17.4.2欧拉公式
- 格式:ppt
- 大小:338.00 KB
- 文档页数:8
欧拉公式顶点面和棱之间的关系
在几何学中,多面体是一个基本的研究对象。
它由顶点、面和棱组成。
欧拉公式是一个描述简单多面体中顶点数(V)、面数(F)和棱数(E)之间关系的数学公式。
这个公式揭示了多面体的基本性质,为我们理解多面体的结构提供了重要的理论依据。
欧拉公式如下:
V - E = F
或者更具体地:
V + F - E =2
这个公式表明,在简单多面体中,顶点数、面数和棱数之间存在一种特殊的关系。
通过这个公式,我们可以了解多面体的结构特点,分析不同类型的多面体之间的差异。
欧拉公式的几何解释:
1.顶点数(V):表示多面体中的顶点数量,顶点是多面体的基本构成部分。
2.面数(F):表示多面体中的面数量,面是多面体的外部表现形式。
3.棱数(E):表示多面体中的棱数量,棱是连接顶点的线段。
在实际应用中,欧拉公式可以帮助我们了解多面体的性质,例如,通过计算多面体的顶点数、面数和棱数,我们可以判断多面体的类型和结构。
此外,欧拉公式在计算机图形学、机器人学等领域也有广泛的应用。
值得注意的是,欧拉公式不仅适用于简单多面体,还适用于更复杂的多面体。
通过研究欧拉公式,我们可以深入了解多面体的内在规律,为多面体的研究和应用提供有力的支持。
总之,欧拉公式是描述简单多面体中顶点数、面数和棱数之间关系的重要公式。
它揭示了多面体的基本性质,为多面体的研究奠定了基础。
通过深入理解欧拉公式,我们可以更好地认识多面体的结构特点,发挥多面体在各个领域的应用价值。
欧拉上帝公式:包括数学中最基本的常量e、i、π,哲学重要的0和1欧拉公式:将数学中最基本的常量e、i、π,数学和哲学中最重要的0和1通过加号连接,放在同一个式子中,推导过程并不复杂,不是天掉下来的,结果很惊人感觉自己数学不太好的读者请放心,全文只会出现最简单的初等代数、微积分和复变函数公式,如果看不懂。
那就看图吧。
莱昂哈德·欧拉(Leonhard Euler,1707年4月15日~1783年9月18日)欧拉公式:“宇宙第一”公式这个公式的巧妙之处在于,它没有任何多余的内容,将数学中最基本的e、i、π放在了同一个式子中,同时加入了数学也是哲学中最重要的0和1,再以简单的加号相连。
e、i、π这三个量的由来可见以下三文详细介绍:1.数学中最基本的自然常数e的由来,e代表欧拉(Euler)吗?2.数学中最有意思的符号之一虚数单位i的由来,i有物理意义吗?3.数学中最基本的常数之一圆周率π的由来以及计算机快速计算π算法•欧拉公式Euler's Identity•创立者:莱昂哈德·欧拉•意义:数学上有许多公式都是欧拉发现的,因此欧拉公式并不是某单一的公式,欧拉公式广泛分布于数学的各个分支中。
•瑞士教育与研究国务秘书Charles Kleiber曾表示:“没有欧拉的众多科学发现,今天的我们将过着完全不一样的生活。
”法国数学家拉普拉斯则认为:读读欧拉,他是所有人的老师。
右眼瞎了的欧拉这个公式是上帝写的么?欧拉是历史上最多产的数学家,也是各领域(包含数学的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。
数学史上称十八世纪为“欧拉时代”。
数学小王子欧拉不是浪得虚名,各个领域都有他战斗过的足迹。
欧拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力。
他一生谦逊,很少用自己的名字给他发现的东西命名。
不过还是命名了一个最重要的一个常数——e。
欧拉公式是复变函数中一条非常重要的公式,它把自然对数的底数e、虚数单位i和圆周率π联系起来。
具体来说,欧拉公式表述为:e^(ix) = cos x + isin x。
这个公式具有深远的意义。
首先,它将三个基本的数学常量——自然对数的底数e、虚数单位i和圆周率π——联系在一起,这本身就表明了它在数学中的重要地位。
其次,欧拉公式在复数域中建立了极坐标系与直角坐标系之间的联系,这一点在物理学、工程学以及其他的科学领域中都有着广泛的应用。
在物理学中,欧拉公式可以用于描述交流电路中的电流和电压,以及在量子力学中描述波粒二象性。
在工程学中,欧拉公式被广泛应用于电子工程、信号处理以及控制系统等领域。
此外,由于e^(ix)可以通过欧拉公式表示为cos x + isin x,因此欧拉公式也是傅里叶变换和拉普拉斯变换的基础。
在拓扑学中,欧拉公式也具有重大意义。
在任何一个规则球面地图上,可以用R表示区域个数,V表示顶点个数,E表示边界个数。
根据欧拉定理,这三个数之间存在一个关系:R + V - E = 2。
这就是著名的欧拉定理,它是由Descartes 首先给出证明的,后来Euler(欧拉)于1752年又独立地给出证明。
在国外也有人称其为D...(这里缺失了部分内容)。
总的来说,欧拉公式不仅具有深远的数学意义,也在物理、工程等领域有着广泛的应用和影响。
四个欧拉公式范文1. 欧拉公式(Euler's formula)是一项与数学中的复数、指数函数和三角函数相关的重要公式。
它可以通过以下等式表示:e^ix = cos(x) + i * sin(x)这个公式的一个重要推论是欧拉等式(Euler's identity):e^iπ+1=0也被称为欧拉等式(Euler's equation),它涵盖了五个重要的数学常数:0、1、π、e和i。
欧拉等式被广泛认为是数学中最美丽的公式之一,并被描述为“数学的黄金标准”。
2. 欧拉多面体公式(Euler's polyhedron formula)是描述平面图形中的多面体、棱和顶点之间的关系的公式。
它由欧拉于1750年发现,被称为欧拉的F + V - E = 2公式。
对于一个多面体,F表示面的数量,V表示顶点的数量,E表示边的数量。
根据这个公式,一个拥有F个面、V个顶点和E个边的多面体,满足F+V-E=2、这个公式在数学和物理学领域被广泛应用,并且证明了它的正确性。
欧拉多面体公式也可以扩展到二维平面图形,即V=E-F+2、这个公式描述了连通平面图形中顶点、边和面的关系。
3. 欧拉积分公式(Euler's integral formula)是由欧拉发现的,用于表示复变函数与实变函数之间的关系。
它可以用以下等式表示:e^(ix) = cos(x) + i * sin(x)这个公式在复分析和实分析中有广泛应用,可用于求解微分方程、傅里叶级数等,提供了一种将指数函数与三角函数相互转换的方法。
4. 欧拉回路和欧拉路径(Eulerian circuit and Eulerian path)是图论中与连通图中边的走法相关的概念。
它们由欧拉在18世纪提出,并被称为欧拉定理(Euler's theorem)。
欧拉回路是一个简单回路,它通过图中的每条边一次且仅一次,且最终回到起始点。
欧拉路径是一条在图中经过每条边一次且仅一次的路径,但不一定需要回到起始点。
欧拉公式是怎么发现的?欧拉公式指的是近代数学的伟大先驱之一莱昂哈德·欧拉(1707-1783)所发明的一系列公式。
这些公式分布在数学这颗大树的众多分支领域中,比如复变函数中的欧拉幅角公式、初等数论中的欧拉函数公式、拓扑学中的欧拉多面体公式、分式公式等等。
我们在学习中,最先接触到的欧拉公式就是著名的欧拉多面体公式:V-E+F=2。
下面简单介绍下这个公式的发现过程。
早在1639年,法国著名数学家笛卡尔(解析几何学的创始人)就发现了一个规律:不管由多边形围成的凸多面体的外形如何变化,其顶点数(V),棱数(E)和面数(F)都满足一个简单的公式——V-E+F=2。
但在当时这个规律并未广泛流传。
过了一百多年后,欧拉在1750年又重新独立地发现了这个规律,于是这个广为流传的公式被命名为欧拉多面体公式。
欧拉的思路大致是这样的:任意三角形的内角和一定是180°,用弧度表示就是π,这个角度是和三角形的形状和大小无关的。
进而就能发现,任何一个凸n边形的内角和为(n-2)π,这说明凸多边形的内角和是由边数的多少决定的,也和形状、大小等因素无关。
把这个理论推广到空间中若干个多边形围成的凸多面体,又有怎样的性质呢?欧拉首先选择了几个形状简单的多面体进行推理,并将观察所得进行了归纳总结,他发现这些多面体的面角和是由多面体的顶点数决定的。
欧拉又把这个猜想进一步推广,就得到了V-E+F=2的最终结论。
事实上,欧拉多面体公式的证明方法有很多种,比如数学归纳法,球面几何法等。
欧拉是一位不折不扣的数学天才。
但是他的非凡成就也和他对数学的热爱有关。
在欧拉人生的最后7年,他双目完全失明,但是仍然留下了大量数学遗产。
这或许更能说明,为什么数学史上能留下那么多经典的欧拉公式吧。
欧拉公式欧拉公式是指以欧拉命名的诸多公式之一。
其中最著名的有,复变函数中的欧拉幅角公式——将复数、指数函数与三角函数联系起来;拓扑学中的欧拉多面体公式;初等数论中的欧拉函数公式。
此外还包括其他一些欧拉公式,比如分式公式等等。
中文名欧拉公式外文名Eulers formula应用数学发现人欧拉目录1简介2分式3复变函数4平面几何5拓扑学▪空间中的欧拉公式▪平面上的欧拉公式6初等数论7物理学1简介(Euler公式)在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做欧拉公式,分散在各个数学分支之中。
[1]2分式当r=0,1时式子的值为0当r=2时值为1当r=3时值为a+b+c[2]3复变函数,e是自然对数的底,i是虚数单位。
它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”。
的证明:因为…在的展开式中把x换成±ix.所以将公式里的x换成-x,得到:,然后采用两式相加减的方法得到:,.这两个也叫做欧拉公式。
将中的x取作π就得到:.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e[1] ,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。
数学家们评价它是“上帝创造的公式”。
[2]4平面几何设△ABC的外心为O,内心为I,外接圆半径为R,内切圆半径为r,又记外心、内心的距离OI为d,则有(1)式称为欧拉公式.为了证明(1)式,我们现将它改成(2)式左边是点I对于⊙O的幂:过圆内任一点P的弦被P分成两个部分,这两个部分的乘积是一个定值,称为P关于⊙O的幂。
事实上,如图3.21,如果将OI延长交圆于E、F,那么因此,设AI交⊙O于M,则因此,只需证明或写成比例式为了证明(5)式,应当寻找两个相似的三角形。
欧拉定理(1)背景:欧拉公式的背后是一门新的几何学,这种新的几何学只研究图形各部分位置的相对次序,而不考虑图形尺寸大小,这就是由莱布尼兹和欧拉共同奠基的“橡皮膜上的几何学”(位置几何学),如今这门学科已经发展成数学的一个重要的分支——拓扑学。
(2)历史:有关凸多面体最有趣的定理之一是欧拉公式“V-E+F=2”,其实大约在1635年笛卡尔就早已发现了它。
欧拉在1750年独立地发现了这个公式,并于1752年发表了它。
由于笛卡尔的研究到1860年才被人们发现,所以这个定理就称为欧拉公式而不是笛卡尔公式。
欧拉,出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究。
欧拉还发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有V-E+F=2这个关系。
V-E+F被称为欧拉示性数,成为拓扑学的基础概念。
以欧拉的名字命名的数学公式、定理等在数学书籍中随处可见,与此同时,他还在物理、天文、建筑以至音乐、哲学方面取得了辉煌的成就。
欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等。
1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.欧拉公式有4条(1)分式:a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)当r=0,1时式子的值为0当r=2时值为1当r=3时值为a+b+c(2)复数由e^iθ=cosθ+isinθ,得到:sinθ=(e^iθ-e^-iθ)/2icosθ=(e^iθ+e^-iθ)/2(3)三角形设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:d^2=R^2-2Rr(4)多面体设v为顶点数,e为棱数,是面数,则v-e+f=2-2pp为欧拉示性数,例如p=0的多面体叫第零类多面体p=1的多面体叫第一类多面体等等其实欧拉公式是有4个的,上面说的都是多面体的公式。
几何中的欧拉公式好的,以下是为您生成的关于“几何中的欧拉公式”的文章:在我们的数学世界里,几何就像是一座神秘而又充满魅力的城堡,而欧拉公式则是城堡中一把神奇的钥匙。
还记得我曾经在课堂上给学生们讲解欧拉公式的时候,有个小男生瞪着大眼睛,满脸的疑惑,嘴里嘟囔着:“这到底是个啥呀?”那模样别提多可爱了。
咱们先来说说欧拉公式到底是啥。
欧拉公式,用最简单的形式表示就是 V - E + F = 2 。
这里的 V 代表顶点数,E 代表棱数,F 代表面数。
听起来是不是有点抽象?别着急,咱们来举个例子。
就拿一个正方体来说吧,它有 8 个顶点,所以 V 就是 8 ;有 12 条棱,E 就是 12 ;有 6 个面,F 就是 6 。
咱们代入公式算算,8 - 12 + 6 ,嘿,正好等于 2 !是不是挺神奇的?那欧拉公式有啥用呢?这用处可大了去啦!比如说,当我们遇到一个复杂的多面体,想要快速知道它的一些基本特征,欧拉公式就能派上大用场。
有一次,我带着学生们做课外活动,观察校园里的建筑。
我们看到了一个造型独特的亭子,有的同学就好奇这亭子的顶点、棱和面之间有没有什么规律。
这时候,欧拉公式就闪亮登场啦!我们一起数了数亭子的顶点、棱和面,然后代入公式验证,同学们都兴奋得不行,感觉自己像发现了新大陆。
再比如说,在解决一些几何难题的时候,欧拉公式可以帮我们找到解题的突破口。
有时候,题目中给出的条件看似杂乱无章,但只要我们想到欧拉公式,就能把这些条件巧妙地整合起来,找到解题的关键。
而且啊,欧拉公式不仅仅在平面几何中有用,在立体几何里也是威力无穷。
它就像是一个万能的工具,不管遇到什么样的几何图形,都能助我们一臂之力。
学习欧拉公式的过程,就像是一场刺激的冒险。
刚开始的时候,可能会觉得它有点难理解,有点让人摸不着头脑。
但只要我们耐心地去探索,去尝试,就会发现其中的乐趣和奥秘。
就像我那个一开始满脸疑惑的小男生,后来经过不断地努力和琢磨,终于掌握了欧拉公式,还能用它解决各种难题。
1简介(Euler公式)在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做欧拉公式,分散在各个数学分支之中。
2分式当r=0,1时式子的值为0当r=2时值为1当r=3时值为a+b+c3复变函数,e是自然对数的底,i是虚数单位。
它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”。
的证明:因为…在e^x的展开式中把x换成±ix.所以将公式里的x换成-x,得到:,然后采用两式相加减的方法得到:,.这两个也叫做欧拉公式。
将中的x取作π就得到:.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。
数学家们评价它是“上帝创造的公式”。
[1]4平面几何设△ABC的外心为O,内心为I,外接圆半径为R,内切圆半径为r,又记外心、内心的距离OI为d,则有(1)式称为欧拉公式.为了证明(1)式,我们现将它改成(2)式左边是点I对于⊙O的幂:过圆内任一点P的弦被P分成两个部分,这两个部分的乘积是一个定值,称为P关于⊙O的幂.事实上,如图3.21,如果将OI延长交圆于E、F,那么因此,设AI交⊙O于M,则因此,只需证明或写成比例式为了证明(5)式,应当寻找两个相似的三角形.一个以长IA、r为边;另一个以长2R、MI 为边.前一个不难找,图3.21中的△IDA就是,D是内切圆与AC的切点.后一个也必须是直角三角形,所以一边是直径ML,另一个顶点也应当在圆上.△MBL就满足要求.容易证明因此(5)式成立,从而(1)式成立.因为,所以由欧拉公式得出一个副产品,即5拓扑学事实上,欧拉公式有平面与空间两个部分:空间中的欧拉公式V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。
欧拉函数和欧拉公式欧拉函数本文介绍的是小于或等于n的正整数中与n互质的数的数目。
关于形式为的函数当n为1至1000的整数时的值在数论中,对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目。
此函数以其首名研究者欧拉命名,它又称为φ函数、欧拉商数等。
例如,因为1,3,5,7均和8互质。
欧拉函数实际上是模n的同余类所构成的乘法群(即环的所有单位元组成的乘法群)的阶。
这个性质与拉格朗日定理一起构成了欧拉定理的证明。
欧拉函数的值(小于等于1的正整数中唯一和1互质的数就是1本身)。
若n是质数p的k次幂,,因为除了p的倍数外,其他数都跟n互质。
欧拉函数是积性函数,即是说若m,n互质,。
证明:设A, B, C是跟m, n, mn 互质的数的集,据中国剩余定理,和可建立双射(一一对应)的关系。
因此的值使用算术基本定理便知,若则。
其中是使得整除的最大整数(这里)。
例如性质n的欧拉函数也是循环群 C 的生成元的个数(也是n阶分圆多项式的次n 数)。
C 中每个元素都能生成 C 的一个子群,即必然是某个子群的生成元。
而nn且按照定义,不同的子群不可能有相同的生成元。
此外, C 的所有子群都具有 nC 的形式,其中d整除n(记作d | n)。
因此只要考察n的所有因数d,将 C dd的生成元个数相加,就将得到 C 的元素总个数:n。
也就是说: n其中的d为n的正约数。
运用默比乌斯反转公式来“翻转”这个和,就可以得到另一个关于的公式:其中μ 是所谓的默比乌斯函数,定义在正整数上。
对任何两个互质的正整数a, m(即 gcd(a,m) = 1),,有即欧拉定理。
这个定理可以由群论中的拉格朗日定理得出,因为任意与互质的都属于环 ma的单位元组成的乘法群当m是质数p时,此式则为:即费马小定理。
生成函数以下两个由欧拉函数生成的级数都是来自于上节所给出的性质:。
由(n)生成的狄利克雷级数是:其中ζ(s)是黎曼ζ函数。
推导过程如下:使用开始时的等式,就得到:于是欧拉函数生成的朗贝级数如下:其对于满足 |q|<1 的q收敛。
最简单的欧拉公式欧拉公式,又称为欧拉恒等式,是数学中一条非常重要的公式,被认为是数学史上最美丽的公式之一。
它由瑞士数学家欧拉在18世纪中叶提出,并被广泛应用于数学、物理和工程等领域。
欧拉公式的形式为e^ix = cos(x) + isin(x),其中e是自然对数的底,i是虚数单位,x是一个实数。
这个公式将三个基本的数学常数e、i和π联系在一起,展示了它们之间的深刻关系。
欧拉公式的意义在于它建立了复数与三角函数之间的联系。
复数可以用实部和虚部来表示,而欧拉公式将复数的指数形式与三角函数的表达式相结合,使得复数的运算更加便捷。
欧拉公式的证明相对复杂,涉及到级数展开和复数运算等知识,这里我们不展开讨论。
欧拉公式在数学中的应用非常广泛。
首先,它用于解决各种数学问题,如微积分、线性代数和概率论等。
其次,它在物理学中有着重要的地位,特别是在量子力学中的波函数描述中起到了关键作用。
此外,欧拉公式还被应用于电路分析、信号处理、图像处理等工程领域。
除了欧拉公式的基本形式e^ix = cos(x) + isin(x),还存在着一些等价的形式。
例如,e^ix = cos(x) + isin(x)可以写成e^(ix) - cos(x) - isin(x) = 0,这就是著名的欧拉方程。
欧拉方程是一个具有深刻含义的方程,它将自然对数、虚数、三角函数和常数e联系在一起,展示了数学的美妙之处。
总结一下,欧拉公式是数学中一条非常重要的公式,它将自然对数、虚数和三角函数紧密地联系在一起,展示了数学的深刻内涵。
欧拉公式不仅在数学中具有重要的地位,还被广泛应用于物理和工程等领域。
欧拉公式的美丽和优雅使得它成为数学史上的经典之作,也激发了人们对数学的探索和研究。
欧拉公式e^iπ+1=0这个恒等式也叫做欧拉公式,它是数学⾥最令⼈着迷的⼀个公式,它将数学⾥最重要的⼏个数学联系到了⼀起:两个超越数:⾃然对数的底e,圆周率∏,两个单位:虚数单位i和⾃然数的单位1,以及数学⾥常见的0。
数学家们评价它是“上帝创造的公式”,我们只能看它⽽不能理解它。
证明:将e^ix=cosx+isinx中的x取作π就得到。
欧拉公式e^ix=cosx+isinx的证明:将函数y=e^x、y=sinx、y=cosx⽤幂级数展开,有e^x=exp(x)=1+x/1!+x^2/2!+x^3/3!+x^4/4!+…+x^n/n!+… <1>sinx=x-x^3/3!+x^5/5!-x^7/7!+......+(-1)^(k-1)*x^(2k-1)/(2k-1)!+ (2)cosx=1-x^2/2!+x^4/4!-x^6/6!+......+(-1)^k*x^(2k)/(2k)!+ (3)将<1>式中的x换为ix,得到<4>式;将i*<2>+<3>式得到<5>式。
⽐较<4><5>两式,知<4>与<5>恒等。
于是我们导出了e^ix=cosx+isinx,将公式⾥的x换成-x,得到:e^-ix=cosx-isinx,然后采⽤两式相加减的⽅法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]此时三⾓函数定义域已推⼴⾄整个复数集。
在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做欧拉公式,它们分散在各个数学分⽀之中。
)分式⾥的欧拉公式:(1)分式⾥的欧拉公式a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)当r=0,1时式⼦的值为0当r=2时值为1当r=3时值为a+b+c(2)复变函数论⾥的欧拉公式)复变函数论⾥的欧拉公式:e^ix=cosx+isinx,e是⾃然对数的底,i是虚数单位。