人教版八年级数学下册期末常考60题(四)
- 格式:docx
- 大小:227.44 KB
- 文档页数:18
人教版数学八年级下册期末考试试卷一、选择题(本大题10小题,每小题3分,共30分),每小题只有一个正确答案。
1.下列各式是最简二次根式的是( )A.B.C.D.2.要使式子有意义,则x的取值范围是( )A.x>0B.x≥﹣3C.x≥3D.x≤33.数据2,4,3,4,5,3,4的众数是( )A.5B.4C.3D.24.一次函数y=﹣2x+1的图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中不一定成立的是( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是( )A.12B.24C.12D.167.如图,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为( )A.2B.3C.4D.28.由线段a,b,c组成的三角形不是直角三角形的是( )A.a=3,b=4,c=5B.a=12,b=13,c=5C.a=15,b=8,c=17D.a=13,b=14,c=159.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为( )A.4B.16C.D.4或10.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能比较二、填空题(本大题6小题,每小题4分,共24分)。
11.求值:= .12.某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为 分.13.将直线y=2x向上平移1个单位后所得的图象对应的函数解析式为 .14.如图,字母A所代表的正方形面积为 .15.函数y=kx与y=6﹣x的图象如图所示,则k= .16.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是 .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:÷+×﹣.18.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=2,AC=2,求AB、CD的长.19.如图,在▱ABCD中,点E、F分别是AD、BC的中点,求证:AF=CE.四、解答题(二)(本大题3小题,每小题7分,共21分)20.先化简,再求值:﹣,其中x=1+2,y=1﹣2.21.已知一次函数图象经过(3,5)和(﹣4,﹣9)两点(1)求此一次函数的解析式;(2)若点(m,2)在函数图象上,求m的值.22.国家规定“中小学生每天在校体育活动时间不低于1h”,为此,某市就“每天在校体育活动”时间的问题随机调查了辖区内320名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市辖区内约有32000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?五、解答题(三)(本大题3小题,每小题9分,共27分)23.小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是 米,小红在商店停留了 分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?24.在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC 沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.25.如图,在△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△BCA的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在AC运动到什么位置,四边形AECF是矩形,请说明理由.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一项是符合题目要求的,请把答题卡上对应题目所选的选项涂黑1.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤3,故选:D.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.3.【分析】根据众数的定义:一组数据中出现次数最多的数据求解即可.【解答】解:这组数据的众数为:4.故选:B.【点评】本题考查了众数的知识,属于基础题,解答本题的关键是掌握一组数据中出现次数最多的数据叫做众数.4.【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.5.【分析】直接利用菱形的性质对边互相平行、对角线互相垂直且平分进而分析即可.【解答】解:∵四边形ABCD是菱形,∴AB∥DC,故选项A正确,不合题意;无法得出AC=BD,故选项B错误,符合题意;AC⊥BD,故选项C正确,不合题意;OA=OC,故选项D正确,不合题意;故选:B.【点评】此题主要考查了菱形的性质,正确把握菱形对角线之间关系是解题关键.6.【分析】由折叠可得AE=A'E=2,∠EFB=∠EFB'=60°,根据平行线性质可得∠A'EF=120°,∠B'EF=60°,解直角三角形A'E'B'可得A'B'的长度,则可求矩形ABCD面积.【解答】解:∵折叠∴∠BFE=∠EFB'=60°,AB=A'B'∠A=∠A'=90°,AE=A'E=2∵ABCD是矩形∴AD∥BC∴∠DEF=∠EFB=60°∵A'E∥B'F∴∠A'EF+∠EFB'=180°∴∠A'EF=120°∴∠A'EB'=60°且∠A'=90°∴∠A'B'E=30°,且A'E=2∴B'E=4,A'B'=2=AB∵AE=2,DE=6∴AD=8∴S矩形ABCD=AB×AD=2×8=16故选:D.【点评】本题考查了折叠问题,等边三角形的性质,矩形的性质,关键灵活运用折叠的性质解决问题.7.【分析】先由含30°角的直角三角形的性质,得出BC的长,再由三角形的中位线定理得出DE的长即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选:A.【点评】本题考查了三角形的中位线定理,解答本题的关键是掌握含30°角的直角三角形的性质及三角形的中位线定理.8.【分析】根据判断三条线段是否能构成直角三角形的三边,需验证两小边的平方和是否等于最长边的平方,分别对每一项进行分析,即可得出答案.【解答】解:A、32+42=52,符合勾股定理的逆定理,是直角三角形;B、52+122=132,符合勾股定理的逆定理,是直角三角形;C、152+82=172,符合勾股定理的逆定理,是直角三角形;D、132+142≠152,不符合勾股定理的逆定理,不是直角三角形.故选:D.【点评】本题主要考查了勾股定理的逆定理:用到的知识点是已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.9.【分析】此题要分两种情况:当3和5都是直角边时;当5是斜边长时;分别利用勾股定理计算出第三边长即可.【解答】解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.【点评】此题主要考查了利用勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.10.【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【解答】解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题正确答案填写在答题卷相应的位置上11.【分析】根据二次根式的性质,求出算术平方根即可.【解答】解:原式=.故答案为:.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.12.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88(分);故答案为:88.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.13.【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1.故答案为:y=2x+1.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.14.【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故答案为:64.【点评】此题考查了勾股定理以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.15.【分析】首先根据一次函数y=6﹣x与y=kx图象的交点横坐标为2,代入一次函数y=6﹣x求得交点坐标为(2,4),然后代入y=kx求得k值即可.【解答】解:∵一次函数y=6﹣x与y=kx图象的交点横坐标为2,∴4=6﹣2,解得:y=4,∴交点坐标为(2,4),代入y=kx,2k=4,解得k=2.故答案为:2【点评】本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=6﹣x与y=kx两个解析式.16.【分析】要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【解答】解:∵正方形是轴对称图形,点B与点D是关于直线AC为对称轴的对称点,∴连接BNBD,则直线AC即为BD的垂直平分线,∴BN=ND∴DN+MN=BN+MN连接BM交AC于点P,∵点N为AC上的动点,由三角形两边和大于第三边,知当点N运动到点P时,BN+MN=BP+PM=BM,BN+MN的最小值为BM的长度,∵四边形ABCD为正方形,∴BC=CD=8,CM=8﹣2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故答案为10.【点评】考查正方形的性质和轴对称及勾股定理等知识的综合应用.三、解答题(一)(本大题3小题,每小题6分,共18分)17.【分析】直接利用二次根式混合运算法则计算得出答案.【解答】解:原式=+﹣2=4+﹣2=4﹣.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.【分析】根据勾股定理可求出AB的长度,然后利用三角形的面积即可求出CD的长度.【解答】解:在Rt△ABC中,∠ACB=90°根据勾股定理,得AB2=AC2+BC2=16,∴AB=4,又CD⊥AB∴AB•CD=AC•BC∴4CD=2×2即CD=【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理,本题属于基础题型.19.【分析】根据“平行四边形ABCD的对边平行且相等的性质”证得四边形AECF为平行四边形,然后由“平行四边形的对边相等”的性质证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;又∵点E、F分别是AD、BC的中点,∴AE∥CF,AE=AD,CF=BC,∴AE=CF,∴四边形AECF为平行四边形(对边平行且相等的四边形为平行四边形),∴AF=CE(平行四边形的对边相等).【点评】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.四、解答题(二)(本大题3小题,每小题7分,共21分)20.【分析】根据分式的减法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:﹣===x+y,当x=1+2,y=1﹣2时,原式=1+2+1﹣2=2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.【分析】(1)设一次函数解析式为y=kx+b(k≠0),再把点(3,5)和(﹣4,﹣9)代入即可求出k,b的值,进而得出一次函数的解析式;(2)把点(m,2)代入一次函数的解析式,求出m的值即可.【解答】解:(1)设一次函数的解析式为y=kx+b,则有,解得:,∴一次函数的解析式为y=2x﹣1;(2)∵点(m,2)在一次函数y=2x﹣1图象上∴2m﹣1=2,∴m=.【点评】本题考查的是用待定系数法求正比例函数的解析式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.22.【分析】(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C组的人数;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【解答】解:(1)根据题意有:C组的人数为320﹣20﹣100﹣60=140;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=62.5%.所以,达国家规定体育活动时间的人约有32000×62.5%=20000(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.五、解答题(三)(本大题3小题,每小题9分,共27分)23.【分析】(1)根据图象,路程的最大值即为小红家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)分开始行驶的路程,折回商店行驶的路程以及从商店到舅舅家行驶的路程三段相加即可求得小红一共行驶路程;读图即可求得本次去舅舅家的行程中,小红一共用的时间.【解答】解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,12≤x≤14时,直线最陡,故小红在12﹣14分钟最快,速度为=450米/分.(3)读图可得:小红共行驶了1200+600+900=2700米,共用了14分钟.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.24.【分析】(1)如图(1),设CE=x,则BE=8﹣x;根据勾股定理列出关于x的方程,解方程即可解决问题.(2)如图(2),首先求出CB′=3;类比(1)中的解法,设出未知数,列出方程即可解决问题.【解答】解:(1)如图(1),设CE=x,则BE=8﹣x;由题意得:AE=BE=8﹣x,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即CE的长为:.(2)如图(2),∵点B′落在AC的中点,∴CB′=AC=3;设CE=x,类比(1)中的解法,可列出方程:x2+32=(8﹣x)2解得:x=.即CE的长为:.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系;借助勾股定理等几何知识点来分析、判断、推理或解答.25.【分析】(1)由题意可证OE=OC,OF=OC,即可得OE=OF;(2)根据三角形内角和定理可求∠ECF=90°,根据勾股定理可求EF的长,根据直角三角形斜边上中线等于斜边的一半,可得OC的长;(3)当点O在AC的中点时,且OE=OF可证四边形AECF是平行四边形,再根据∠ECF=90°,可证四边形AECF是矩形.【解答】证明:(1)∵CF平分∠ACD,且MN∥BD∴∠ACF=∠FCD=∠CFO∴OF=OC同理可证:OC=OE∴OE=OF(2)由(1)知:OF=OC=OE∴∠OCF=∠OFC,∠OCE=∠OEC∴∠OCF+∠OCE=∠OFC+∠OEC而∠OCF+∠OCE+∠OFC+∠OEC=180°∴∠ECF=∠OCF+∠OCE=90°∴∴(3)当点O移动到AC中点时,四边形AECF为矩形理由如下:∵当点O移动到AC中点时∴OA=OC且OE=OF∴四边形AECF为平行四边形又∵∠ECF=90°∴四边形AECF为矩形【点评】本题考查了矩形的性质判定,等腰三角形的性质和判定,勾股定理,熟练运用这些性质解决问题是本题的关键.。
新人教版八年级数学下册期末考试卷及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-63.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .9.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.21273=___________. 3.分解因式:2x 3﹣6x 2+4x =__________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D在同一直线上.若AB=2,则CD=________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B5、D6、C7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、7或-123、2x (x ﹣1)(x ﹣2).415、36、20三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、x+2;当1x =-时,原式=1.3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、略5、(1)2;(2)60︒ ;(3)见详解6、(1)2元;(2)至少购进玫瑰200枝.。
人教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°2、如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE,其中正确的结论有( )A. B. C. D.3、若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.4、计算的结果是()A.±3B.3C.﹣3D.5、在矩形ABCD中,E,P,G,H分别是边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中正确的是()①存在无数个四边形EFGH是平行四边形.②存在无数个四边形EFGH是矩形.③存在且仅有一个四边形EFGH是菱形.④除非矩形ABCD为正方形,否则不存在四边形EFGH是正方形.A.①②B.①②③C.①②④D.①③④6、如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为( )A.8B.9C.11D.127、以下列各组数为边长,不能构成直角三角形的是()A. B. C. D.8、如图,菱形ABCD的对角线BD、AC分别为2、2 ,以B为圆心的弧与AD、DC相切,则阴影部分的面积是()A.2 ﹣πB.4 ﹣πC.4 ﹣πD.29、某射击运动员在训练中射击了10次,成绩分别是:5,8,6,8,9,7,10,9,8,10。
下列结论不正确的是( )A.中位数是8B.众数是8C.平均数是8D.方差是210、已知:∠MON,如图,小静进行了以下作图:①在∠MON的两边上分别截取OA,OB,使OA=OB;②分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;③连接AC,BC,AB,OC.=4,则AB的长为()若OC=2,S四边形OACBA.5B.4C.3D.211、两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为()A. B. C.sinα D.112、若式子有意义,则实数x的取值范围是()A. B. 且 C. D. 且13、下列变形正确的是( )A. B. C.D.14、函数y= 中自变量x的取值范围是()A.x≥3B.x≥﹣3C.x≠3D.x>0且x≠315、下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,已知圆柱底面的周长为6cm,圆柱高为3cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________cm.17、已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于________ .18、A,B两地之间有一条6000米长的直线跑道,小月和小华分别从A,B两地同时出发匀速跑步,相向而行,第一次相遇后,小月将自己的速度提高25%,并匀速跑步到达B点,到达后原地休息;小华匀速跑步到达A点后,立即调头按原速返回B点(调头时间忽略不计),两人距各自出发点的距离之和记为y (米),跑步时间记为x(分钟),已知y(米)与x(分钟)之间的关系如图所示,则小月到达B点后,再经过________分钟小华回到B点.19、最简二次根式与是同类最简二次根式,则b=________.20、如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为________.21、如图,矩形OABC在第一象限,OA,OC分别于x轴,y轴重合,面积为6.矩形与双曲线y=(x>0)交BC于M,交BA于N,连接OB,MN,若2OB=3MN,则k=________22、化简=________23、如图,已知线段,P是AB上一动点,分别以AP,BP为斜边在AB 同侧作等腰和等腰,以CD为边作正方形DCFE,连结AE,BF,当时,为________.24、如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG 的周长是________.25、如图,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O, 若AB=12,EF=13,H为AB的中点,则DG=________.三、解答题(共5题,共计25分)26、计算(结果用根号表示)(+1)(﹣2)+227、已知:正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF 交于点M.求证:AE=BF28、如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌的高CD (结果精确到0.1米,参考数据:≈1.41,≈1.73).29、如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.30、已知m=﹣,n=+ ,求代数式m2+mn+n2的值.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、B5、C6、D7、A8、D9、D10、B11、A12、C13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。
()2. 任何两个无理数相加都是无理数。
()3. 两条平行线的斜率相等。
()4. 一次函数的图像是一条直线。
()5. 任意两个等腰三角形的面积相等。
()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。
2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。
3. 若x^2 5x + 6 = 0,则x的值为_______或_______。
4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。
5. 平行四边形的对边_______且_______。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是正比例函数?请举例说明。
新人教版八年级数学下册期末测试卷及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里9.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC10.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.若二次根式x 1-有意义,则x 的取值范围是 ▲ .3.4的平方根是 .4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3=_________度。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。
2. 如果x=2,那么x²等于______。
3. 如果a=4,b=2,那么a+b等于______。
4. 如果x=3,那么x²等于______。
三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。
2. 计算:3x²2y²=5,其中x=3,y=2。
3. 计算:2a²+3b²=6,其中a=4,b=2。
五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。
2. 证明:如果x²=y²,那么x=y。
六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。
2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。
七、简答题(每题10分,共20分)1. 简述方程的基本概念。
2. 简述不等式的基本概念。
八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。
期末综合培优复习题(四)一.选择题(每题3分,满分36分)1.下列一定是二次根式的是()A.B.C.D.2.直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3 B.y=3x﹣2 C.y=3x+2 D.y=3x﹣13.如图,在四边形ABCD中,点P是边CD上的动点,点Q是边BC上的定点,连接AP,PQ,E,F分别是AP,PQ的中点,连接EF.点P在由C到D运动过程中,线段EF的长度()A.保持不变B.逐渐变小C.先变大,再变小D.逐渐变大4.已知n是一个正整数,是整数,则n的最小值是()A.3 B.5 C.15 D.455.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边分别是1,,3的三角形是直角三角形;③直角三角形斜边上的中线等于斜边的一半;④三个角之比为3:4:5的三角形是直角三角形,其中正确的有()A.1个B.2个C.3个D.4个6.若a=1﹣,b=1+,则代数式的值为()A.2B.﹣2C.2 D.﹣27.有20个班级参加了校园文化艺术节感恩歌咏大赛,他们的成绩各不相同,其中李明同学在知道自己成绩的情况下,要判断自己能否进入前十名,还需要知道这十个班级成绩的()A.平均数B.加权平均数C.众数D.中位数8.已知直线y=x+b和y=ax﹣3交于点P(2,1),则关于x,y的方程组的解是()A.B.C.D.9.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1 B.2018 C.2019 D.202010.在菱形ABCD中,∠ADC=120°,点E关于∠A的平分线的对称点为F,点F关于∠B的平分线的对称点为G,连结EG.若AE=1,AB=4,则EG=()A.2B.2C.3D.11.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个二.填空题(每题3分,满分18分)13.若点A (2,y 1),B (﹣1,y 2)都在直线y =﹣2x +1上,则y 1与y 2的大小关系是 . 14.使二次根式有意义的x 的取值范围是 .15.某公司招聘员工一名,某应聘者进行了三项素质测试,其中创新能力为70分,综合知识为80分,语言表达为90分,如果将这三项成绩按5:3:2计入总成绩,则他的总成绩为 分.16.已知一次函数y =kx ﹣3的图象与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则k 的取值范围是 .17.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC 的度数为 度.18.如图,过点N (0,﹣1)的直线y =kx +b 与图中的四边形ABCD 有不少于两个交点,其中A (2,3)、B (1,1)、C (4,1)、D (4,3),则k 的取值范围 .三.解答题 19.(6分)计算 (1)(3﹣2+)÷2 (2)×﹣(+)(﹣)20.已知一次函数y =(2m +1)x +3﹣m(1)若y 随x 的增大而减小,求m 的取值范围; (2)若图象经过第一、二、三象限,求m 的取值范围.21.(8分)为弘扬泰山文化,我市某校举办了“泰山诗文大赛”活动,小学、初中部根据初赛成绩,各选出5名选手组成小学代表队和初中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如下图所示.(1)根据图示填写图表;平均数(分)中位数(分)众数(分)小学部85初中部85 100 (2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.22.(6分)如图,在△ABC中,AD⊥BC,AB=15,AD=12,AC=13.求BC的长.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB =2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.24.(6分)已知y+m与x﹣n成正比例,(1)试说明:y是x的一次函数;(2)若x=2时,y=3;x=1时,y=﹣5,求函数关系式;(3)将(2)中所得的函数图象平移,使它过点(2,﹣1),求平移后的直线的解析式.25.(9分)为迎接“五一”国际劳动节,某商场计划购进甲、乙两种品牌的T恤衫共100件,已知乙品牌每件的进价比甲品牌每件的进价贵30元,且用120元购买甲品牌的件数恰好是购买乙品牌件数的2倍.(1)求甲、乙两种品牌每件的进价分别是多少元?(2)商场决定甲品牌以每件50元出售,乙品牌以每件100元出售.为满足市场需求,购进甲种品牌的数量不少于乙种品牌数量的4倍,请你确定获利最大的进货方案,并求出最大利润.参考答案一.选择题1. A .2. D .3. A .4. B .5. C .6. A .7. D .8. B .9. D 10. B .11. A . 二.填空题 13. y 1<y 2. 14. x ≤2. 15. 77. 16. 1≤k ≤. 17. 100或40. 18. <k ≤2. 三.解答题19.解:(1)原式=(9﹣+4)÷2=12÷2=6; (2)原式=﹣(5﹣3)=3﹣2 =1.20.解:(1)由2m +1<0,可得m <﹣, ∴当m <﹣时,y 随着x 的增大而减小; (2)由,可得﹣<m <3, ∴当﹣<m <3时,函数图象经过第一、二、三象限.21.解:(1)填表:小学部平均数 85( 分),众数85(分);初中部中位数 80( 分). 故答案为85,85,80.(2)小学部成绩好些.因为两个队的平均数都相同,小学部的中位数高,所以在平均数相同的情况下中位数高的小学部成绩好些.(3)∵=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,,∴,因此,小学代表队选手成绩较为稳定.22.解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB=15,AD=12,AC=13,∴BD===9,CD===5,∴BC=BD+CD=9+5=14.23.(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.24.解:(1)已知y+m与x﹣n成正比例,设y+m=k(x﹣n),(k≠0),y=kx﹣kn﹣m,因为k≠0,所以y是x的一次函数;(2)设函数关系式为y=kx+b,因为x=2时,y=3;x=1时,y=﹣5,所以2k+b=3,k+b=﹣5,解得k=8,b=﹣13,所以函数关系式为y=8x﹣13;(3)设平移后的直线的解析式为y=ax+c,由题意可知a=8,且经过点(2,﹣1),可有2×8+c=﹣1,c=﹣17,平移后的直线的解析式为y=8x﹣17.25.解:(1)设甲品牌每件的进价为x元,则乙品牌每件的进价为(x+30)元,,解得,x=30经检验,x=30是原分式方程的解,∴x+30=60,答:甲品牌每件的进价为30元,则乙品牌每件的进价为60元;(2)设该商场购进甲品牌T恤衫a件,则购进乙品牌T恤衫(100﹣a)件,利润为w元,∵购进甲种品牌的数量不少于乙种品牌数量的4倍,∴a≥4(100﹣a)解得,a≥80w=(50﹣30)a+(100﹣60)(100﹣a)=﹣20a+4000,∵a≥80,∴当y=80时,w取得最大值,此时w=2400元,100﹣a=20,答:获利最大的进货方案是:购进甲品牌T恤衫80件,购进乙品牌T恤衫20件,最大利润是2400元.。
新人教版八年级数学(下册)期末试卷及参考答案(往年题考) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-63.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.2.分解因式:2-+=__________.2a4a23.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.2222444424x x xx x x x⎛⎫---÷⎪-+--⎝⎭.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、D5、A6、C7、C8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、()()33a a +-2、()22a 1-3、如果两个角互为对顶角,那么这两个角相等4、2≤a+2b ≤5.5、36、8三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、x+2;当1x =-时,原式=1.3、8k ≥-且0k ≠.4、(1)略;(2)4.5、CD 的长为3cm.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
人教版八年级下册数学期末考试卷附详细答案解析(部分试题选自全国各地中考真题)一、选择题(每小题3分,共30分)1.下列计算正确的是( )。
A.×=4 B.+= C.÷=2 D.=-152.要使式子错误!未找到引用源。
有意义,则x 的取值范围是( )。
A.x>0B.x ≥-2C.x ≥2D.x ≤23.矩形具有而菱形不具有的性质是( )。
A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等4.根据表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )。
A.1B.-1C.3D.-35.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )。
A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元x -2 0 1 y 3 p 0 工资(元) 2 000 2 200 2 400 2 600 人数(人) 1 3 4 26.如右图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )。
A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC7.如右图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是( )。
A.24B.16C.4错误!未找到引用源。
D.2错误!未找到引用源。
8.如右图,图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD长( )A.错误!未找到引用源。
B.2错误!未找到引用源。
C.3错误!未找到引用源。
D.4错误!未找到引用源。
9.如图,正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是( )10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<错误!未找到引用源。
2020-2021学年八年级数学下册期末综合复习专题提优训练(人教版)专题04平行四边形的性质与判定【典型例题】1.如图,E、F是▱ABCD的对角线AC上的两点,且BE▱AC,DF▱AC,连接BE、ED、DF、FB.(1)求证:四边形BEDF为平行四边形;(2)若BE=4,EF=2,求BD的长.【答案】(1)证明见解析;(2).【分析】(1)连接BD交AC于O,由平行四边形的性质得出OA=OC,OB=OD,AB▱CD,AB=CD,由平行线的性质得出▱BAE=▱DCF,证明▱ABE▱▱CDF得出AE=CF,得出OE=OF,即可得出结论;(2)由(1)得:OE=OF=12EF=1,由勾股定理得出OB【详解】(1)证明:连接BD交AC于O,▱四边形ABCD是平行四边形,▱OA=OC,OB=OD,AB▱CD,AB=CD,▱▱BAE=▱DCF,▱BE▱AC,DF▱AC,▱▱AEB=▱CFD=90°,在▱ABE和▱CDF中,BAE DCFAEB CFDAB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,▱▱ABE▱▱CDF(AAS),▱AE=CF,▱OE=OF,又▱OB=OD,▱四边形BEDF为平行四边形;(2)解:由(1)得:OE=OF=12EF=1,▱BE▱AC,▱▱BEO=90°,▱OB▱BD=2OB=.【点睛】此题主要考查了平行四边形的判定与性质,全等三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.【专题训练】一、选择题1.如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.OA=OC,OB=OD D.AB∥DC,AD=BC【答案】D【分析】根据平行四边形的定义,平行四边形的判定定理两个角度思考判断即可.【详解】解:▱AB▱DC,AD▱BC,▱四边形ABCD是平行四边形,故选项A不符合题意;▱AB=DC,AD=BC,▱四边形ABCD是平行四边形,故选项B不符合题意;▱OA=OC,OB=OD,▱四边形ABCD是平行四边形,故选项C不符合题意;▱AB▱DC,AD=BC,▱四边形ABCD不一定是平行四边形,也可能是等腰梯形,故选项D符合题意,故选:D.【点睛】本题考查了平行四边形的判定,熟练平行四边形的定义法,判定定理法是解题的关键.2.如图,平行四边形ABCD中,BC=2AB,CE▱AB于E,F为AD的中点,若▱AEF=56°,则▱B=()A.56°B.60°C.64°D.68°【答案】D【分析】取BC的中点G,连接EG、FG,如图,先根据直角三角形斜边上的中线性质得到EG=BG=CG,则▱B=▱GEB,则EG=AB=CD,所以▱EFG=▱FEG,接着证明FG▱AB得到▱AEF=▱EFG=56°,然后计算出▱GEB,从而得到▱B的度数.【详解】解:取BC 的中点G ,连接EG 、FG ,▱四边形ABCD 为平行四边形,▱AB =CD ,AB ▱CD ,▱CE ▱AB ,▱▱CEB =90°,▱EG =BG =CG ,▱▱B =▱GEB ,▱BC =2AB ,▱EG =AB =CD ,▱▱EFG =▱FEG ,▱F 点为AD 的中点,G 为BC 的中点,▱FG ▱AB ,▱▱AEF =▱EFG =56°,▱▱FEG =56°,▱▱GEB =180°-56°-56°=68°,▱▱B =68°.故选:D .【点睛】本题考查了平行四边形的性质:平行四边形的对边相等.平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的性质.3.如图,平行四边形ABCD 中,对角线AG ,BD 相交于点O ,10AC =,6BD =,AD BD ⊥.在边AB 上取一点E ,使AE AO =,则AEO △的面积为( )A B C D 【答案】D【分析】先过O 作OF AB ⊥于F ,过D 作DG AB ⊥于G ,依据勾股定理求得AD 和AB 的长,再根据面积法即可得出DG 的长,进而得到OF 的长,再根据三角形面积公式即可得到AEO ∆的面积.【详解】解:如图所示,过O 作OF AB ⊥于F ,过D 作DG AB ⊥于G ,平行四边形ABCD 中,10AC =,6BD =,5AO ∴=,3DO =,又AD BD ⊥,Rt AOD ∴△中,4AD =,Rt ABD ∴中,AB =1122AD BD AB DG ⨯=⨯,AD BD DG AB ⨯∴= //DG OF ,BO DO =,12OF DG ∴=又5AE AO ==,11522AOE S AE OF ∆∴=⨯=⨯, 故选:D .此题考查了平行四边形的性质与勾股定理的运用,三角形的中位线的性质.依据平行四边形的性质得到O 是对角线的中点是解决问题的关键.4.如图,在▱ABCD 中,CD =10,▱ABC 的平分线交AD 于点E ,过点A 作AF ▱BE ,垂足为点F ,若AF =6,则BE 的长为( )A .8B .10C .16D .18【答案】C【分析】 由四边形ABCD 是平行四边形,结合▱ABC 的平分线交AD 于点E ,证明,AB AE = 再利用等腰三角形的性质可得:BE =2BF ,再由勾股定理求解,BF 即可得到答案.【详解】▱四边形ABCD 是平行四边形,▱AD ▱BC ,▱▱AEB =▱CBE ,▱▱ABC 的平分线交AD 于点E ,▱▱ABE =▱CBE ,▱▱ABE =▱AEB ,▱AB =AE ,▱AF ▱BE ,▱BE =2BF ,▱CD =10,▱AB =10,▱AF =6,▱BF ==8,▱BE =2BF =16,【点睛】本题考查的是平行四边形的性质,等腰三角形的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.5.如图,在等边▱ABC中,BC=8cm,射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以3cm/s的速度运动.设运动时间为t(s),当t=()s时,以A、C、E、F为顶点的四边形是平行四边形.A.1或2B.2C.2或3D.2或4【答案】D【分析】分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案.【详解】解:当点F在C的左侧时,根据题意得:AE=tcm,BF=3tcm,则CF=BC﹣BF=(8﹣3t)cm,▱AG▱BC,▱当AE=CF时,四边形AECF是平行四边形,即t=8﹣3t,解得:t=2;当点F在C的右侧时,根据题意得:AE=tcm,BF=3tcm,则CF=BF﹣BC=(3t﹣8)cm,▱AG▱BC,▱当AE=CF时,四边形AEFC是平行四边形,即t=3t﹣8,解得:t=4;综上可得:当t =2或4s 时,以A 、C 、E 、F 为顶点四边形是平行四边形,故选:D .【点睛】本题考查的是平行四边形的判定与性质,几何动态问题,掌握数学分类思想,平行四边形的性质解决问题是解题的关键.二、填空题6.如图,在平行四边形ABCD 中,DB =DC ,▱C =70°,AE ▱BD 于E ,则▱DAE =_____度.【答案】20【分析】由DB =DC ,▱C =70°可以得到▱DBC =▱C =70°,又由AD ▱BC 推出▱ADB =▱DBC =▱C =70°,而▱AED =90°,由此可以求出▱DAE .【详解】解:▱DB =DC ,▱C =70°,▱▱DBC =▱C =70°,▱四边形ABCD 是平行四边形,AE ▱BD ,▱AD ▱BC , ▱AED =90°,▱▱ADB =▱DBC =▱C =70°,▱▱DAE =90°﹣70°=20°.故答案为:20.【点睛】本题考查了平行四边形的性质,解决本题的关键是利用三角形内角和定理,等边对等角等知识得到和所求角有关的角的度数.7.▱ABCD 的周长是30,AC 、BD 相交于点O ,▱OBC 的周长比▱OAB 的周长大3,则BC =_____.【答案】9【分析】如图:由四边形ABCD 是平行四边形,可得AB CD =,BC AD =,OA OC =,OB OD =;又由OBC ∆的周长比OAB ∆的周长大3,可得3BC AB -=,又因为ABCD 的周长是30,所以15AB BC +=;解方程组即可求得.【详解】 解:四边形ABCD 是平行四边形,AB CD ∴=,BC AD =,OA OC =,OB OD =;又OBC ∆的周长比OAB ∆的周长大3,()3BC OB OC AB OA OB ∴++-++=3BC AB ∴-=①,又ABCD 的周长是30,15AB BC ∴+=②,由①+②得:218BC =9BC ∴=.故答案为:9.【点睛】此题考查了平行四边形的性质:平行四边形的对边相等,对角线互相平分.解题时要注意利用方程思想与数形结合思想求解.8.如图,▱ABCD 的对角线AC 与BD 交于点O ,BD ▱AD ,AB =10,AD =6,则AC 的长为_____.【答案】【分析】利用勾股定理得出BD 的长,再由平行四边形的性质求出DO ,结合勾股定理即可得出答案.【详解】▱BD ▱AD ,AB =10,AD =6.▱BD 8=.▱四边形ABCD 是平行四边形.▱DO =12BD =4. AC =2AO . ▱▱ADO 是直角三角形.▱AO ==▱AC =故答案为:【点睛】此题主要考查了平行四边形的性质以及勾股定理,正确得出DO 的长是解题关键. 9.如图,在平行四边形ABCD 中,CE 平分▱BCD 交AB 于点E 连接ED ,若EA =3,EB =5,ED =4,CE = ________ .【答案】【分析】根据平行四边形的性质和角平分线的定义可得5AD BC EB ,根据勾股定理的逆定理可得90AED ∠=︒,再根据平行四边形的性质可得8CD AB ==,90EDC ∠=︒,根据勾股定理可求CE 的长.【详解】解:CE 平分BCD ∠,BCE DCE ∴∠=∠,四边形ABCD 是平行四边形,AB CD ∴=,AD BC =,//AB CD ,BEC DCE ,BEC BCE ∴∠=∠,5BC BE ,5AD ∴=,3EA ,4ED =,在AED ∆中,222345+=,即222EA ED AD , 90AED ∴∠=︒,358CD AB ,90EDC ∠=︒,在Rt EDC 中,22224845CEED DC .故答案是:【点睛】 本题主要考查了平行四边形的性质和角平分线的性质,勾股定理的逆定理,勾股定理,熟悉相关性质是解题的关键.10.已知点A (3,0)、B (﹣1,0)、C (2,3),以A 、B 、C 为顶点画平行四边形,则第四个顶点D 的坐标是_____.【答案】(﹣2,3)或(0,﹣3)或(6,3)【分析】首先画出坐标系,再分别以AC 、AB 、BC 为对角线通过线段平移作出平行四边形,进而可得D 点坐标.【详解】解:如图,以BC 为对角线,将AB 向上平移3个单位,再向左平移1个单位,B 点对应的位置为(﹣2,3)就是第四个顶点D 1;以AB 为对角线,将BC 向下平移3个单位,再向右平移1个单位,B 点对应的位置为(0,﹣3)就是第四个顶点D 2;以AC 为对角线,将AB 向上平移3个单位,再向右平移4个单位,C 点对应的位置为(6,3)就是第四个顶点D 3;▱第四个顶点D 的坐标为:(﹣2,3)或(0,﹣3)或(6,3),故答案为:(﹣2,3)或(0,﹣3)或(6,3).【点睛】本题考查图形与坐标,平行四边形的判定与性质,平移的性质,掌握平行四边形的判定与性质,平移的性质是解题关键.三、解答题11.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O 、E 、F 是AC 上的两点,且BF ▱DE . (1)求证:▱BFO ▱▱DEO ;(2)求证:四边形BFDE 是平行四边形.【答案】(1)见解析;(2)见解析【分析】(1)根据四边形ABCD 是平行四边形,可得OB =OD ,根据BF ▱DE ,可得▱OFB =▱OED ,进而可以证明▱BFO ▱▱DEO ;(2)结合(1)根据对角线互相平分的四边形是平行四边形,即可证明四边形BFDE 是平行四边形.【详解】解:(1)证明:▱四边形ABCD 是平行四边形,▱OB =OD ,▱BF ▱DE ,▱▱OFB =▱OED ,在▱BFO 和▱DEO 中,OFB OED FOB EOD OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ▱▱BFO ▱▱DEO (AAS );(2)证明:▱▱BFO ▱▱DEO ,又OB=OD,▱四边形BFDE是平行四边形.【点睛】本题考查的是全等三角形的判定与性质,平行四边形的判定与性质,掌握利用合适的方法判定平行四边形是解题的关键.12.如图,平行四边形ABCD中,点E在BC上,且AE=EC,试分别在下列两个图中按要求使用无刻度直尺画图.(保留作图痕迹)(1)在图1中,画出▱DAE的平分线;(2)在图2中,画出▱AEC的平分线.【答案】(1)见解析;(2)见解析.【分析】(1)连接AC,再由平行线的性质及等腰三角形的性质可知AC是▱DAE的平分线;(2)连接AC,BD,交于点O,连接EO,由平行线的性质及等腰三角形的性质可知EO平分▱AEC的平分线.【详解】(1)如图所示,连接AC,则AC平分▱DAE;(2)如图所示,连接AC,BD,交于点O,连接EO,则EO平分▱AEC.本题主要考察了等腰三角形的性质,平行四边形的性质,作图-角的平分线等知识点,理解并记住它们是解题关键.13.如图,已知平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE▱BD,CF▱BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=8,FN=6,求BN的长.【答案】(1)见解析;(2)10【分析】(1)欲证明四边形AMCN是平行四边形,只要证明CM▱AN,AM▱CN即可;(2)首先证明▱ADE▱▱CBF,推出DE=BF=8,在Rt▱BFN中,根据勾股定理即可解决问题.【详解】(1)证明:▱AE▱BD,CF▱BD,▱AM▱CN,▱四边形ABCD是平行四边形,▱CM▱AN,▱四边形CMAN是平行四边形;(2)解:▱四边形ABCD是平行四边形,▱AD▱BC,AD=BC,▱▱ADE=▱CBF,▱AE▱BD,CF▱BD,▱▱AED=▱CFB=90°,在▱ADE与▱CBF中,ADE CBF AED CFB AD BC ∠∠⎧⎪∠∠⎨⎪⎩===,▱▱ADE ▱▱CBF (AAS );▱DE =BF =8,▱FN =6,▱10BN ==.【点睛】本题考查了平行四边形的判定和性质、勾股定理、全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.14.如图1,在▱ABCD 中,▱D =45°,E 为BC 上一点,连接AC ,AE .(1)若▱ABCD 中BC 边上的高为2,求AB 的长.(2)若AB =AE =4,求BE 的长.【答案】(1)(2)2.【分析】(1)如图,过A 作AH BC ⊥于H ,再根据平行四边形的性质可得:45B D ∠=∠=︒,最后根据勾股定理计算即可;(2)先根据平行四边形的性质可得:45B D ∠=∠=︒,然后解Rt AHB ∆和Rt AHE ∆ 即可求出BE 的长.【详解】解:(1)如图,过A 作AH BC ⊥于H ,在▱ABCD 中,45D B ∠=∠=︒,AH BC ⊥,ABCD 中BC 边上的高为2,90AHB ∴∠=︒,2AH =又45B ∠=︒2∴==BH AH ,AB ∴=(2)在ABCD 中,45D B ∠=∠=︒,AB =,AH BH ∴==4AE =,2EH ∴=,2BE BH EH ∴=-=.【点睛】本题考查了平行四边形的性质,勾股定理,等腰直角三角形的判定和性质,正确的作出辅助线解题的关键. 15.如图,在▱ABC 中,过点C 作CD //AB ,E 是AC 的中点,连接DE 并延长,交AB 于点F ,连接AD ,CF .(1)求证:四边形AFCD 是平行四边形;(2)若AB =6,▱BAC =60°,▱DCB =135°,求AC 的长.【答案】(1)见解析;(2)6.【分析】(1)由E 是AC 的中点知AE =CE ,由AB //CD 知▱AFE =▱CDE ,据此根据“AAS ”即可证▱AEF ▱▱CED ,从而得AF =CD ,结合AB //CD 即可得证;(2) 过C 作CM ▱AB 于M ,先证明▱BCM 是等腰直角三角形,得到BM =CM ,再由含30°角的直角三角形的性质解得AC =2AM ,BM =CM ,最后根据AM +BM =AB ,解题即可.【详解】(1)证明:▱E 是AC 的中点,▱AE =CE ,▱CD //AB ,▱▱AFE =▱CDE ,在▱AEF 和▱CED 中,AFE CDE AEF CED AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,▱▱AEF ▱▱CED (AAS ),▱AF =CD ,又▱CD //AB ,即AF //CD ,▱四边形AFCD 是平行四边形;(2)解:过C 作CM ▱AB 于M ,如图所示:则▱CMB =▱CMA =90°,▱CD //AB ,▱▱B +▱DCB =180°,▱▱B =180°﹣135°=45°,▱▱BCM 是等腰直角三角形,▱BM =CM ,▱▱BAC =60°,▱▱ACM =30°,▱AC =2AM ,BM =CM,▱AM +BM =AB ,▱AM+ =6,解得:AM =33,▱AC =2AM =66.【点睛】本题考查全等三角形的判定与性质、平行四边形的判定与性质、含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.如图,在ABC ∆中,D 为AB 中点,过点D 作//DF BC 交AC 于点E ,且DE EF =,连接AF ,CF ,CD .(1)求证:四边形ADCF 为平行四边形;(2)若45ACD ∠=︒,30EDC ∠=︒,4BC =,求CE 的长.【答案】(1)见解析;(2【分析】(1)根据三角形中位线定理和平行四边形的判定定理即可得到结论;(2)根据三角形中位线定理和解直角三角形即可得到结论.【详解】解:(1)证明:D 为AB 中点,AD BD ∴=,//DF BC ,▱点E 为AC 的中点,AE CE ∴=,DE EF =,∴四边形ADCF 为平行四边形;(2)AD BD =,AE CE =,114222DE BC ∴==⨯=, 过E 作EH CD ⊥于H ,90EHD EHC ∴∠=∠=︒,30EDC ∠=︒,112EH DE ∴==, 45ECD ∠=︒,CE ∴==.【点睛】本题考查了平行四边形的判定,三角形的中位线定理,解直角三角形,正确的作出辅助线构造直角三角形是解题的关键.17.如图,在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AO =OC ,过点O 作EF ▱BD ,交AD 于E ,交BC 于点F .(1)求证:四边形ABCD 为平行四边形;(2)连接BE ,若▱BAD =100°,▱DBF =2▱ABE ,求▱ABE 的度数.【答案】(1)见解析(2)16°【分析】(1)根据已知条件证明▱ADO ▱▱CBO 即可求解;(2)先证明▱AEO ▱▱CFO ,得到EO =FO ,根据三线合一得到BD 平分▱EBC ,再根据平行线的性质及角度的关系即可求解.【详解】(1)▱AD//BC,▱▱OAE=▱OCF,又AO=OC,▱AOD=▱COB,▱▱ADO▱▱CBO▱AD=CB故四边形ABCD为平行四边形;(2)如图,▱AD//BC,▱▱OAE=▱OCF,又AO=OC,▱AOE=▱COF,▱▱AEO▱▱CFO▱OE=OF又EF▱BD,▱BD平分▱EBC,▱▱DBF=▱DBE▱▱BAD=100°,AD//BC,▱▱ABC=80°▱▱DBF=2▱ABE,▱▱DBF=▱DBE=2▱ABE▱▱ABC=▱DBF+▱DBE+▱ABE=5▱ABE=80°▱▱ABE=16°.【点睛】此题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的判定定理及三线合一的性质应用.18.如图1,在平面直角坐标系xOy中,直线l2:y=﹣x与x轴交于点B,与直线l1:y+b交于点C,C点到x轴的距离CD为l1交x轴于点A.(1)求直线l1的函数表达式;(2)如图2,y 轴上的两个动点E 、F (E 点在F 点上方)满足线段EF 的长为CE 、AF ,当线段CE +EF +AF 有最小值时,求出此时点F 的坐标以及CE +EF +AF 的最小值;(3)如图3,将ACB △绕点B 逆时针方向旋转60°,得到BGH ,使点A 与点H 对应,点C 与点G 对应,将BGH 沿着直线BC 平移,点M 为直线AC 上的动点,是否存在以C 、O 、M 、G 、为顶点的平行四边形,若存在,请求出M 的坐标;若不存在,说明理由.【答案】(1)y =+;(2)CE +EF +AF (3)存在,11,44M ⎛- ⎝⎭或21,4M ⎛- ⎝⎭或3.4M ⎛ ⎝⎭理由见解析 【分析】(1)由题意得:点C 的纵坐标为C 在直线l 2:y =﹣3x +3上,当y =x =-1,则点C (-1,,从而可得答案;(2)作点A 关于y 轴的对称点A (3, 0),过点A 作x 轴的垂线并取A E ''=EC 交y 于点E ,在E 下方取EF F 是所求点,即可求解;(3) 先证明90,ACB ∠=︒ 再求解60,30,CAB ABC ∠=︒∠=︒ 过点G 作GN ▱x 轴于点N ,过点K 作KQ x ⊥轴点,Q 可得(1,,G -- 设,KQ n = 则2,,BK n BQ == 如图,当BGH 沿BC 方向平移时,确定()1,,G n --- 设(,M x + 结合形平行四边形的对角线互相平分,中点坐标公式列方程求解即可得到答案.【详解】解:(1) 由题意得:点C 的纵坐标为C 在直线l 2:y x 上,当y =x =-1,则点C (-1,,C 在直线1l 的解析式为y b =+上,b =b ∴= ,故直线1l 的表达式为:y =+;(2)直线2l 的表达式为: y =﹣3x , 当y =0时,x =5,则点B (5, 0),直线1l :y +x 轴交于点A (-3, 0),作点A 关y 轴的对称点A '(3, 0),过点A '作x 轴的垂线并取A E ''=连接EC 交y 于点E ,而 EF由//,,A E AE A E AE ''''= ∴ 四边形A E EF ''是平行四边形,,AF A F E E ''∴==AF EF CE A E E E CE CE ''''∴++=++=,此时:AF EF CE ++最小,则点F 是所求点,()(3,0,,A E '(,C -CE '∴==CE +EF +AF 的最小值=FE +CE(3)()()(3,0,5,0,,A B C --∴ AB =8,BC = AC =4,222AC BC AB ∴+=90,ACB ∴∠=︒如图,取AB 的中点,J 则()1,0,J 4,JA JC AC ===ACJ ∴为等边三角形,60,30,CAB ABC ∠=︒∠=︒60,CBG BC BG ∠=︒==30,ABG ∴∠=︒过点G 作GN ▱x 轴于点N ,过点K 作KQ x ⊥轴点,Q6,651,GN BN ON ∴====-=(1,,G ∴--设,KQ n =则2,,BK n BQ == 如图,当BGH 沿BC 方向平移时,则()1,,G n --设(,M x +四边形MGOC 为平行四边形, ∴ 由平行四边形的对角线互相平分可得:2x n⎧=-⎪+= 解得:11,4x =-+=11,,44M ⎛∴- ⎝⎭如图,同理()1,,G n --设(,M x +同理可得:214x =-+=21,,4M ⎛∴- ⎝⎭如图,同理()1,,G n -- 设(,M x +同理可得:34x =+=3.4M ⎛∴ ⎝⎭综上:114M ⎛- ⎝⎭或 21,4M ⎛- ⎝⎭或3.4M ⎛ ⎝⎭ 【点睛】本题考查一次函数解析式,线段和最短问题,锐角三角函数,平行四边形的判定与性质,分类讨论思想是难点.。
初中数学试卷平行四边形35.如图,▱ABCD中,AB=4,BC=5,∠ABC=60°,对角线AC,BD交于点O,过点O作OE⊥AD,则OE等于()A.B.2C.2 D.2.536.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=3,EF=1,则BC长为()A.4 B.5 C.6 D.737.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为()(1)DC=3OG;(2)OG=BC;(3)△OGE是等边三角形;(4)S△AOE =SABCD.A.1个B.2个C.3个D.4个38.如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为()A.B.C.D.39.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等40.如图,▱ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm41.在下列条件中,不能确定四边形ABCD为平行四边形的是()A.∠A=∠C,∠B=∠D B.∠A=∠B=∠C=90°C.∠A+∠B=180°,∠B+∠C=180°D.∠A+∠B=180°,∠C+∠D=180°42.如图,在▱ABCD中,AB=3,BC=4,对角线AC,BD交于点O,点E为边AB的中点,连结OE,则OE的长为.43.已知一个菱形的周长为24cm,有一个内角为60°,则这个菱形较短的一条对角线长为.44.矩形ABCD中,AB=5,BC=4,将矩形折叠,使得点B落在线段CD的点F处,则线段BE的长为.45.如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.46.四边形ABCD是平行四边形,AF=CE,求证:∠1=∠2.47.AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且BE=DF.求证:△ACE≌△ACF.48.如图,在△ABC中,∠BAC=90°,AD是斜边上的中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:BD=AF;(2)判断四边形ADCF的形状,并证明你的结论.49.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论.50.如图,在△ABC中,AB=AC,D为BC的中点,AE∥BC,DE∥AB.求证:四边形ADCE为矩形.51.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.52.如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF.(1)求证:DE=AF;(2)求∠AOE的度数.答案:35.(2017•胶州市一模)如图,▱ABCD中,AB=4,BC=5,∠ABC=60°,对角线AC,BD交于点O,过点O作OE⊥AD,则OE等于()A.B.2C.2 D.2.5解:作CF⊥AD于F,如图所示:∵四边形ABCD是平行四边形,∴∠ADC=∠ABC=60°,CD=AB=4,OA=OC,∴∠DCF=30°,∴DF=CD=2,∴CF=DF=2,∵CF⊥AD,OE⊥AD,CF∥OE,∵OA=OC,∴OE是△ACF的中位线,∴OE=CF=;故选:A.36.(2017•抚顺县一模)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE 平分∠BCD,交AD于点E,AB=3,EF=1,则BC长为()A.4 B.5 C.6 D.7解:∵四边形ABCD是平行四边形,∴AB=CD=3,BC=AD,AD∥BC,∵BF平分∠ABC交AD于E,CE平分∠BCD交AD于F,∴∠ABF=∠CBF=∠AFB,∠BCE=∠DCE=∠CED,∴AB=AF=3,DC=DE=3,∴EF=AF+DE﹣AD=3+3﹣AD=1.∴AD=5,∴BC=5故选:B.37.(2017•罗湖区二模)如图,在矩形ABCD中,O为AC中点,EF过O点且EF ⊥AC分别交DC于F,交AB于E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为()(1)DC=3OG;(2)OG=BC;(3)△OGE是等边三角形;(4)S△AOE =SABCD.A.1个B.2个C.3个D.4个解:∵EF⊥AC,点G是AE中点,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°﹣∠AOG=90°﹣30°=60°,∴△OGE是等边三角形,故(3)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO===a,∵O为AC中点,∴AC=2AO=2a,∴BC=AC=×2a=a,在Rt△ABC中,由勾股定理得,AB==3a,∵四边形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(1)正确;∵OG=a,BC=a,∴BC≠BC,故(2)错误;∵S△AOE=a•a=a2,SABCD=3a•a=3a2,∴S△AOE =SABCD,故(4)正确;综上所述,结论正确是(1)(3)(4)共3个.故选C.38.(2017•平南县一模)如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为()A.B.C.D.解:连接EF,如图所示:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=2,∠A=∠D=90°,∵点E为AD中点,∴AE=DE=1,∴BE===,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴BE=CE=,∵△BCE的面积=△BEF的面积+△CEF的面积,∴BC×AB=BE×FG+CE×FH,即BE(FG+FH)=BC×AB,即(FG+FH)=2×3,解得:FG+FH=;故选:D.39.(2017•宜兴市一模)矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:B.40.(2015•应城市二模)如图,▱ABCD的周长为20cm,AC与BD相交于点O,OE ⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm解:∵四边形ABCD是平行四边形,∴AB=DC,AD=BC,OA=OC,∵▱ABCD的周长为20cm,∴AD+DC=10cm,又∵OE⊥AC,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=10cm;故选:C.41.(2015•麻城市校级模拟)在下列条件中,不能确定四边形ABCD为平行四边形的是()A.∠A=∠C,∠B=∠D B.∠A=∠B=∠C=90°C.∠A+∠B=180°,∠B+∠C=180°D.∠A+∠B=180°,∠C+∠D=180°解:(A)∠A=∠C,∠B=∠D,根据四边形的内角和为360°,可推出∠A+∠B=180°,所以AD∥BC,同理可得AB∥CD,所以四边形ABCD为平行四边形,故A选项正确;(B)∠A=∠B=∠C=90°,则∠D=90°,四个内角均为90°可以证明四边形ABCD 为矩形,故B选项正确;(C)∠A+∠B=180°,∠B+∠C=180°即可证明AB∥CD,AD∥BC,根据平行四边形的定义可以证明四边形ABCD为平行四边形,故C选项正确;(D)∠A+∠B=180°,∠C+∠D=180°即可证明AD∥BC,条件不足,不足以证明四边形ABCD为平行四边形,故D选项错误.故选 D.42.(2017•太原一模)如图,在▱ABCD中,AB=3,BC=4,对角线AC,BD交于点O,点E为边AB的中点,连结OE,则OE的长为 2 .解:在▱ABCD中,OA=OC,∵点E是AB的中点,∴OE是△ABC的中位线,∴OE=BC=×4=2.故答案为:2.43.(2017•茂县一模)已知一个菱形的周长为24cm,有一个内角为60°,则这个菱形较短的一条对角线长为6cm .解:如右图所示,∠ABC=60°,连接AC、BD,AC、BD交于点O,∵四边形ABCD是菱形,∴AB=BC=CD=AD,又∵菱形的周长为24,∴AB=BC=CD=AD=6,又∵∠ABC=60°,∴△BAC是等边三角形,∴AC=AB=6.故答案是6cm.44.(2017•宝应县一模)矩形ABCD中,AB=5,BC=4,将矩形折叠,使得点B落在线段CD的点F处,则线段BE的长为 2.5 .解:∵四边形ABCD是矩形,∴∠B=∠D=90°,∵将矩形折叠,使得点B落在线段CD的点F处,∴AE=AB=5,AD=BC=4,EF=BF,在Rt△ADE中,由勾股定理,得DE=3.在矩形ABCD中,DC=AB=5.∴CE=DC﹣DE=2.设FC=x,则EF=4﹣x.在Rt△CEF中,x2+22=(4﹣x)2.解得x=1.5.∴BF=BC﹣CF=4﹣1.5=2.5,故答案为:2.5.45.(2017•宜兴市一模)如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.证明:∵四边形ABCD是平行四边形,∴AB∥CD,OA=OC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴AE=CF.46.(2017•长清区一模)四边形ABCD是平行四边形,AF=CE,求证:∠1=∠2.证明:∵AF=CE,∴AF+EF=CE+EF,即AE=CF,∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,∴∠BAE=∠DCF,在△BAE和△DCF中,,∴△BAE≌△DCF(SAS),∴∠1=∠2.47.(2017•白云区一模)AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且BE=DF.求证:△ACE≌△ACF.证明:∵AC是菱形ABCD的对角线,∴∠FAC=∠EAC,在△ACE和△ACF中,,∴△ACE≌△ACF(SAS).48.(2017•蓝田县一模)如图,在△ABC中,∠BAC=90°,AD是斜边上的中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:BD=AF;(2)判断四边形ADCF的形状,并证明你的结论.(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴BD=AF;(2)解:四边形ADCF是菱形;理由如下:由(1)知,AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形.49.(2017•新疆一模)已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论.(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC,∵M是AD的中点,∴AM=DM,在△ABM和△DCM中,,∴△ABM≌△DCM(SAS);(2)解:四边形MENF是菱形;理由如下:由(1)得:△ABM≌△DCM,∴BM=CM,∵E、F分别是线段BM、CM的中点,∴ME=BE=BM,MF=CF=CM,∴ME=MF,又∵N是BC的中点,∴EN、FN是△BCM的中位线,∴EN=CM,FN=BM,∴EN=FN=ME=MF,∴四边形MENF是菱形.50.(2017•无锡一模)如图,在△ABC中,AB=AC,D为BC的中点,AE∥BC,DE ∥AB.求证:四边形ADCE为矩形.证明:∵AE∥BC,∴AE∥BD.又∵DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD.∵D为BC的中点,∴BD=DC,∴AE=DC;∵AE∥CD,AE=BD=DC,即AE=DC,∴四边形ADCE是平行四边形.又∵AB=AC,D为BC的中点,∴AD⊥CD,∴平行四边形ADCE为矩形.51.(2017•石城县一模)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是CB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE==10,∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90°得到,∴AE=AF,∠EAF=90°,∴△AEF的面积=AE2=×100=50.52.(2017•永仁县一模)如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF.(1)求证:DE=AF;(2)求∠AOE的度数.(1)证明:在△ABE和△BCF中,∵四边形ABCD是正方形,∴∠ABE=∠BCF=90°,AB=BC=CD,在△ABE和△BCF中,∴△ABE≌△BCF(HL),∴BE=CF,∵BC=CD,∴EC=DF,在△ADF和△DCE中,,∴△ADF≌△DCE,∴DE=AF.(2)∵∠AOE是平角,∴∠AOE=180°.。