核磁共振的稳态吸收实验
- 格式:doc
- 大小:139.50 KB
- 文档页数:6
核磁共振实验报告04级11系姓名:徐文松学号:PB04210414 日期:2006.05.12CONTENTS OF THIS REPORT(Click while press CTRL to locate it)return核磁共振return1.观察核磁共振稳态吸收现象;2.掌握和磁共振基本试验原理和方法;值和g因子。
3.测量1H和19F的return1.核自旋原子核具有自旋,其自旋角动量为h I I p )1(1+=其中I 是核自旋量子数,其值为半整数或整数。
当质子数和质量数均为偶数时,I=0,当质量数为偶数而质子数为奇数时,I=0,1,2…,当质量数为奇数时,I=2n(n=1,3,5…). 2.核磁矩原子核带有电荷,因而具有子旋磁矩,其大小为)1(211+==I I g p m egN NμμN N m eh2=μ式中g 为核的朗德因子,对质子,g =5.586,Nm 为原子核质量,N μ为核磁子,N μ=227100509.5m A ⋅⨯-,令gm e N 2=γ显然有I I p γμ= γ称为核的旋磁比。
3.核磁矩在外磁场中的能量核自旋磁矩在外磁场中会进动。
进动的角频率00B γω=B 为外恒定磁场。
4.核磁共振实现核磁共振,必须有一个稳恒的外磁场OB 及一个与OB 和总磁矩m 所组成的平面相垂直的旋转磁场1B ,当1B 的角频率等于ω时,旋转磁场的能量为E h ∆=0ω,则核吸收此旋转磁场能量,实现能级间的跃迁,即发生核磁共振。
此时应满足00B h g h E N μω==∆00B γω=h 为普朗克常数。
改变OB 或ω都会使信号位置发生相对移动,当共振信号间距相等重复频率为f π4时,表示共振发生在调制磁场的相位为02=ft π,π,π2,… 此时,若已知样品的γ,测出对于能够的射频场频率ν,即可算出OB 。
反之测出OB ,可算出γ和g 因子。
本次实验的装置包括电磁铁、边限振荡器、探头及样品、频率计、示波器及移相器等。
大学物理近代实验思考题一1.夫兰克-赫兹实验测出的汞原子的第一激发电位的大小与F-H管的温度有无关系?为什么?答:夫兰克赫兹实验所测出的汞原子的第一激发电位与F-H管的温度是没有关系的。
因为虽然当温度升高,会使管内的热电子数量增加,从而导致曲线峰电流增大,曲线位置受影响向上移动,但是Vg是一定的,汞的第一激发电位为4.9V不变。
即:由汞原子能级的结构决定了第一激发电位。
2.在夫兰克-赫兹实验中,为什么IA-UGK曲线的波峰和波谷有一定的宽度?答: 因灯丝发射的电子初动能存在一个分布,且灯丝发射的电子其能量分散小于零点几个电子伏特;电子加速后的动能也存在一个分布,这就是峰电流和谷电流存在一定宽度的原因。
3:为什么IA-UGK曲线的波谷电流不等于零,并且随着UGK的增大而升高?答:1.波谷电流不为零是因为:电子在栅极附近跟汞原子发生碰撞存在一定的几率,因此总有部分电子没和汞原子发生碰撞而直接到达A 级从而形成电流。
故其不为0。
2.波谷电流随着UGK的增大而升高是因:随着UGK的增大,在栅极附近没和汞原子发生碰撞,而直接到达A级形成电流的电子数量会不断增多,从而使波谷电流增大。
4题分析,当电子管的灯丝电压变化时,IA-UGK曲线应有何变化?为什么?答:若电子管的灯丝电压变大时,电子动能也会变大,从而使得电子为第一激发势时还有剩余动能;与汞原子碰撞之后剩余的能量越多,能够克服拒斥电场到达A极的电子就会越多,而极板间电流也就越大,所以在汞的第一激发势固定为Vg间隔时,曲线越尖锐。
反之亦然!5题:电子管内的空间电位是如何分布的?板极与栅极之间的反向拒斥电压起什么作用?答:电子馆内的电位分布为:Vk>VG1=VG2>VA;反向拒斥电压的作用为:挑选能量大于UGA的电子,从而冲过拒斥电压形成通过电流计的电流。
6题:RE:在夫兰克-赫兹实验中,提高灯丝电压,IA-UG2A会有什么变化?为什么?若提高拒斥电压,IA-UG2A会有什么变化?为什么?答:提高灯丝电压,电子获得的动能增加,电子数增加,克服拒斥电压后将有较多电子形成电流,所以曲线电流幅度加大;而拒斥电压增加,能克服它的电子数将减少,电流也减小,所以曲线幅度也就减小了。
核磁共振实验 实验原理、数据记录及数据处理实验目的:1、观察核磁共振稳态吸收现象2、掌握核磁共振的实验原理和方法3、测量1H 的γ因子和g 因子实验仪器:核磁共振实验仪、频率计、示波器。
实验原理:1、核在磁场中的拉莫尔旋进(1)角动量与磁矩。
原子中电子的轨道角动量L P 和自旋角动量S P 会分别产生轨道磁矩L μ和自旋磁矩S μ:2L L e eP m μ=-,S S e e P m μ=-。
上两式中e 和e m 电子的电量数值和电子的质量,负号表示电子的磁矩与角动量方向相反(由于电子带负电)。
而L P与S P的总角动量引起相应的电子总磁矩 2J J ee gP m μ=-式中g 是朗德因子,其大小与原子的结构有关。
同理核自旋角动量I P 与核磁矩I μ的关系为2I NI Pe g P m μ=(N g 为核的朗德因子,P m若引入核磁子2N Pe m μ=,则N I NI g P μμ=。
为了表示的方便,令:NN g μγ=(称为回磁比系数),则I I P μγ=。
所以,在Z 方向有:Z Z P μγ=由量子力学可知Z P m = ,所以Z m μγ= (2)磁矩在磁场中的拉莫尔旋进由经典力学可知,磁矩为μ的微观粒子在恒定外磁场0B 中受到一力矩L 的作用:0L B μ=⨯。
而力矩的作用使粒子的角动量发生变化,即dPL dt= 。
所以 00000sin sin B dP d P d d L B B B dt dt dtdt B μγμμγγγμγμθγμθμ⨯====⨯=⇒=⨯设磁矩旋进的角频率为0w ,则 0sin d w dt μμθ= 所以00w B γ=。
2、磁共振的条件若外加射频磁场的角频率w 与核旋进频率0w 相同时,核磁矩将和外辐射场发生能量交换,从而发生共振。
3、共振信号的检测由于谱线有宽度,且宽度很窄,检测信号时很难使得0w w =,为此有两种方法可以解决这一问题: (1)扫频法,即恒定的磁场0B 固定不变(核拉莫尔旋进角频率0w 不变),连续改变辐射的角频率w ,在w 变化的区域内,若满足0w w =,便产生共振峰。
核磁共振系别:11系 学号:PB06210381 姓名:赵海波实验目的:观察核磁共振稳态吸收现象,掌握核磁共振的实验基本原理和方法,测量H 1和F 19的γ值和g 因子。
实验原理: 1.核自旋原子核具有自旋,其自旋角动量为h I I p )1(1+=(1)其中I 是核自旋量子数,其值为半整数或整数。
当质子数和质量数均为偶数时,I=0,当质量数为偶数而质子数为奇数时,I=0,1,2…,当质量数为奇数时,I=2n (n=1,3,5…).2.核磁矩原子核带有电荷,因而具有子旋磁矩,其大小为)1(211+==I I g p m egN Nμμ (2)NN m eh2=μ (3)式中g 为核的朗德因子,对质子,g =5.586,N m 为原子核质量,N μ为核磁子,N μ=227100509.5m A ⋅⨯-,令g m eN2=γ (4)显然有I I p γμ=(5)γ称为核的旋磁比。
3.核磁矩在外磁场中的能量核自旋磁矩在外磁场中会进动。
进动的角频率00B γω=(6)0B 为外恒定磁场。
表2.3.1-1列出了一些原子核的自旋量子数、磁矩和进动频率。
核自旋角动量I p 的空间的取向是量子化的。
设z 轴沿O B 方向,I p 在z 方向分量只能取mh p Iz = (m=I ,I-1,…,-I+1,-I ) (7)Iz Iz p γμ=(8)则核磁矩所具有的势能为000mB h B B E Iz I γμμ-=-=⋅-=(9)对于氢核(H 1),I=21,m =21 ,021B h E γ =,两能级之间的能量差为000B g B h h E N μγω===∆(10)E ∆正比于O B ,由于N m 约等于电子质量的18401,故在同样的外磁场O B 中,核能级裂距约为电子自旋能级裂距的18401,这表明核磁共振信号比电子自旋共振信号弱的多,观测起来更困难。
4.核磁共振实现核磁共振,必须有一个稳恒的外磁场O B 及一个与O B 和总磁矩m 所组成的平面相垂直的旋转磁场1B ,当1B 的角频率等于0ω时,旋转磁场的能量为E h ∆=0ω,则核吸收此旋转磁场能量,实现能级间的跃迁,即发生核磁共振。
核磁共振系别:11系 学号:PB06210381 姓名:赵海波实验目的:观察核磁共振稳态吸收现象,掌握核磁共振的实验基本原理和方法,测量H 1和F 19的γ值和g 因子。
实验原理: 1.核自旋原子核具有自旋,其自旋角动量为h I I p )1(1+=(1)其中I 是核自旋量子数,其值为半整数或整数。
当质子数和质量数均为偶数时,I=0,当质量数为偶数而质子数为奇数时,I=0,1,2…,当质量数为奇数时,I=2n (n=1,3,5…).2.核磁矩原子核带有电荷,因而具有子旋磁矩,其大小为)1(211+==I I g p m egN Nμμ (2)NN m eh2=μ (3)式中g 为核的朗德因子,对质子,g =5.586,N m 为原子核质量,N μ为核磁子,N μ=227100509.5m A ⋅⨯-,令g m eN2=γ (4)显然有I I p γμ=(5)γ称为核的旋磁比。
3.核磁矩在外磁场中的能量核自旋磁矩在外磁场中会进动。
进动的角频率00B γω=(6)0B 为外恒定磁场。
表2.3.1-1列出了一些原子核的自旋量子数、磁矩和进动频率。
核自旋角动量I p 的空间的取向是量子化的。
设z 轴沿O B 方向,I p 在z 方向分量只能取mh p Iz = (m=I ,I-1,…,-I+1,-I ) (7)Iz Iz p γμ=(8)则核磁矩所具有的势能为000mB h B B E Iz I γμμ-=-=⋅-=(9)对于氢核(H 1),I=21,m =21 ,021B h E γ =,两能级之间的能量差为000B g B h h E N μγω===∆(10)E ∆正比于O B ,由于N m 约等于电子质量的18401,故在同样的外磁场O B 中,核能级裂距约为电子自旋能级裂距的18401,这表明核磁共振信号比电子自旋共振信号弱的多,观测起来更困难。
4.核磁共振实现核磁共振,必须有一个稳恒的外磁场O B 及一个与O B 和总磁矩m 所组成的平面相垂直的旋转磁场1B ,当1B 的角频率等于0ω时,旋转磁场的能量为E h ∆=0ω,则核吸收此旋转磁场能量,实现能级间的跃迁,即发生核磁共振。
核磁共振实验报告姓名:任宇星 班级:F1407204(致远物理) 学号:5140729003指导老师:杨文明 实验日期:2016.5.6一、 实验目的1•了解核磁共振基本原理;2 •观察核磁共振稳态吸收信号及尾波信号;3 .用核磁共振法校准恒定磁场B 0;4•测量朗德因子g o二、 实验仪器数字频率计、示波器、永久磁铁、扫场线圈、探头(含电路盒和样品盒)、 可调变压器、220 V/6 V 变压器、NM120台式核磁共振成像仪;聚四氟乙烯、水(掺有杂质)、食用油、乙醇、纯净水样品。
三、实验原理1、核磁共振原理及条件原子的总磁矩卩j 和总角动量P 存在如下关系:其中g 为朗德因子,卩B 为波尔磁子,丫为原子的旋磁比。
对于自旋不为0的粒子,原子的总磁矩卩j 和总角动量P 也存在上述关系。
按照量子理论,原子核存在核自旋和核磁矩,在外磁场B 中能级将发生赛 曼分裂。
记相邻能级间具有能量差 4E,当有外界条件提供与目同的磁能时, 将引起相邻赛曼能级之间的磁偶极跃迁。
如果向赛曼能级的能量差为4E = 型的氢核发射能量为E= hv 的光子,当2 n吸收跃迁现象称为“核磁共振”从中,我们也可以看出,核磁共振发生的 条件是电磁波的频率为3 = Y BY B h 2n=hv 时,氢核将吸收这个光子, 由低塞曼能级跃迁到高塞曼能级 这种共振2、用扫场法产生核磁共振在实验中要使4E= 驾=hv并不是那么容易的。
主要原因是外磁场不容易控制在一个特定的值。
因此我们可以在一个永磁体B o上叠加一个低频交流磁场B=Bsin泌使氢原子能级能量差2?? (B0+ Bmsin①»有一个可以调节的变化区间。
我们调节射频场的频率v使射频场的能量hv处于上述区间,这样在某一瞬间Y? __hv=—(B0 + Bmsin wt即可成立。
从而可以通过读取共振时对应频率得到本征频率。
B —+ 3* cosCJfOms3、自旋回波自旋回波(Spin Echo)是射频脉冲与静磁场中核磁矩体系相互作用的结果。