数乘法的意义,通过复习,铺垫知识。
本节课计算方法的理解比较抽象,先是通过动手操作画一画、涂一涂让学生直观体验并观察总结,通过操作、观察、思考让学生自己发现把4/7平均分成2份,求每份是多少相当于求4/7的1/2是多少,让学生明白分数除以一个整数除法的意义,之后又让学生通过对比,提炼法则,将算法定义化。
实践证明,要有效地进行一节课,提高课堂效率,就应在课堂教学过程中真正地体现学生的主体地位,让学生在课堂上动起来,寻找知识、体会知识,这样学生才能切实的掌握知识,从而运用知识解决更多的问题。
本节课的设计和教学就充分发挥了学生的主体探究作用,让学生成为知识的主动构建者,自觉发现者。
五年级下册数学分数除法
一、分数的概念
分数是数学中重要的概念之一,分数由分子和分母两个部分组成,分子表示被分的量,分母表示分成几份。
二、分数的除法
分数的除法可以转化为乘法,即分数的除法是把一个分数乘以另一个分数的倒数,即分母与分子互换形成的新分数。
三、分数除以整数
1. 在将分数除以整数时,我们可以先将整数写成分数的形式,然后将分子与整数相乘,分母不变即可。
2. 例如,12 ÷ 3/4 = 12 × 4/3 = 48/3 = 16。
四、分数除以分数
1. 分数除以分数时,先将除法转化为乘法,即将被除数乘以除数的倒数。
2. 例如,1/2 ÷ 1/4 = 1/2 × 4/1 = 4/2 = 2。
五、分数除法的策略
1. 分子乘法策略:将被除数和除数的分子分别相乘得到新的分子,然后将新的分子作为分数的分子,被除数和除数的分母分别相乘得到新的分母,然后将新的分母作为分数的分母。
2. 单位分数策略:将分母变为1,然后将被除数乘以分母得到新的被除
数,被除数作为新分数的分子,除数作为新分数的分母。
六、练习题
1. 2/3 ÷ 4/5 = ?
2. 3/4 ÷ 2 = ?
3. 1 ÷ 1/2 = ?
4. 3/4 ÷ 1/2 = ?
5. 5 ÷ 3/4 = ?
以上是五年级下册数学分数除法的相关内容,希望对您有所帮助。
《分数除法(一)》趣味数学
——李白诗中的数学故事李白是我国伟大的诗人,在他的诗中也有与数学有关的问题。
一日,李白无事街上走,提着酒壶去买酒,便作诗一首:“遇店加一倍,见花喝一斗。
三遇店和花,喝光壶中酒。
借问此壶中,原有多少酒?”李白壶中原来有多少酒?看似比较难,但倒着思考就容易多了:
壶中原有酒量是要求的,并告诉了壶中酒的变化及最后结果--三遍成倍添(乘以2)定量减(减肥斗)而光。
求解这个问题,一般以变化后的结果出发,利用乘与除、加与减的互逆关系,逐步逆推还原。
"三遇店和花,喝光壶中酒",可见三遇花时壶中有酒巴斗,则三遇店时有酒巴1÷2斗,那么,二遇花时有酒1÷2+1斗,二遇店有酒(1÷2+1)÷2斗,于是一遇花时有酒(1÷2+1)÷2+1斗,一遇店时有酒,即壶中原有酒的计算式为
7(斗)
[(1÷2+1)÷2+1] ÷2=
8
7斗酒。
故壶中原有
8
以上解法的要点在于逆推还原,这种思路也可用示意图或线段图表示出来。
当然,若用代数方法来解,这题数量关系更明确。
设壶中原有酒x斗,据题意列方程
2[2(2x-1)-1] -1=0
7(斗)
解之,得x=
8。
【导语】教材的⽬的只有⼀个,就是让学⽣在涂⼀涂、算⼀算的过程中,借助图形语⾔,利⽤已学过的分数乘法的意义,解决有关分数除法的问题,从⽽理解分数除法的意义,并从中总结分数除以整数的计算⽅法。
⽆忧考准备了以下内容,供⼤家参考!篇⼀ 教学内容: 教材第25~26页的内容及练习。
教学⽬标: 1.在涂⼀涂,算⼀算等活动中,探索并理解分数除法的意义。
2.探索并掌握分数除以整数的计算⽅法,并能正确计算。
3.能运⽤分数除以整数的计算⽅法解决实际问题。
教学重难点: 1.探索并理解分数除法的意义。
2.探索并掌握分数除以整数的计算⽅法,能正确计算。
教学过程: ⼀、创设情景激趣揭题 1.引导操作:出⽰⼀张7等份的纸,让学⽣涂⼀涂,⽤它表⽰⼀个分数。
2.引⼊并板书课题:分数除法(⼀) ⼆、扶放结合探究新知 1.提问:如果把这张纸的4/7平均分成2份,每份是多少? 2.把这张纸的4/7平均分成3份,⼜该怎样解决? 3.引导归纳分数除以整数的意义及计算⽅法。
4.想⼀想;整数除法也有类似的规律吗? 5.填⼀填,验证猜想。
1÷4 1×1/4 7÷3 7×1/3 三、反馈矫正落实双基 1.出⽰26页试⼀试。
2.指导完成26页练⼀练的1~3题。
四、⼩结评价布置预习 1.引导⼩结 (1)这节课我们学习了什么知识? (2)还有什么问题? 2.布置预习:27~28分数除法(⼆) 板书设计: 分数除法(⼀) 4/7÷2=4/7×1/2=2/7 4/7÷3=4/7×1/3=4/21 分数除以整数的意义,与整数除法的意义相同。
计算法则:分数除以整数(零除外),等于乘这个整数的倒数篇⼆ 教学⽬标: 1、知识⽬标:体验分数除以整数的计算⽅法,在讨论交流的基础上总结出计算法则,并能正确的计算。
2、能⼒⽬标:培养学⽣动⼿动脑能⼒,以及判断、推理能⼒。
《分数除法(一)》教学反思
太华路小学:李霞
《分数除法(一)》是北师大版五年数学下册内容之一,是在学生掌握了分数乘法基础上进行教学的。
反思整个课堂,我努力创设情境,积极组织引导,取得了良好的教学效果,体现如下方面:
一、创设情境,组织教学。
首先通过课前交流,组织教学,激发学生上好这节课的兴趣,调动学生的学习积极性,这样使学生很自然地走近新课。
二、层层递进,提升探究深度。
本节课重点是研究分数除以整数的计算方法,课的开始就抓住学生最佳的学习状态,把学生带入思考的空间,“把一张纸的七分之四平均分成2份,每份是整张纸的几分之几?”在教师的指导下学生自主探究,尝试列式和解决问题的办法,发挥了学生探究的主体性。
然后留给学生相互交流的机会,彼此说说“涂一涂、算一算”的过程,使学生初步感知分数除法的意义。
然后在此基础上提升探究深度,“把一张纸的七分之四平均分成3份,每份是整张纸的几分之几?”有上一题的基础,学生不难列出算式:七分之四÷3=,但怎样计算却是本节的重点,也是学生理解上的难点,在此我引导学生通过“折一折、涂一涂”的方式,在动手操作中体会把七分之四平均分成3份,就是求七分之四这部分的三分之一是多少,这样把分数除法转化成分数乘法,就便于学生计算了。
到此学生初步感知到“除以一个整数(0除外),等于乘这个整数的倒数。
”
然后通过几组算式来验证学生的猜想,使学生亲身经历知识的形成过程,突破教学重点难点。
接下来设计形式多样、难度适当的练习,巩固本节知识,使学生的思维得到发展。
三、存在问题。
在学生小组活动的过程中,个别学生没有利用好,只是小组活动的“旁观者”。