高中物理奥赛复赛专项训练(全12套)每日两题
- 格式:doc
- 大小:2.86 MB
- 文档页数:48
选择题一质点做简谐运动,下列说法中正确的是:A. 质点通过平衡位置时,速度最大B. 质点通过平衡位置时,加速度最大(正确答案)C. 质点离平衡位置越远,机械能越大D. 质点离平衡位置越远,振动频率越大关于光的本性,下列说法中正确的是:A. 光的波粒二象性是指光既具有波动性,又具有粒子性(正确答案)B. 光的波粒二象性是指光就是波和粒子的结合体C. 光的干涉和衍射现象说明光是横波D. 光电效应现象说明光是纵波在电磁感应现象中,下列说法正确的是:A. 感应电流的磁场总是阻碍原磁通量的变化B. 感应电流的磁场总是与原磁场方向相反C. 感应电动势的大小跟线圈的匝数成正比(正确答案)D. 感应电动势的大小跟穿过线圈的磁通量变化率无关在相对论中,下列说法正确的是:A. 高速运动的物体,其长度会沿运动方向收缩(正确答案)B. 高速运动的物体,其质量会随速度的增加而减小C. 时间的流逝是绝对的,与观察者的运动状态无关D. 光速在不同惯性参考系中是不同的关于热力学定律,下列说法正确的是:A. 热量不能自发地从低温物体传到高温物体B. 一定质量的理想气体,如果压强不变,体积增大,那么它一定从外界吸热(正确答案)C. 物体的内能与物体的速度有关D. 第二类永动机违反了能量守恒定律在量子物理中,下列说法正确的是:A. 电子的波动性是其固有的属性,与观察方式无关(正确答案)B. 电子的轨道半径是确定的,可以精确测量C. 氢原子的能级是连续的D. 光电效应中,光电子的最大初动能与入射光的频率无关关于电磁场和电磁波,下列说法正确的是:A. 变化的电场一定产生变化的磁场B. 均匀变化的电场产生恒定的磁场(正确答案)C. 电磁波在真空中不能传播D. 电磁波在介质中的传播速度比在真空中大在力学中,关于牛顿运动定律的应用,下列说法正确的是:A. 跳绳时,绳对人的拉力大于人对绳的拉力B. 物体所受的合外力不为零时,其速度一定不为零C. 物体所受的合外力方向改变,其加速度方向一定改变(正确答案)D. 物体所受的合外力大小不变,其加速度大小一定不变(忽略物体质量变化)。
全国中学生物理竞赛复赛试题参考解答、评分标准一、参考解答令 表达质子的质量, 和 分别表达质子的初速度和到达a 球球面处的速度, 表达元电荷, 由能量守恒可知2201122mv mv eU =+ (1)由于a 不动, 可取其球心 为原点, 由于质子所受的a 球对它的静电库仑力总是通过a 球的球心, 所以此力对原点的力矩始终为零, 质子对 点的角动量守恒。
所求 的最大值相应于质子到达a 球表面处时其速度方向刚好与该处球面相切(见复解20-1-1)。
以 表达 的最大值, 由角动量守恒有 max 0mv l mvR = (2)由式(1)、(2)可得20max 1/2eU l R mv =- (3) 代入数据, 可得max 22l R = (4) 若把质子换成电子, 则如图复解20-1-2所示, 此时式(1)中 改为 。
同理可求得 max 62l R =(5)评分标准: 本题15分。
式(1)、(2)各4分, 式(4)2分, 式(5)5分。
二、参考解答在温度为 时, 气柱中的空气的压强和体积分别为, (1)1C V lS = (2)当气柱中空气的温度升高时, 气柱两侧的水银将被缓慢压入A 管和B 管。
设温度升高届时 , 气柱右侧水银刚好所有压到B 管中, 使管中水银高度增大C BbS h S ∆= (3) 由此导致气柱中空气体积的增大量为C V bS '∆= (4)与此同时, 气柱左侧的水银也有一部分进入A 管, 进入A 管的水银使A 管中的水银高度也应增大 , 使两支管的压强平衡, 由此导致气柱空气体积增大量为A V hS ''∆=∆ (5)所以, 当温度为 时空气的体积和压强分别为21V V V V '''=+∆+∆ (6)21p p h =+∆ (7)由状态方程知112212p V p V T T = (8) 由以上各式, 代入数据可得2347.7T =K (9)此值小于题给的最终温度 K, 所以温度将继续升高。
高中物理奥林匹克竞赛试题
一、单项选择题:
1. 下列运动中,满足符合力学第二定律“力等于质量乘以加速度”的是()
A. 抛体运动
B. 弹簧的压缩
C. 自由落体
D. 水平下抛体
2. 以下哪一种要素是正确的:()
A. T型锁里的L型插杆的长度
B. 计算机的处理速度
C. 钢棒的弹性模量
D. 小车的最大速度
3. 绝热过程中,容积V,温度T关系为()
A. V不变,T不变
B. V不变,T升高
C. V增大,T不变
D. V增大,T升高
4. 下列物理学术语中,错误的是()
A. 功率:功/时
B. 电流:电位变化/时
C. 劲度:力/时
D. 速度:距离/时
二、多项选择题:
1. 关于光电效应,以下说法哪些正确()
A. 光电效应可以产生电流
B. 光电效应是物体受到光照射后发生电磁波变化
C. 光电效应可用于探测物体的运动
D. 光电效应是原子核发射粒子时产生的现象
2. 有关烧结温度的制定,以下说法哪些正确()
A. 烧结温度是晶体结构稳定的最低温度
B. 烧结温度较高,则晶粒较大
C. 烧结温度较高,则相的凝固程度较高
D. 烧结温度较低,则晶粒较大
3. 关于电磁波的性质,以下哪些说法正确()
A. 电磁波的双稳态传播速度与光的传播速度相同
B. 电磁波可以反射和折射
C. 电磁波可以向物体传输能量
D. 电磁波不能靠固体传播。
物理竞赛复赛试题及答案一、选择题(每题5分,共20分)1. 光在真空中的传播速度是()A. 299,792,458 m/sB. 299,792,458 km/hC. 299,792,458 km/sD. 299,792,458 m/h2. 根据牛顿第三定律,作用力和反作用力的大小()A. 相等B. 不相等C. 相等但方向相反D. 相等且方向相同3. 一个物体的动能与其速度的关系是()A. 正比B. 反比C. 无关D. 正比且平方关系4. 电场中某点的电势与该点到参考点的电势差成正比()A. 正确B. 错误二、填空题(每题5分,共20分)1. 根据库仑定律,两点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成______。
2. 一个物体从静止开始做匀加速直线运动,其加速度为a,经过时间t后,其速度为______。
3. 根据欧姆定律,电阻R、电流I和电压V之间的关系是V = ______。
4. 光的折射定律表明,入射角和折射角的正弦值之比等于两种介质的折射率之比,即sinθ1/sinθ2 = ______。
三、计算题(每题10分,共40分)1. 一辆汽车以20 m/s的速度行驶,突然刹车,刹车时的加速度为-5m/s²。
求汽车完全停止所需的时间。
2. 一个质量为2 kg的物体从10 m的高度自由落体,忽略空气阻力,求物体落地时的速度。
3. 一个电路中包含一个5 Ω的电阻和一个9 V的电池,求电路中的电流。
4. 一个光波的波长为600 nm,求其频率。
四、实验题(每题20分,共20分)1. 描述如何使用弹簧秤测量物体的重力,并解释实验原理。
答案:一、选择题1. A2. A3. D4. B二、填空题1. 反比2. at3. IR4. n1/n2三、计算题1. 4 s2. √(2gh) = √(2*9.8*10) m/s ≈ 14.1 m/s3. I = V/R = 9/5 A = 1.8 A4. f = c/λ = (299,792,458)/(600*10^-9) Hz ≈ 5*10^14 Hz四、实验题1. 将物体挂在弹簧秤的挂钩上,读取弹簧秤的示数即为物体的重力。
高中物理竞赛复赛试题高中物理竞赛复赛试题一、选择题1.以下哪个量是标量?A. 力B. 速度C. 位移D. 加速度2.在磁感强度相同的情况下,以下哪个铁块的磁化强度较大?A. 长铁棒B. 短铁棒C. 宽铁棒D. 薄铁片3.在电阻不变的情况下,以下哪种焦耳热损失最小?A. 电流强度最大的电路B. 电压最大的电路C. 电流最小的电路D. 电压最小的电路4.以下哪个物理量与表面积成反比?A. 电容量B. 当量C. 电荷数D. 电势差二、填空题1.物体在水中呈现浮力现象,是因为它比水的密度_________。
2.光的传播速度是_________,声音的传播速度是_________。
3._________定律描述了电导和电阻之间的关系。
4.如果两个电荷量正好相等但同性,则相互之间的作用力是_________。
5.当电路中的电器设备连接并工作时,带电粒子的移动方向是_________。
三、简答题1.什么是弹力?举例说明。
2.简述压强的概念,并列举三个常见的单位。
3.什么是电容?如何计算一个电容器的电容?4.简述电路中串联与并联的区别,并说明各自的优缺点。
5.谈谈对质能守恒定律的理解,并举例说明。
四、论述题有人说,“物质世界中没有原子和分子的概念,物理学将会失去意义。
”你认为这种说法正确吗?用你的观点和理由来支持你的回答。
以上是高中物理竞赛复赛的试题,希望参赛者能够认真思考并给出准确的答案。
物理学是一门研究物质和能量以及它们之间相互作用的科学,一直以来都是人类探索自然规律的重要学科。
通过参加竞赛,不仅可以提高对物理学的理论理解和实践能力,还可以培养思考问题、解决问题的能力。
祝愿大家在竞赛中取得好成绩!。
高中物理奥赛试题第一题:多项选择题(每小题4分)1. 以下哪个物理现象是微观粒子(如电子、质子等)具有的?A. 干涉B. 折射C. 动量守恒定律D. 显微镜成像2. 下列哪个单位不属于能量的单位?A. 焦耳(J)B. 千瓦时(kWh)C. 电子伏特(eV)D. 牛顿·米(N·m)3. 将同种气体放在不同的容器中,两者的温度相同。
哪个容器中的气体分子的平均自由程更大?A. 直径较大的容器B. 直径较小的容器C. 相同4. 在一个平面镜前放置一束白光。
下列哪个现象不会发生?A. 反射B. 全反射C. 色散D. 折射5. 以下哪个式子是描述牛顿第二定律的?A. F = maB. W = FsC. P = FVD. v = u + at第二题:计算题(每小题10分)1. 一个物体从静止开始沿直线匀加速运动,经过10秒后的速度为20 m/s。
求此物体的加速度。
2. 一个可以自闭合电路由5欧姆的电阻、10V电源和一个电键构成。
按下电键后,电源会持续提供10V的电压。
求电流大小。
3. 一辆火车以20 m/s的速度匀速行驶,在行驶过程中突然刹车。
火车停下来所需的时间为5秒,求火车的加速度和刹车的距离。
4. 一束光在真空中的速度为3.0 × 10^8 m/s。
如果这束光在玻璃中的折射率为1.5,求光在玻璃中的速度。
5. 一个质量为5 kg的物体以10 m/s的速度沿直线运动,受到5 N的恒定力作用,求物体在2秒后的速度。
第三题:应用题(每小题15分)1. 一个高300米的建筑物上一共有5个大理石球装饰物,每个重量相同。
第一个球位于离地面100米的高度处,第二个球位于第一个球正上方的离地200米的高度处,以此类推。
已知地面上的大气压强为1.0 × 10^5 Pa,问第五个球所受的大气压强是多少?2. 甲乙两辆车从相距200米的起点同时出发,甲以20 m/s的速度匀速行驶,而乙以10 m/s的速度匀速行驶。
2024物理竞赛高中试题2024年物理竞赛高中试题一、选择题1. 一个物体从静止开始自由下落,其下落距离与时间的关系为:- A. \( s = \frac{1}{2}gt^2 \)- B. \( s = gt \)- C. \( s = gt^2 \)- D. \( s = \frac{1}{2}gt \)2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
若物体的质量为\( m \),作用力为\( F \),则加速度\( a \)的表达式为:- A. \( a = \frac{F}{m} \)- B. \( a = mF \)- C. \( a = \frac{m}{F} \)- D. \( a = \frac{F^2}{m} \)3. 以下哪个是描述电磁波的方程?- A. \( E = mc^2 \)- B. \( F = ma \)- C. \( E = h\nu \)- D. \( U = qV \)二、填空题1. 根据能量守恒定律,一个物体从高度\( h \)自由落下,其势能转化为动能,落地时的动能为\( \frac{1}{2}mv^2 \),其中\( m \)是物体的质量,\( v \)是落地时的速度。
如果物体的质量为2千克,高度为10米,则落地时的速度为_________(结果保留一位小数)。
2. 理想气体状态方程为\( PV = nRT \),其中\( P \)代表压强,\( V \)代表体积,\( n \)代表物质的量,\( R \)是气体常数,\( T \)代表温度。
若将气体从状态1的\( P_1, V_1 \)变到状态2的\( P_2, V_2 \),且变化过程中气体经历等温过程,则\( \frac{V_2}{V_1} \)等于_________。
三、计算题1. 一个质量为0.5千克的物体,从静止开始沿斜面下滑,斜面与水平面的夹角为30度。
如果物体与斜面之间的摩擦系数为0.1,求物体下滑的加速度。
全国中学生物理竞赛复赛试题一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y X t X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)x y zE E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等. 1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a) 图(b)八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .第30届全国中学生物理竞赛复赛解答与评分标准一参考解答:x以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v .(3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v .(4)[(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
额份市来比阳光实验学校本卷共七题,总分值140分.一、(20分)薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一温度下,某种气体通过薄膜渗透时间,过的气体分子数dPSt k N ∆=,其中t 为渗透持续S 为薄膜的面积,d 为薄膜的厚度,P ∆为薄膜两侧气体的压强差.k 称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好.图为测薄膜材料对空气的透气系数的一种装置示意图.EFGI 为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U 形管内横截面积A =0.150cm 2.中,首先测得薄膜的厚度d =0.66mm ,再将薄膜固于图中C C '处,从而把渗透室分为上下两,上面的容积30cm 00.25=V ,下面连同U 形管左管水面以上的总容积为V 1,薄膜能够透气的面积S =1.00cm 2.翻开开关K 1、K 2与大气相通,大气的压强P 1=1.00atm ,此时U 形管右管中气柱长度cm 00.20=H ,31cm 00.5=V .关闭K 1、K 2后,翻开开关K 3,对渗透室上迅速充气至气体压强atm 00.20=P ,关闭K 3并开始计时.两小时后, U 形管左管中的水面高度下降了cm 00.2=∆H .过程中,始终保持温度为C 0 .求该薄膜材料在C 0 时对空气的透气系数.〔本中由于薄膜两侧的压强差在过程中不能保持恒,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值P ∆来代替公式中的P ∆.普适气体常量R = 1Jmol -1K -1,1.00atm = 1.013×105Pa 〕.二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度RGM 43=v ,式中M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测太空中某星体与地心在某时刻的距离.〔最后结果要求用测得量和地球半径R 表示〕 三、(15分)子在相对自身静止的惯性参考系中的平均寿命v =s 100.260-⨯≈τ.宇宙射线与大气在高空某处发生核反产生一批子,以0.99c 的速度〔c 为真空中的光速〕向下运动并衰变.根据放射性衰变律,相对给惯性参考系,假设t = 0时刻的粒子数为N (0), t 时刻剩余的的粒子数为N (t ),那么有()()τt N t N -=e 0,式中为相对该惯性系粒子平均寿命.假设能到达地面的子数为原来的5%,试估算子产生处相对于地面的高度h .不考虑重力和地磁场对子运动的影响.四、(20分)目前,大功率半导体激光器的主要结构形式是由许多发光区距离地排列在一条直线上的长条状,通常称为激光二极管条.但这样的半导体激光器发出的是很多束发散光束,光能分布很不集中,不利于传输和用.为了解决这个问题,需要根据具体用的要求,对光束进行必需的变换〔或称整形〕.如果能把一个半导体激光二极管条发出的光变换成一束很细的平行光束,对半导体激光的传输和用将是非常有意义的.为此,有人提出了先把多束发散光会聚到一点,再变换为平行光的方案,其根本原理可通过如下所述的简化了的情况来说明.第21届生物理竞赛复赛题试卷K 3K 2P 1 V 1CC ΄P 0 V 0K 1如图,S 1、S 2、S 3 是距离〔h 〕地排列在一直线上的三个点光源,各自向垂直于它们的连线的同一方向发出半顶角为束.请使=arctan ()41的圆锥形光用三个完全相同的、焦距为f = 0h 、半径为r =0.75 h 的圆形薄凸透镜,经加工、组装成一个三者在同一平面内的组合透镜,使三束光都能投射到这个组合透镜上,且经透镜折射后的光线能会聚于z 轴〔以S 2为起点,垂直于三个点光源连线,与光束中心线方向相同的射线〕上距离S 2为 L = 12.0 h 处的P 点.〔加工时可对透镜进行外形的改变,但不能改变透镜焦距.〕 1.求出组合透镜中每个透镜光心的位置.2.说明对三个透镜如何加工和组装,并求出有关数据.五、(20分)如下图,接地的空心导体球壳内半径为R ,在空腔内一直径上的P 1和P 2处,放置电量分别为q 1和q 2的点电荷,q 1=q 2=q ,两点电荷到球心的距离均为a .由静电感与静电屏蔽可知:导体空腔内外表将出现感电荷分布,感电荷电量于-2q .空腔内部的电场是由q 1、q 2和两者在空腔内外表上的感电荷共同产生的.由于我们尚不知道这些感电荷是怎样分布的,所以很难用场强叠加原理直接求得腔内的电势或场强.但理论上可以证明,感电荷对腔内电场的奉献,可用假想的位于腔外的〔效〕点电荷来代替〔在此题中假想(效)点电荷为两个〕,只要假想的〔效〕点电荷的位置和电量能满足这样的条件,即:设想将整个导体壳去掉,由q 1在原空腔内外表的感电荷的假想〔效〕点电荷1q '与q 1共同产生的电场在原空腔内外表所在位置处各点的电势皆为0;由q 2在原空腔内外表的感电荷的假想〔效〕点电荷2q '与q 2共同产生的电场在原空腔内外表所在位置处各点的电势皆为0.这样确的假想电荷叫做感电荷的效电荷,而且这样确的效电荷是唯一的.效电荷取代感电荷后,可用效电荷1q '、2q '和q 1、q 2来计算原来导体存在时空腔内部任意点的电势或场强.1.试根据上述条件,确假想效电荷1q '、2q '的位置及电量. 2.求空腔内部任意点A 的电势U A .A 点到球心O 的距离为r ,OA 与1OP 的夹角为.六、(20分)如下图,三个质量都是m 的刚性小球A 、B 、C 位于光滑的水平桌面上〔图中纸面〕,A 、B 之间,B 、C 之间分别用刚性轻杆相连,杆与A 、B 、C 的各连接处皆为“铰链式〞的〔不能对小球产生垂直于杆方向的作用力〕.杆AB 与BC 的夹角为 ,</2.DE 为固在桌面上一块挡板,它与AB 连线方向垂直.现令A 、B 、C 一起以共同的速度v 沿平行于AB 连线方向向DE 运动,在C 与挡板碰撞过程中C 与挡板之间无摩擦力作用,求碰撞时当C 沿垂直于DE 方向的速度由v 变为0这一极短时间内挡板对C 的冲量的大小.七、〔25分〕如下图,有二平行金属导轨,相距l ,位于同一水ABCπ-αDxO yv 0c a bydLS 1 3αα2 h h zrP 2P 1 θRaa平面内〔图中纸面〕,处在磁感强度为B 的匀强磁场中,磁场方向竖直向下〔垂直纸面向里〕.质量均为m 的两金属杆ab 和cd 放在导轨上,与导轨垂直.初始时刻, 金属杆ab 和cd 分别位于x = x 0和x = 0处.假设导轨及金属杆的电阻都为零,由两金属杆与导轨构成的回路的自感系数为L .今对金属杆ab 施以沿导轨向右的瞬时冲量,使它获得初速0v .设导轨足够长,0x 也足够大,在运动过程中,两金属杆之间距离的变化远小于两金属杆的初始间距0x ,因而可以认为在杆运动过程中由两金属杆与导轨构成的回路的自感系数L 是恒不变的.杆与导轨之间摩擦可不计.求任意时刻两杆的位置x ab 和x cd 以及由两杆和导轨构成的回路中的电流i 三者各自随时间t 的变化关系.第21届生物理竞赛复赛题参考解答一、开始时U 形管右管中空气的体积和压强分别为 V 2 = HA 〔1〕p 2= p 1经过2小时,U 形管右管中空气的体积和压强分别为A H H V )(2∆-='〔2〕2222V V p p '='〔3〕渗透室下部连同U 形管左管水面以上气体的总体积和压强分别为HAV V ∆+='11 〔4〕H g p p Δ221ρ+'=〔5〕式中为水的密度,g 为重力加速度.由理想气体状态方程nRT pV =可知,经过2小时,薄膜下部增加的空气的摩尔数RTV p RT V p n 1111-''=∆ 〔6〕在2个小时内,通过薄膜渗透过去的分子数 A nN N ∆=〔7〕式中N A 为阿伏伽德罗常量.渗透室上部空气的摩尔数减少,压强下降.下降了p0V ΔnRTp =∆ 〔8〕经过2小时渗透室上中空气的压强为p p p ∆-='00〔9〕测试过程的平均压强差[])(211010p p ()p p p '-'+-=∆ 〔10〕根据义,由以上各式和有关数据,可求得该薄膜材料在0℃时对空气的透气系数11111s m Pa 104.2---⨯=∆=tSp Nd k 〔11〕评分: 此题20分.(1)、(2)、(3)、(4)、(5)式各1分,(6)式3分,(7)、(8)、(9)、(10) 式各2分,(11) 式4分.二、如图,卫星绕地球运动的轨道为一椭圆,地心位于轨道椭圆的一个焦点O处,设待测量星体位于C 处.根据题意,当一个卫星运动到轨道的近地点A 时,另一个卫星恰好到达远地点B 处,只要位于A 点的卫星用角度测量仪测出AO和AC 的夹角1,位于B 点的卫星用角度测量仪测出BO 和BC 的夹角2,就可以计算出此时星体C 与地心的距离OC .因卫星椭圆轨道长轴的长度远近+r r AB =(1)式中r 近、与r 远分别表示轨道近地点和远地点到地心的距离.由角动量守恒远远近近=r m r v mv (2)式中m 为卫星的质量.由机械能守恒远远近近--r GMm m r GMm m 222121v v = (3) R r 2=近, RGM 43=近v得 R r 6=远(4) 所以R R R AB 862=+=(5)在△ABC 中用正弦理 ()ABBC 211πsin sin ααα--=(6) 所以()AB BC 211sin sin ααα+=(7)地心与星体之间的距离为OC ,在△BOC 中用余弦理2222cos 2αBC r BC r OC ⋅-+=远远(8)由式(4)、(5)、(7)得 ()()212121212sin cos sin 24sin sin 1692ααααααα+-++=R OC (9)评分:此题20分.(1)式2分,(2)、(3)式各3分,(6) 、(8)式各3分, (9) 式6分.三、因子在相对自身静止的惯性系中的平均寿命根据时间膨胀效,在地球上观测到的子平均寿命为,()21c v -=ττ (1)代入数据得= ×10-5s(2) 相对地面,假设子到达地面所需时间为t ,那么在t 时刻剩余的子数为()()τt N t N -=e 0(3)根据题意有()()%5e 0==-τt N t N(4)对上式号两边取e 为底的对数得1005lnτ-=t (5)代入数据得s 1019.45-⨯=t (6)根据题意,可以把子的运动看作匀速直线运动,有t h v =(7)代入数据得 m 1024.14⨯=h(8)评分:此题15分. (1)式或(2)式6分,(4)式或(5)式4分,(7) 式2分,(8) 式3分.四、1.考虑到使3个点光源的3束光分αLS 1 α2h h 1S ' S 3’O 1 O 2(S 2’) O 3M ’u别通过3个透镜都成实像于P 点的要求,组合透镜所在的平面垂直于z 轴,三个光心O 1、O 2、O 3的连线平行于3个光源的连线,O 2位于z 轴上,如图1所示.图中M M '表示组合透镜的平面,1S '、2S '、3S '为三个光束中心光线与该平面的交点. 22O S = u 就是物距.根据透镜成像公式 fu L u111=-+(1)可解得因为要保证经透镜折射后的光线都能会聚于P 点,来自各光源的光线在投射到透镜之前不能交叉,必须有2u tan ≤h 即u ≤2h .在上式中取“-〞号,代入f 和L 的值,算得 h u )236(-=≈57h (2) 此解满足上面的条件.分别作3个点光源与P 点的连线.为使3个点光源都能同时成像于P 点,3个透镜的光心O 1、O 2、O 3分别位于这3条连线上〔如图1〕.由几何关系知,有h h h L u L O O O O 854.0)24121(3221≈+=-==(3)即光心O 1的位置在1S '之下与1S '的距离为h O O h O S 146.02111=-=' (4) 同理,O 3的位置在3S '之上与3S '的距离为0.146h 处.由(3)式可知组合透镜中相邻薄透镜中心之间距离必须于0.854h ,才能使S 1、S 2、S 3都能成像于P 点. 2.现在讨论如何把三个透镜L 1、L 2、L 3加工组装成组合透镜.因为三个透镜的半径r = 0.75h ,将它们的光心分别放置到O 1、O 2、O 3处时,由于21O O =32O O =0.854h <2r ,透镜必然发生相互重叠,必须对透镜进行加工,各切去一,然后再将它们粘起来,才能满足(3)式的要求.由于对称关系,我们只需讨论上半的情况.图2画出了L 1、L 2放在M M '平面内时相互交叠的情况〔纸面为M M '平面〕.图中C 1、C 2表示L 1、L 2的边缘,1S '、2S '为光束中心光线与透镜的交点,W 1、W 2分别为C 1、C 2与O 1O 2的交点.1S '为圆心的圆1和以2S '〔与O 2重合〕为圆心的圆2分别是光源S 1和S 2投射到L 1和L 2时产生的光斑的边缘,其半径均为 h u 439.0tan ==αρ (5) 根据题意,圆1和圆2内的光线必须能进入透镜.首先,圆1的K 点〔见图2〕是否落在L 1上?由几何关系可知()h r h h S O K O 75.0585.0146.0439.0111=<=+='+=ρ (6) 故从S 1发出的光束能进入L 1.为了保证光束能进入透镜组合,对L 1和L 2进行加工时必须保存圆1和圆2内的透镜.下面举出一种对透镜进行加工、组装的方法.在O 1和O 2之间作垂直于O 1O 2且分别与圆1和圆2相切的切线Q Q '和N N '.假设沿位于Q Q '和N N '之间且与它们平行的任意直线T T '对透镜L 1和L 2进行切割,去掉两透镜的弓形,然后把它们沿此线粘合就得到符合所需组合透镜的上半部.同理,对L 2的下半部和L 3进行切割,然后将L 2的下半部和L 3粘合起来,就得到符合需要的整个组合透镜.这个组合透镜可以将S 1、S 2、S 3发出的光线都会聚到P 点.0.146h 0.854h 0.439h0.439h h S 1’O 2 (S 2’)O 1W 1W 2 Q Q ’ N N ’TT ’ C 1 C 2’圆1 圆2图2 xx K现在计算Q Q '和N N '的位置以及对各个透镜切去的大小符合的条件.设透镜L 1被切去沿O 1O 2方向的长度为x 1,透镜L 2被切去沿O 1O 2方向的长度为x 2,如图2所示,那么对任意一条切割线T T ', x 1、x 2之和为h O O r x x d 646.022121=-=+=〔7〕由于T T '必须在Q Q '和N N '之间,从图2可看出,沿Q Q '切割时,x 1达最大值(x 1M ),x 2达最小值(x 2m ),代入r ,和11O S '的值,得h x M 457.01=(8)代入(7)式,得h x d x M m 189.012=-=(9)由图2可看出,沿N N '切割时,x 2达最大值(x 2M ),x 1达最小值(x 1m ), 代入r 和的值,得h x M 311.02= (10)h x d x M m 335.021=-=〔11〕由对称性,对L 3的加工与对L 1相同,对L 2下半部的加工与对上半部的加工相同. 评分:此题20分.第1问10分,其中〔2〕式5分,〔3〕式5分,第2问10分,其中(5)式3分,(6)式3分,(7)式2分,(8)式、(9)式共1分,(10)式、(11)式共1分.如果学生解答中没有(7)—(11)式,但说了“将图2中三个圆锥光束照射到透镜保存,透镜其它可根据需要磨去〔或切割掉〕〞给3分,再说明将加工后的透镜组装成透镜组合时必须保证O 1O 2=O 1O 2=0.854h ,再给1分,即给(7)—(11)式的全分〔4分〕. 五、1.解法Ⅰ:如图1所示,S 为原空腔内外表所在位置,1q '的位置位于1OP 的线上的某点B 1处,2q '的位置位于2OP 的线上的某点B 2处.设A 1为S 面上的任意一点,根据题意有0111111='+B A q kP A q k(1)0212212='+B A q kP A q k (2)怎样才能使 (1) 式成立呢?下面分析图1中11A OP ∆与11B OA ∆的关系.假设效电荷1q '的位置B 1使下式成立,即211R OB OP =⋅ (3) 即 1111OB OA OA OP =(4)那么 1111B OA A OP ∽△△有RaOA OP B A P A ==111111 (5)由 (1)式和 (5)式便可求得效电荷1q '11q aRq -=' (6)由 (3) 式知,效电荷1q '的位置B 1到原球壳中心位置O 的距离aR OB 21=(7)同理,B 2的位置使2112B OA A OP ∽△△,用类似的方法可求得效电荷22q aRq -=' (8)B 2B 1P 2 P 1O Ra a θ图1SA 1效电荷2q '的位置B 2到原球壳中心O 位置的距离 aR OB 22=(9)解法Ⅱ:在图1中,设111r P A =,111r B A '=,d OB =1.根据题意,1q 和1q '两者在A 1点产生的电势和为零.有01111=''+r q k r q k 〔1'〕 式中1221)cos 2(θRa a R r -+= 〔2'〕1221)cos 2(θRd d R r -+=' 〔3'〕 由〔1'〕、〔2'〕、〔3'〕式得)cos 2()cos 2(22212221θθRa a R q Rd d R q -+'=-+ 〔4'〕 〔4'〕式是以θcos 为变量的一次多项式,要使〔4'〕式对任意θ均成立,号两边的相系数相,即)()(22212221a R q d R q +'=+ 〔5'〕a q d q 2121'=〔6'〕由〔5'〕、〔6'〕式得0)(2222=++-aR d R a ad 〔7'〕 解得aR a R a d 2)()(2222-±+=〔8'〕由于效电荷位于空腔外部,由〔8'〕式求得aR d 2=〔9'〕由〔6'〕、〔9'〕式有212221q aR q =' 〔10'〕考虑到〔1'〕式,有11q aRq -=' 〔11'〕 同理可求得aR OB 22=〔12'〕22q aR q -=' 〔13'〕2.A 点的位置如图2所示.A 的电势由q 1、1q '、q 2、2q '共同产生,即 ⎪⎪⎭⎫ ⎝⎛-+-=A B a R A P A B a R A P kq U A 22111111 (10)因22221cos 2⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=a R aR r r A B θ代入 (10) 式得图2⎪⎪⎭⎫++-+++422222cos 2cos 21R raR r a Ra ra r θθ (11)评分:此题20分.第1问18分,解法Ⅰ中(1)、(2)、(6)、(7)、(8)、(9) 式各3分.解法Ⅱ的评分可参考解法Ⅰ. 第2问2分,即(11)式2分.六、令I 表示题述极短时间t 内挡板对C 冲量的大小,因为挡板对C 无摩擦力作用,可知冲量的方向垂直于DE ,如下图;I '表示B 、C 间的杆对B 或C 冲量的大小,其方向沿杆方向,对B 和C 皆为推力;C v 表示t 末了时刻C 沿平行于DE方向速度的大小,B v 表示t 末了时刻B 沿平行于DE 方向速度的大小,⊥B v 表示t 末了时刻B 沿垂直于DE 方向速度的大小.由动量理, 对C 有Cm I v ='αsin (1) v m I I ='-αcos(2)对B 有B m I v ='αsin(3)对AB 有()⊥-='B m I v v 2cos α(4)因为B 、C 之间的杆不能伸、缩,因此B 、C 沿杆的方向的分速度必相.故有αααsin cos sin B B C v v v -=⊥(5)由以上五式,可解得v m I αα22sin 31sin 3++= (6)评分:此题20分. (1)、(2)、(3)、(4)式各2分. (5)式7分,(6)式5分. 七、解法Ⅰ:当金属杆ab 获得沿x 轴正方向的初速v 0时,因切割磁力线而产生感电动势,由两金属杆与导轨构成的回路中会出现感电流.由于回路具有自感系数,感电流的出现,又会在回路中产生自感电动势,自感电动势将阻碍电流的增大,所以,虽然回路的电阻为零,但回路的电流并不会趋向无限大,当回路中一旦有了电流,磁场作用于杆ab 的安培力将使ab 杆减速,作用于cd 杆的安培力使cd 杆运动.设在任意时刻t ,ab 杆和cd 杆的速度分别为v 1和v 2〔相对地面参考系S 〕,当v 1、v 2为正时,表示速度沿x 轴正方向;假设规逆时针方向为回路中电流和电动势的正方向,那么因两杆作切割磁力线的运动而产生的感电动势()21v v -=Bl E(1)当回路中的电流i 随时间的变化率为t i ∆∆时,回路中的自感电动势tiLL ∆∆-=E (2)根据欧姆律,注意到回路没有电阻,有0=+L E E(3)金属杆在导轨上运动过程中,两杆构成的系统受到的水平方向的合外力为零,系统的质心作匀速直线运动.设系统质心的速度为V C ,有 C mV m 20=v(4)得B ACπ-αD20v =C V (5)V C 方向与v 0相同,沿x 轴的正方向.现取一的参考系S ',它与质心固连在一起,并把质心作为坐标原点O ',取坐标轴x O ''与x 轴平行.设相对S '系,金属杆ab 的速度为u ,cd 杆的速度为u ',那么有 u V C +=1v (6)u V C '+=2v(7)因相对S '系,两杆的总动量为零,即有0='+u m mu(8) 由(1)、(2)、(3)、(5)、(6) 、(7) 、(8)各式,得ti LBlu ∆∆=2 (9)在S '系中,在t 时刻,金属杆ab 坐标为x ',在t +t 时刻,它的坐标为x x '∆+',那么由速度的义tx u ∆'∆=(10)代入 (9) 式得i L x Bl ∆='∆2(11)假设将x '视为i 的函数,由〔11〕式知i x ∆'∆为常数,所以x '与i 的关系可用一直线方程表示b i BlLx +='2 (12)式中b 为常数,其值待.现在t =时刻,金属杆ab 在S '系中的坐标x '=021x ,这时i = 0,故得0212x i Bl L x +=' (13)或⎪⎭⎫⎝⎛-'=0212x x L Bl i (14)021x 表示t =时刻金属杆ab 的位置.x '表示在任意时刻t ,杆ab 的位置,故⎪⎭⎫⎝⎛-'021x x 就是杆ab 在t 时刻相对初始位置的位移,用X 表示,021x x X -'= (15)当X >0时,ab 杆位于其初始位置的右侧;当X <0时,ab 杆位于其初始位置的左侧.代入(14)式,得X LBli 2= (16)这时作用于ab 杆的安培力XLl B iBl F 222-=-= (17)ab 杆在初始位置右侧时,安培力的方向指向左侧;ab 杆在初始位置左侧时,安培力的方向指向右侧,可知该安培力具有弹性力的性质.金属杆ab 的运动是简谐振动,振动的周期()Ll B m T 222π2= (18)在任意时刻t , ab 杆离开其初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(19)A 为简谐振动的振幅,为初相位,都是待的常量.通过参考圆可求得ab 杆的振动速度⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=ϕt TT A u π2sin π2(20)(19)、(20)式分别表示任意时刻ab 杆离开初始位置的位移和运动速度.现在t =0时刻,ab 杆位于初始位置,即X = 0速度故有解这两式,并注意到(18)式得2π3=ϕ(21)22400mLBlT A vv ==π (22)由此得ab 杆的位移t TmL Bl t TmL BlX π2sin 222π3π2cos 2200v v =⎪⎭⎫ ⎝⎛+=〔23〕由 (15) 式可求得ab 杆在S '系中的位置t TmL Blx x π2sin 222100abv +=' (24)因相对质心,任意时刻ab 杆和cd 杆都在质心两侧,到质心的距离相,故在S '系中,cd 杆的位置t TmL Blx x π2sin 222100cdv --='(25) 相对地面参考系S ,质心以021v =C V 的速度向右运动,并注意到〔18〕式,得ab杆在地面参考系中的位置t mL Bl mL Blt x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v (26)cd 杆在S 系中的位置t mL Bl mL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 222100cd v v 〔27〕回路中的电流由 (16) 式得t mL Bl L m t T mL BlL Bl i ⎪⎪⎭⎫ ⎝⎛==2sin 2π2sin 22200v v (28)解法Ⅱ:当金属杆在磁场中运动时,因切割磁力线而产生感电动势,回路中出现电流时,两金属杆都要受到安培力的作用,安培力使ab 杆的速度改变,使cd 杆运动.设任意时刻t ,两杆的速度分别为v 1和v 2〔相对地面参考系S 〕,假设规逆时针方向为回路电动势和电流的正方向,那么由两金属杆与导轨构成的回路中,因杆在磁场中运动而出现的感电动势为()21v v -=Bl E(1’)令u 表示ab 杆相对于cd 杆的速度,有Blu L =E(2’)当回路中的电流i 变化时,回路中有自感电动势E L ,其大小与电流的变化率成正比,即有tiLL ∆∆-=E (3’)根据欧姆律,注意到回路没有电阻,有由式(2’)、(3’)两式得tiLBlu ∆∆= (4’)设在t 时刻,金属杆ab 相对于cd 杆的距离为x ',在t +t 时刻,ab 相对于cd 杆的距离为x '+x '∆,那么由速度的义,有tx u ∆'∆=(5’)代入 4' 式得i L x Bl ∆='∆(6’)假设将x '视为i 的函数,由(6’)式可知,i x ∆'∆为常量,所以x '与i 的关系可以用一直线方程表示,即b i BlLx +=' (7’)式中b 为常数,其值待.现在t =时刻,金属杆ab 相对于cd 杆的距离为0x ,这时i = 0,故得 0x i Bl Lx +=' (8’) 或()0x x L Bli -'= (9’)0x 表示t =时刻金属杆ab 相对于cd 杆的位置.x '表示在任意时刻t 时ab杆相对于cd 杆的位置,故()0x x -'就是杆ab 在t 时刻相对于cd 杆的相对位置相对于它们在t =时刻的相对位置的位移,即从t =到t =t 时间内ab 杆相对于cd 杆的位移0x x X -'=(10')于是有X L Bli = (11’)任意时刻t ,ab 杆和cd 杆因受安培力作用而分别有加速度a ab 和a cd ,由牛顿律有 ab ma iBl =- (12’)cd ma iBl =(13’)两式相减并注意到9'式得()XLl B iBl a a m 22cd ab22-=-=- (14’)式中()cd ab a a -为金属杆ab 相对于cd 杆的加速度,而X 是ab 杆相对cd 杆相对位置的位移.Ll B 222是常数,说明这个相对运动是简谐振动,它的振动的周期()Ll B m T 222π2= (15’)在任意时刻t ,ab 杆相对cd 杆相对位置相对它们初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(16’)A 为简谐振动的振幅,为初相位,都是待的常量.通过参考圆可求得X 随时间的变化率即速度⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=ϕT T A V π2sin π2(17’)现在t =0时刻,杆位于初始位置,即X = 0,速度0v =V 故有解这两式,并注意到(15’) 式得由此得t mL Bl mL Bl t TmL BlX ⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=2sin 22π3π2cos 200v v (18’)因t = 0时刻,cd 杆位于x = 0 处,ab 杆位于x = x 0 处,两者的相对位置由x 0表示;设t 时刻,cd 杆位于x = x cd 处,ab 杆位于x = x ab 处,两者的相对位置由x ab -x cd 表示,故两杆的相对位置的位移又可表示为X = x ab -x cd -x 0(19’)所以t mL Bl mL Blx x x ⎪⎪⎭⎫ ⎝⎛+=-2sin 200cd ab v (20’)(12’)和(13’)式相加, 得由此可知,两杆速度之和为一常数即v 0,所以两杆的位置x ab 和x cd 之和为x ab +x cd = x 0+v 0t (21’)由(20’)和(21’)式相加和相减,注意到(15’)式,得 t mL BlmL Bl t x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v 〔22’〕t mL Bl mL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 222100cd v v 〔23’〕由(11’)、〔19’〕(22’)、(23’)式得回路中电流t mL Bl L m i ⎪⎪⎭⎫ ⎝⎛=2sin 20v 〔24’〕评分:此题25分.解法Ⅰ 求得(16)式8分,(17)、(18)、(19)三式各2分. (23)式4分,(24)、(25)二式各2分,(26)、(27)、(28)三式各1分.解法Ⅱ的评分可参照解法Ⅰ评分中的相式子给分.。
物理竞赛真题专项(1) 静力学平衡1.〔26届复赛〕二、(20分)图示正方形轻质刚性水平桌面由四条完全相同的轻质细桌腿1、2、3、4支撑于桌角A 、B 、C 、D 处,桌腿竖直立在水平粗糙刚性地面上。
已知桌腿受力后将产生弹性微小形变。
现于桌面中心点O 至角A 的连线OA 上某点P 施加一竖直向下的力F ,令c OAOP,求桌面对桌腿1的压力F 1。
A设桌面对四条腿的作用力皆为压力,分别为1F 、2F 、3F 、4F .因轻质刚性的桌面处在平衡状态,可推得1234F F F F F +++= (1)由于对称性,24F F =. (2)考察对桌面对角线BD 的力矩,由力矩平衡条件可得13F cF F =+. (3)根据题意, 10≤≤c ,c =0对应于力F 的作用点在O 点,c =1对应于F 作用点在A 点.设桌腿的劲度系数为k , 在力F 的作用下,腿1的形变为1F k ,腿2和4的形变均为2F k ,腿3的形变为3F k .依题意,桌面上四个角在同一平面上,因此满足13212F F F k k k⎛⎫+=⎪⎝⎭, 即 1322F F F +=. (4)由(1)、(2)、(3)、(4)式,可得 1214c F F +=, (5) 3124cF F -=, (6) 当12c ≥时,03≤F .30F =,表示腿3无形变;30F <,表示腿3受到桌面的作用力为拉力,这是不可能的,故应视30F =.此时(2)式(3)式仍成立.由(3)式,可得1F cF = (7)综合以上讨论得F c F 4121+=, 102c ≤≤ . (8) cF F =1,121≤≤c . (9)评分标准:本题20分. (1)式1分,(2)式1分,(3)式2分,(4)式7分,得到由(8)式表示的结果得4分,得到由(9)式表示的结果得5分. 2.〔20届复赛〕五、(22分)有一半径为R 的圆柱A ,静止在水平地面上,并与竖直墙面相接触.现有另一质量与A 相同,半径为r 的较细圆柱B ,用手扶着圆柱A ,将B 放在A 的上面,并使之与墙面相接触,如图所示,然后放手.己知圆柱A 与地面的静摩擦系数为0.20,两圆柱之间的静摩擦系数为0.30.若放手后,两圆柱体能保持图示的平衡,问圆柱B 与墙面间的静摩擦系数和圆柱B 的半径r 的值各应满足什么条件?五、参考解答放上圆柱B 后,圆柱B 有向下运动的倾向,对圆柱A 和墙面有压力。
圆柱A 倾向于向左运动,对墙面没有压力。
平衡是靠各接触点的摩擦力维持的。
现设系统处于平衡状态,取圆柱A 受地面的正压力为1N ,水平摩擦力为1F ;圆柱B 受墙面的正压力为2N ,竖直摩擦力为2F ,圆柱A 受圆柱B 的正压力为3N ,切向摩擦力为3F ;圆柱B 受圆柱A 的正压力为3N ',切向摩擦力为3F ',如图复解20-5所示。
各力以图示方向为正方向。
已知圆柱A 与地面的摩擦系数1μ=0.20,两圆柱间的摩擦系数3μ=0.30。
设圆柱B 与墙面的摩擦系数为2μ,过两圆柱中轴的平面与地面的交角为ϕ。
设两圆柱的质量均为M ,为了求出1N 、2N 、3N 以及为保持平衡所需的1F 、2F 、3F 之值,下面列出两圆柱所受力和力矩的平衡方程:圆柱A : 133(1)133 (2)13F R F R = (3) 圆柱B : 233sin cos 0Mg F N F ϕϕ''---=(4)233cos sin 0N N F ϕϕ''-+= (5)32F r F r '= (6)由于33F F '=,所以得1233F F F F F '==== (7)式中F 代表1F ,2F ,3F 和3F '的大小。
又因33N N '=,于是式(1)、(2)、(4)和(5)四式成为:13sin cos 0Mg N N F ϕϕ-++= (8)3cos sin 0F N F ϕϕ-+= (9)3sin cos 0Mg F N F ϕϕ-+-= (10)23cos sin 0N N F ϕϕ-+=(11)以上四式是1N ,2N ,3N 和F 的联立方程,解这联立方程可得2N F = (12)31sin 1cos sin N Mg ϕϕϕ+=++(13)2cos 1cos sin N F Mg ϕϕϕ==++(14)12cos 2sin 1cos sin N Mg ϕϕϕϕ++=++ (15)式(12)、(13)、(14)和(15)是平衡时所需要的力,1N ,2N ,3N 没有问题,但1F ,2F ,3F 三个力能不能达到所需要的数值F ,即式(12)、(14)要受那里的摩擦系数的制约。
三个力中只要有一个不能达到所需的F 值,在那一点就要发生滑动而不能保持平衡。
首先讨论圆柱B 与墙面的接触点。
接触点不发生滑动要求222FN μ≥由式(12),得221F N =所以21μ≥ (16) 再讨论圆柱A 与地面的接触点的情形。
按题设此处的摩擦系数为1μ=0.20,根据摩擦定律f N μ≤,若上面求得的接地点维持平衡所需的水平力1F 满足111F N μ≤,则圆柱在地面上不滑动;若111F N μ>,这一点将要发生滑动。
圆柱A 在地面上不发生滑动的条件是111cos 2cos 2sin FN ϕμϕϕ≥=++(17) 由图复解20-5可知cos R r R rϕ-=+ (18)sin ϕ= (19)由式(17)、(18)和式(19)以及1μ=0.20,可以求得 19r R ≥(20)即只有当19r R ≥时,圆柱A 在地面上才能不滑动。
最后讨论两圆柱的接触点。
接触点不发生滑动要求333cos 1sin F N ϕμϕ≥=+ (21)由式(18)、(19)以及3μ=0.30,可解得270.2913r R R ⎛⎫≥= ⎪⎝⎭(22)显然,在平衡时,r 的上限为R 。
总结式(20)和式(22),得到r 满足的条件为0.29R r R ≥≥ (23)评分标准:本题22分。
求得式(7)、(12)、(13)、(14)、(15)各2分,式(16)3分,求得式(23)9分。
物理竞赛真题专项(2) 天体运动1.〔20届复赛〕三、(20分)有人提出了一种不用火箭发射人造地球卫星的设想.其设想如下:沿地球的一条弦挖一通道,如图所示.在通道的两个出口处A 和B ,分别将质量为M 的物体和质量为m 的待发射卫星同时自由释放,只要M 比m 足够大,碰撞后,质量为m 的物体,即待发射的卫星就会从通道口B 冲出通道;设待发卫星上有一种装置,在待发卫星刚离开出口B 时,立即把待发卫星的速度方向变为沿该处地球切线的方向,但不改变速度的大小.这样待发卫星便有可能绕地心运动,成为一个人造卫星.若人造卫星正好沿地球表面绕地心做圆周运动,则地心到该通道的距离为多少?己知M =20m ,地球半径0R =6400 km .假定地球是质量均匀分布的球体,通道是光滑的,两物体间的碰撞是弹性的.三、参考解答位于通道内、质量为m 的物体距地心O 为r 时(见图复解20-3),它受到地球的引力可以表示为2GM mF r'=, (1)式中M '是以地心O 为球心、以r 为半径的球体所对应的那部分地球的质量,若以ρ表示地球的密度,此质量可以表示为343M r ρπ'=(2) 于是,质量为m 的物体所受地球的引力可以改写为43F G mr πρ= (3)sin f F θ= (4) sin xrθ= (5)θ为r 与通道的中垂线OC 间的夹角,x 为物体位置到通道中点C 的距离,力的方向指向通道的中点C 。
在地面上物体的重力可以表示为02GM mmg R = (6) 式中0M 是地球的质量。
由上式可以得到 043g G R πρ= (7)由以上各式可以求得 0mgf x R = (8)可见,f 与弹簧的弹力有同样的性质,相应的“劲度系数”为 0mgk R =(9) 物体将以C 为平衡位置作简谐振动,振动周期为2T =取0x =处为“弹性势能”的零点,设位于通道出口处的质量为m 的静止物体到达0x =处的速度为0v ,则根据能量守恒,有2220011()22mv k R h =- (10) 式中h 表示地心到通道的距离。
解以上有关各式,得 222000R h v g R -= (11)可见,到达通道中点C 的速度与物体的质量无关。
设想让质量为M 的物体静止于出口A 处,质量为m 的物体静止于出口B 处,现将它们同时释放,因为它们的振动周期相同,故它们将同时到达通道中点C 处,并发生弹性碰撞。
碰撞前,两物体速度的大小都是0v ,方向相反,刚碰撞后,质量为M 的物体的速度为V ,质量为m 的物体的速度为v ,若规定速度方向由A 向B 为正,则有00Mv mv MV mv -=+,(12)22220011112222Mv mv MV mv +=+ (13)解式(12)和式(13),得 03M mv v M m-=+ (14)质量为m 的物体是待发射的卫星,令它回到通道出口B 处时的速度为u ,则有22220111()222k R h mu mv -+= (15) 由式(14)、(15)、(16)和式(9)解得2220208()()R h M M m u g R M m --=+ (16) u 的方向沿着通道。
根据题意,卫星上的装置可使u 的方向改变成沿地球B 处的切线方向,如果u的大小恰能使小卫星绕地球作圆周运动,则有20200M m u G m R R = (17)由式(16)、(17)并注意到式(6),可以得到h = (18)已知20M =m ,则得00.9255920km h R == (19)评分标准:本题20分。
求得式(11)给7分,求得式(16)给6分,式(17)2分,式(18)3分,式(19)2分。
2.〔25届复赛〕二、(21分)嫦娥1号奔月卫星与长征3号火箭分离后,进入绕地运行的椭圆轨道,近地点离地面高22.0510n H km =⨯,远地点离地面高45.093010f H km =⨯,周期约为16小时,称为16小时轨道(如图中曲线1所示)。
随后,为了使卫星离地越来越远,星载发动机先在远地点点火,使卫星进入新轨道(如图中曲线2所示),以抬高近地点。
后来又连续三次在抬高以后的近地点点火,使卫星加速和变轨,抬高远地点,相继进入24小时轨道、48小时轨道和地月转移轨道(分别如图中曲线3、4、5所示)。
已知卫星质量32.35010m kg =⨯,地球半径36.37810R km =⨯,地面重力加速度29.81/g m s =,月球半径31.73810r km =⨯。