《幂函数》指数函数、对数函数与幂函数 图文
- 格式:pptx
- 大小:1.11 MB
- 文档页数:28
函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数y = |x| 符号函数y = sgnx 取整函数y= [x]极限的几何解释(1) 极限的几何解释(2)极限的几何解释(3)极限的性质(1) (局部保号性)极限的性质(2) (局部保号性) 极限的性质(3) (不等式性质) 极限的性质(4) (局部有界性) 极限的性质(5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1)lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3)e的值(1)等价无穷小(x->0)sinx等价于xarcsinx等价于x tanx等价于x arctanx等价于x1-cosx等价于x^2/2sinx等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞) 夹逼定理(1)夹逼定理(2)数列的夹逼性(1) 数列的夹逼性(2) pi 是派的意思(如果你没有切换到公式版本)^是次方的意思,$是公式的标记符,切换到公式版(安装mathplayer)就看不到$了文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式 (1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa n n ;②a a n n =)((注意a 必须使n a 有意义)。
2.有理数指数幂 (1)幂的有关概念①正数的正分数指数幂:0,,1)m na a m n N n *=>∈>、且。
②正数的负分数指数幂: 10,,1)mnm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算. (2)有理数指数幂的性质 ①a r a s=a r+s(a>0,r 、s ∈Q). ②(a r )s=a rs(a>0,r 、s ∈Q)。
③(ab )r=a r b s(a 〉0,b>0,r ∈Q )。
. 3.指数函数的图象与性质n 为奇数n 为偶y=a xa 〉1 0〈a<1图象定义域 R值域 (0,+∞)性质(1)过定点(0,1) (2)当x 〉0时,y>1。
x 〈0时,0<y<1(2) 当x>0时,0<y 〈1。
x<0时, y>1(3)在(—∞,+∞)上是增函数(3)在(—∞,+∞)上是减函数注:如图所示,是指数函数(1)y=a x,(2)y=b x,(3),y=c x(4),y=d x的图象,如何确定底数a,b ,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1〉d 1>1〉a 1>b 1,∴c>d 〉1>a 〉b 。
即无论在轴的左侧还是右侧,底数按逆时针方向变大。
(二)对数与对数函数 1、对数的概念 (1)对数的定义如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。
幂函数、指数函数和对数函数一、幂函数1、函数k x y =(k 为常数,Q k ∈)叫做幂函数2、单调性: 当k>0时,单调递增;当k<0时,单调递减3、幂函数的图像都经过点(1,1)二、指数函数1、x a y =(0>a 且1≠a )叫做指数函数,定义域为R ,x 作为指数2、指数函数的值域:),(∞+03、指数函数的图像都经过点(0,1)4、当a>1时,为增函数;当0<a<1时,为减函数5、指数函xa y =数的图像:a>1 0<a<1三、对数1、如果a(a>0,且a ≠-1)的b 次幂等于N ,即N a b=,那么b 叫做以a 为底N 的对数,记作b N a =log ,其中,a 叫做底数,N 叫做真数2、零与负数没有对数,即N>03、对数恒等式:N aNa =log4、(重点强调)a>0,且a ≠-1,N>05、常用对数:以十为底的对数,记作lg N6、自然对数:以e 为底的对数,记作in N7、对数的运算性质:如果a>0,a ≠1,M>0,N>0,那么(1)N M MN a a a log log )(log += (2)N M NMa a alog log log -=(3)M n M a n a log log = 8、对数换底公式:)01,01,(log log log >≠>≠>=N b b a o a NNN b a b ,,其中四、反函数1、对于函数)(x f y =,设它的定义域为D ,值域为A ,如果A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应(即一个x 对应一个y ),且满足)(x f y =,这样得到的x 关于y 的函数叫做)(x f y =的反函数,记作)(1y f x -=,习惯上,自变量用x 表示,而函数用y 表示,说以把它改写为))((1A x x fy ∈=-2、反函数的定义域与值域: 函数)(x f y = 反函数)(1x f y -=定义域 D A 值域AD3、函数)(x f y =的图像与反函数)(1x f y -=的图像关于直线x y =对称五、对数函数1、函数)1,0(log ≠>=a a x y a 且叫做对数函数,是指数函数的反函数2、对数函数的图像都在y 轴的右方3、对数函数的图像都经过点(1,0)4、当a,x 范围相同时,y>0;当a,x 范围不同是,y<0,(范围指的是0<x<1和x>1两个范围)5、对数函数)1,0(log ≠>=a a x y a 且的图像6、对数函数的定义域:x>07、对数函数的单调性:当a>1时,单调递增;当0<a<1时,单调递减六、简单指数方程指数里含有未知数的方程叫做指数方程1、819252=+-x x(1)将方程化为同底数幂的形式:225992=+-x x2252=+-∴x x 解得:5,021==x x(2)指对互换:281log 2592==+-x x ,解得:5,021==x x2、0155252=-⋅-x x换元法:令)05>=t t x(,则原方程化为01522=--t t ,解得:(舍)3,521-==t t 1,55==∴x x3、11235-+=x x两边同取以十为底的对数,得:1123lg 5lg -+=xx ,3lg )1)(1(5lg )1+-=+∴x x x ( 0)3lg 3lg 5)(lg 1(=+-+∴x x ,解得:5log 13lg 5lg 113+=+=-=x x 或七、简单对数方程对数符号后面含有未知数的方程叫做对数方程(解对数方程须检验,真数>0)1、化为同底:2)532(log 2)1(=-++x x x2)1(2)1()1(log )532(log +=-+++x x x x x ,532)1(22-+=+x x x062=-+x x ,3,221-==x x经检验,x=2为原方程的解2、换元:1log 325log 225=-x x令t x =25log ,则t x 125log =,所以原方程化为:1312=-t t0232=-+∴t t ,解得32,121=-=t t当1-=t 时,1log 25-=x ,251=∴x当32=t 时,32log 25=x ,3165=∴x经检验,它们都是原方程的根 所以原方程的解为321165,32==x x。
第四章:幂函数、指数函数和对数函数4、1 幂函数的图像与性质1、幂函数的概念一般地,函数(k y x k =为常数,k Q ∈)叫做幂函数。
思考:(1)在我们学过的函数中,有哪些是幂函数?举例说明。
2y x =、y x =、1y x=、0y x =、12y x =⋅⋅⋅(2)下列函数是否为幂函数: (1)2y x =; (2)17(2)y x -=;(3)13(2)y x =-; (4)y =。
2、幂函数的图像 画幂函数图像分两步:(1)画出幂函数在第一象限的图像(如图)(2)由定义域和奇偶性画出幂函数在其它象限的图像。
例1、分别画出下列幂函数的大致图像。
(1)43y x =; (2)12y x -=; (3)13y x =; (4)0y x =;(5)2y x-=; (6)12y x =; (7)32y x =; (8)23y x =(9)53y x =; (10)y x =; (11)13y x -=。
3、幂函数()ky x k Q =∈的性质:(1)幂函数的图像恒过点(1,1);(2)当0k >时,幂函数在区间[0,)+∞是上增函数; 当0k <时,幂函数在区间(0,)+∞上是减函数。
例2、已知幂函数21(732)35(1)()t t y t t xt Z +-=-+∈是偶函数,且在区间[)0,+∞上是单调增函数。
求整数t 的值,并作出相应幂函数的大致图像。
解:0t =(舍去),或1t =±,图像略。
例3、分别画出下列函数的大致图像。
(1)y = (2)3(1)y x =+;(3)y = (4)()231y x -=-。
例4、设01a b c d <<<<<,正数,,,m n k r 满足:01a b c dm n k r <===<,则,,,,1mnkr之间的大小关系为_________。
解:在同一坐标系内作出函数,,,a b c dy x y x y x y x ====与直线(01)y p p =<<相交,得交点的横坐标分别为,,,n r k m 可以得出:1n r k m <<<<。