当前位置:文档之家› 浅论高锰钢的热处理工艺

浅论高锰钢的热处理工艺

浅论高锰钢的热处理工艺
浅论高锰钢的热处理工艺

热处理工艺规范(最新)

华尔泰经贸有限公司铸钢件产品热处理艺规范 随着铸造件产品种类增多,对外业务增大,方便更好的管理铸造件产品,特制定本规定,要求各部门严格按照规定执行。 1目的: 为确保铸钢产品的热处理质量,使其达到国家标准规定的力学性能指标,以满足顾客的使用要求,特制定本热处理工艺规范。 2范围 3术语 经保温一段时间后, 经保温一段时间后, 3.3淬火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 快速冷却的操作工艺。 3.4回火:指将淬火后的铸钢产品加热到规定的温度范围,经保温一 段时间后出炉,冷却到室温的操作工艺。 3.5调质:淬火+回火 4 职责

4.1热处理操作工艺由公司技术部门负责制订。 4.2热处理操作工艺由生产部门负责实施。 4.3热处理操作者负责教填写热处理记录,并将自动记录曲线转换到 热处理记录上。 4.4检验员负责热处理试样的力学性能检测工作,负责力学性能检测 结论的记录以及其它待检试样的管理。 5 工作程序 5.1 错位炉底板应将其复位后再装, 5.2 对特别 淬铸件应控制入水时间,水池应有足够水量,以保证淬火质量。 5.5作业计划应填写同炉热处理铸件产品的材质、名称、规格、数量、 时间等要素,热处理园盘记录纸可多次使用,但每处理一次都必须与热处理工艺卡上的记录曲线保持一致。 6 不合格品的处置 6.1热处理试样检验不合格,应及时通知相关部门。

6.2技术部门负责对不合格品的处置。 7 附表 7.1碳钢及低合金钢铸件正火、退火加热温度表7.2碳钢及低合金钢铸件退火工艺 7.3铸钢件直接调质工艺 7.4铸钢件经预备热处理后的调质工艺 7.5低合金铸钢件正火、回火工艺

耐磨高锰钢铸件的各类热处理

.耐磨高锰钢铸件的铸态余热热处理 为缩短热处理周期,可利用铸态余热进行高锰钢水韧处理。其工艺为:铸件于ll00~1180。C时自铸型中取出,经除芯清砂后,铸件温度允许冷却到900~1000。C,然后装入加热到l050。1080。C的炉内保温3~5h后水冷。该处理工艺简化了热处理工艺,减少了铸件在型内的冷N啪3,但ue产操作上有一定难度。表11—18为不同热处理工艺的高锰钢试样的力学性能。 2.耐磨高锰钢铸件的沉淀强化热处理 耐瞎高锰钢沉淀强化热处理的目的,是在加入适量碳化物形成元素(如钼、钨、钒、钛、铌和铬)的基础上,通过热处理方法在高锰钢中得到一定数量和大小的弥散分布的碳化物第二相质点,强化奥氏体基体,提高高锰钢的抗磨性能。但这种热处理工艺较复杂,并使生产成本增加。 3.耐磨高锰钢铸件的固溶热处理——水韧处理耐磨高锰钢的铸态组织中有大量析出的碳化物,因而其韧度较低,使用中易断裂。 高锰钢铸件固溶热处理的主要目的,是消除铸态组织中晶内和晶界上的碳化物,得到单相奥氏体组织,提高高锰钢的强度和韧度,扩大其应用范围。 要消除其铸态组织的碳化物,须将钢加热至1040。C以上,并保温适当时间,使其碳化物完全固溶于单相奥氏体中,随后快速冷却得到奥氏体固溶体组织。这种固溶热处理又称为水韧处理。 (1)水韧处理的温度:水韧温度取决于高锰钢成分,通常为1050~1100。含碳量高或者合金含量高的高锰钢应取水韧温度的上限,如ZGMnl3钢和GXl20Mnl7钢。但过高的水韧温度会导致铸件表面严重脱碳,并促使高锰钢的晶粒迅速长大,影响高锰钢的使用性能。图ll-25为高锰钢在1100保温2h后铸件表面碳和锰元素的变化。 (2)加热速率:高锰钢比一般碳钢的导热性差,高锰钢铸件在加热时应力较大而易开裂,因此其加热速率应根据铸件的壁厚和形状而定。一般薄壁简单铸件可采用较快速率加热;厚壁铸件则宜缓慢加热。为减少铸件在加热过程中变形或开裂,生产上常采用预先在650左右保温,使厚壁铸件内外温差减小,炉内温度均匀,之后再快速升到水韧温度的处理工艺。图ll—26为典型高锰钢件的热处理工艺规范。 (3)保温时间:保温时间主要取决于铸件壁厚,以确保铸态组织中的碳化物完全溶解和奥氏体的均匀化。通常保温时间可按铸件壁厚25mm保温lh计算。图ll—27为保温时间对高锰钢表面脱碳层深度的影响。 (4)冷却:冷却过程对铸件的性能指标及组织状态有很大的影响。 水韧处理时铸件入水前的温度在950必上,以免碳化物重新析出。为此,铸件从出炉到A水时间不应超过30s;水温保持在30度以下.淬火后最高水温不超过60度。水温较高时高锰钢的力学性能显著下降。水韧处理时水量须达到铸件和吊栏重量的8倍以上,若用非循环水需定期增加水量.暑好使用水质干净的循环水或采用压缩空气搅动池水。用吊篮吊淬时,可采用摆动吊篮的方式加速铸件的冷却。 高锰钢水韧处理多用台车式.热处理炉。铸件人水常用自动倾翻或吊篮吊淬方式。前者对大件及形状复杂的薄壁件易引起变形,淬火后铸件从水池中取出也较为困难;后者淬火后取出铸件方便,但吊篮消耗大。 4.耐磨中铬钢铸件的热处理耐磨中铬钢铸件热处理的目的,是得到高强韧性和高硬度的马氏体基体组织,以提高钢的强度、韧度及耐磨性。

高强螺栓检测的相关标准

中华人民共和国国家标准《钢结构用高强度大六角头螺栓、大六角螺母、垫圈技术条件》GB/T 1231—2006 1.本标准规定了钢结构用高强度大六角头螺栓、大六角螺母、垫圈及连接副的技术要求、试验方法、检验规则、标志及包装。 本标准适用于铁路和公路桥梁、锅炉钢结构、工业厂房、高层民用建筑、塔桅结构、起重机械及其他钢结构摩擦型高强度螺栓连接 连接副扭矩系数试验 4.4.1 连接副的扭矩系数试验在轴力计上进行,每一连接副只能试验一次,不得重复使用。 扭矩系数计算公式如下: T K P d 式中: K一扭矩系数; T——施拧扭矩(峰值),单位为牛米(N·m); P——螺栓预拉力(峰值),单位为千牛(kN); d——螺栓的螺纹公称直径,单位为毫米(mm)。 4.4.2 施拧扭矩T是施加于螺母上的扭矩,其误差不得大于测试扭矩值的2%。使用的扭矩扳手准确度级别应不低于JJG 707—2003中规定的2级。 4.4.3 螺栓预拉力P用轴力计测定,其误差不得大于测定螺栓预拉力的2%。轴力计的最小示值应在1 kN以下。 4.4.4 进行连接副扭矩系数试验时,螺栓预拉力值P应控制在表8所规定的范围内,超出该范围者,所测得扭矩系数无效。 4.4.5 组装连接副时,螺母下的垫圈有倒角的一侧应朝向螺母支承面。试验时,垫圈不得发生转动,否则试验无效。

4.4.6 进行连接副扭矩系数试验时,应同时记录环境温度。试验所用的机具、仪表及连接副均应放置在该环境内至少2 h以上。 5 检验规则 出厂检验按批进行。同一性能等级、材料、炉号、螺纹规格、长度(当螺栓长度≤100 mm 时,长度相差≤15 mm;螺栓长度>100mm时,长度相差≤20 mm,可视为同一长度)、机械加工、热处理工艺、表面处理工艺的螺栓为同批;同一性能等级、材料、炉号、螺纹规格、机械加工、热处理工艺、表面处理工艺的螺母为同批;同一性能等级、材料、炉号、规格、机械加工、热处理工艺、表面处理工艺的垫圈为同批。分别由同批螺栓、螺母、垫圈组成的连接副为同批连接副。 同批高强度螺栓连接副最大数量为3 000套。 连接副扭矩系数的检验按批抽取8套,8套连接副的扭矩系数平均值及标准偏差均应符合3.3.1规定。 螺栓楔负载、螺母保证载荷、螺母硬度和垫圈硬度的检验按批抽取,样本大小n=8,合格判定数 Ac=0。 螺栓、螺母和垫圈的尺寸、外观及表面缺陷的检验抽样方案按GB/T 的规定。 用户对产品质量有异议时,在正常运输和保管条件下,应在产品出厂之日起6个月之内向供货方提出。如有争议,双方按本标准的要求进行复验裁决。 6 标志与包装 螺栓应在头部顶面制出性能等级和制造厂凸型标志(见图3),标志中“·”可以省略。标志中第一部分数字(“·”前)表示公称抗拉强度的1/100,第二部分数字(“·”后)表示公称屈服强度与公称抗拉强度比值的10倍,字母S表示钢结构用高强度大六角头螺栓,XX为制造厂标志。 螺母应在顶面上制出性能等级和制造厂标志(见图4)。标志中数字表示螺母性能等级,字母H表示钢结构用高强度大六角螺母,XX为制造厂标志。 ××

高锰钢与超高锰钢铸件生产技术要点

高锰钢与超高锰钢铸件生产技术要点在高能量冲击的工作条件下,高锰钢与超高锰钢铸件的应用范围是广阔的。许多铸造厂,对生产此类钢种铸件缺乏必要的认识。现对具体操作做简要的说明,供生产者参考。 1化学成分 高锰钢按照国家标准分为5个牌号,主要区别是碳的含量,其范围是%-%。受冲击大,碳含量低。锰含量在%-%之间,一般不应低于13%。超高锰钢尚无国标,但锰含量应大于18%。硅含量的高低,对冲击韧度影响较大,故应取下限,以不大于%为宜。低磷低硫是最基本的要求,由于高的锰含量自然起到脱硫作用,故降磷是最要紧的,设法使磷低于%。铬是提高抗磨性的,一般在%左右。 2炉料 入炉材料是由化学成分决定的。主要炉料是优质碳素钢(或钢锭)、高碳锰铁、中碳锰铁、高碳铬铁及高锰钢回炉料。这里特别提醒的是有人认为只要化学成分合适,就可以多用回炉料。这个认识是有害的。某些厂之所以产品质量不佳,皆出于此。不仅高锰钢、超高锰钢,凡是金属铸件,绝不可以过多的使用回炉料,回炉料不应超过25%。那么,回炉料过剩该如何只要把废品降到最低,回炉料就不会过剩。3熔炼 这里着重讲加料顺序,无论用中频炉,还是电弧炉熔炼,总是先熔炼碳素钢,而各类锰铁和其他贵重合金材料,要分多次,每次少量入炉,贵重元素在最后加入,以减少烧损。料块应尽量小些,以50-80mm

为宜。熔清后,炉温达到1580-1600℃时,要脱氧、脱氢、脱氮,可用铝丝,也可用Si-Ca合金或SiC等材料。将脱氧剂一定压到炉内深处。金属液面此时用覆盖剂盖严,隔断外界空气。还要镇静一段时间,使氧化物、夹杂物有充足时间上浮。然而,不少企业,只将铝丝甚至铝屑,撒在金属液面上,又不加覆盖,岂不白白浪费!在此期间,及时用中碳锰铁来调整锰与碳的含量。 钢液出炉前,将浇包烘烤到400℃以上是十分必要的。在出炉期间用V-Fe、Ti-Fe、稀土等多种微量元素做变质处理,是使一次结晶细化的必要手段,它对产品性能影响是至关重要的。 4炉料与造型材料 要延长炉龄,当分清钢种与炉衬的属性。锰钢属碱性,炉衬当然选用镁质材料。捣打炉衬要轮番周而复始换位操作。添加炉衬材料不可过厚,每次80毫米左右为宜,捣毕要低温长时间烘烤。如提高生产效率,笔者建议采用成型坩埚(沈阳力得厂和恒丰厂均有成品出售),从拆炉到装成,不用1小时,即可投入生产,同时成型坩埚对防穿炉大有裨益。当然,炉龄的长短与操作者大有关系。不少操作者像掷铅球的运动员一样,把炉料从三四米之外投入炉内,既不安全又伤炉龄,应将炉料置于炉口旁预热,然后用夹子慢慢地将炉料顺炉壁放入。 造型材料和涂料也应与金属液属性相一致,或者用中性材料(如铬铁矿砂、棕刚玉等)。若想获得一次结晶细化的基体,采用蓄热量大的铬铁矿砂是正确的,尤其是消失模生产厂,用它将克服散热慢的缺点。5铸造工艺设计

高铬铸铁热处理工艺

高铬铸铁热处理工艺 化学成分:C2.05,Si1.40,Mn0.78,Cr26.03,Ni0.81,Mo0.35 1、常用的高铬铸铁的热处理工艺是加热到950~1000℃,经保温空冷淬火后再进行 200~260℃的低温回火。 2、2、高温团球化处理1140~1180℃保温16h空冷却,可以明显提高冲击韧度和耐磨性能。 高温团球化处理可使碳化物全部呈团球状,可消除或减少大块状和连续网状碳化物对基体的隔裂作用,经团球化的碳化物受到更加均匀的基体支撑,特别受到一定数量的奥氏体的支撑。如果适当减少保温时间,对薄截面零件也可以取得效果。该工艺的不足是工艺消耗热能较多。 加热到1050℃,经保温空淬火后再进行550℃的回火,效果会怎么样? 要控制加热速度,最好在650? ?? ?750? ?? ?? ? 850? ?? ? 时保温一定时间。我以前做过,正火就可以了。硬度能做到61----65HRC 成熟工艺是:铸造后软化退火,便于加工,加工后空冷淬火加低温去应力回火。使用硬度一般要求为HRC58-62,多用于比如渣浆泵零部件等耐磨易损件。 我们这里是高铬生产基地,一般提供Cr24,Cr26,Cr28,Cr15Mo3等,价格是不便宜的。价格要包括中间的软化退火和精加后的淬火及回火。楼主的材料应该叫Cr26 做高铬磨球的,Cr%=10.2~10.5%,C%=2.2~2.7%,Si、S双零以下,要求硬度HRC>58 我们现在用的是淬火液淬火,淬火工艺参数是:650度保温2小时,升温到960度保温3.5小时淬火;回火温度380~400,保温4~6小时。磨球规格φ40-φ80。 工艺是1050淬火+250~350回火 金属耐磨材料在水泥企业的研究和应用 [摘要] 本文从金属耐磨材料的概述、水泥企业常用的耐磨材料以及根据磨损原理具体的选用金属耐磨材料,对金属耐磨材料进行了研究、分析,对其他选用金属耐磨材料给予一定的参考和借鉴。 [关键词] 金属耐磨材料水泥企业研究应用 一、金属耐磨材料的概述 材料的耐磨性不仅决定于材料的硬度Hm,而且更主要的是决定于材料硬度Hm和磨料硬度Ha的比值。当Hm/Ha比值超过一定值后,磨损量便会迅速降低。 当Hm/Ha≤0.5-0.8时为硬磨料磨损,此时增加材料的硬度对材料的耐磨性增加不大。 当Hm/Ha>0.5-0.8时为软磨料磨损,此时增加材料的硬度,便会迅速地提高材料的耐磨性。 金属耐磨材料一般都指的是耐磨钢,能抵抗磨料磨损的钢。这类钢还没有成为一个完全独立的钢种,其中公认的耐磨钢是高锰钢。 二、水泥企业主要使用的耐磨钢

高强度螺栓的知识总结

高强度螺栓的知识 高强度螺栓在生产上全称叫高强度螺栓连接副,一般不简称为高强螺栓。 根据安装特点分为:大六角头螺栓和扭剪型螺栓。其中扭剪型只在10.9级中使用。 根据高强度螺栓的性能等级分为:8.8级和10.9级。其中8.8级仅有大六角型高强度螺栓,在标示方法上,小数点前数字表示热处理后的抗拉强度;小数点后的数字表示屈强比即屈服强度实测值与极限抗拉强度实测值之比。8.8级的意思就是螺栓杆的抗拉强度不小于800M Pa,屈强比为0.8;10.9级的意思就是螺栓杆的抗拉强度不小于1000MPa,屈强比为0.9。 结构设计中高强度螺栓直径一般有M16/M20/M22/M24/M27/M30,不过M22/M27为第二选择系列,正常情况下选用M16/M20 /M24/M30为主。 高强度螺栓在抗剪设计上根据设计要求分为:高强度度螺栓承压型和高强度螺栓摩擦型。摩擦型的承载能力取决于传力摩擦面的抗滑移系数和摩擦面数量,喷砂(丸)后生赤锈的摩擦系数最高,但从实际操作来看受施工水平影响很大,很多监理单位都提出能否降低标准来确保工程质量。承压型的承载能力取决于螺栓抗剪能力和栓杆承压能力能力的最小值。在只有一个连接面的情况下,M16摩擦型抗剪承载力为21.6~45.0kN,而M16承压型抗剪承载力为39.2~48.6 kN,性能要优于摩擦型。在安装上,承压型工艺要简单一些,连接面仅需清除油污及浮锈。 沿轴杆方向抗拉承载力,在钢结构规范中写的很有意思,摩擦型设计值等于0.8倍预拉力,承压型设计值等于螺杆有效面积乘以材料抗拉强度设计值,看起来似乎有很大区别,实际上两个值基本一致,我一直不太明白规范为什么要这么写,采用的都是同一种材料为何要用两种表达方式计算同一个数值? 在同时承受剪力和杆轴方向拉力时,摩擦型要求是螺栓承受的剪力与受剪承载力之比加上螺杆承受轴力与受拉承载力应力比之和小于1.0,承压型要求是螺栓承受的剪力与受剪承载力之比的平方加上螺杆承受轴力于受拉承载力应力比的平方之和小于1.0,也就是说在同种荷载组合情况下,相同直径的承压型高强度螺栓在设计上的安全储备要高于摩擦型高强度螺栓的。 考虑到在强震反复作用下,连接摩擦面可能会失效,这时候的抗剪承载力还是要取决于螺栓抗剪能力和板件承压能力,因此抗震规范规定了高强度螺栓极限受剪的承载力计算公式。尽管承压型在设计数值上占有优势,但由于其属于剪压破坏型式,螺栓孔为类似普通螺栓的孔隙型螺栓孔,在承受荷载作用时的变形远大于摩擦型,所以高强度螺栓承压型主要用于非抗震构件连接、非承受动荷载构件连接、非反复作用构件连接。 这两种型式的正常使用极限状态也是有区别的: 摩擦型连接是指在荷载基本组合作用下连接摩擦面发生相对滑移; 承压型连接是指在荷载标准组合作用下连接件之间发生相对滑移; 焊缝与螺栓知识 焊缝等级 1. 焊缝等级是施工验收等级,有三级。三级最低,只要求外观检查和尺寸检查。二级要求部分作超声波探伤检查。一级最高,要求全部做探伤检查。 2. 对焊缝等级来说,原则是受拉等级高于受压,受动力的高于受静力的。 3. 对接焊缝一般需要做无损探伤(或部分需要)。故一般对接焊缝的焊接等级为二级或一级,不小于二级。

高锰钢工艺(学术参考)

高锰钢工艺 1.高锰钢有哪几种?其性能如何? 锰含量约为11%~18%的钢称高锰钢。常用的铸造高锰钢ZMn13的化学成分为:Mn含量11%~14%,c含量1.0%~1.4%,Si含量0.3%~1.0%,P 含量<0.03%,S含量<0.05%。 高锰钢是一种耐磨钢,经过水韧处理的高锰钢可以得到较高的塑性和冲击韧性。所谓水韧处理,就是把钢加热到1000℃~1100℃,保温一段时间,使钢中的碳化物全部溶入奥氏体中,然后迅速冷却,使碳化物来不及从奥氏体中析出,从而保持了单一的均匀的奥氏体组织。经过水韧处理的高锰钢称为高锰奥氏 体钢。其力学性能为:σ b =980 MPa,σs=392 MPa,HB210,δ=80%,α k =2.94 MJ /m2。 高锰钢具有很高的耐磨性,虽然它的硬度只有HB210,但它的屈服点σs 较低,只有σb的40%,因此具有较高的塑性和韧性。高锰钢在受到外来压力和冲击载荷时,会产生很大的塑性变形或严重的加工硬化现象,钢被剧烈强化,硬度显著提高,可达HB450~550,因此有了较高的耐磨性。 高锰钢可分为高碳高锰耐磨钢、中碳高锰无磁钢、低碳高锰不锈钢和高锰耐热钢。几种高锰钢的牌号和性能见表5-1。

2.高锰钢有哪些切削加工特点? 高锰钢锰含量高达11%~18%,具有较高的塑性和韧性,在切削加工中有以下特点: (1)加工硬化严重:高锰钢在切削过程中,由于塑性变形大,奥氏体组织转变为细晶粒的马氏体组织,从而产生严重的硬化现象。加工前硬度一般为 HB200~220,加工后表面硬度可达HB450~550,硬化层深度0.1~0.3 mm,其硬化程度和深度要比45号钢高几倍。严重的加工硬化使切削力增大,加剧了刀具磨损,也容易造成刀具崩刃而损坏。 (2)切削温度高:由于切削功率大,产生的热量多,而高锰钢的导热系数比不锈钢还低,只有中碳钢的1/4,所以切削区温度很高。当切削速度Vc<50 m/min 时,高锰钢的切削温度比45号钢高200℃~250 ℃,因此,刀具磨损严重,耐用度降低。 (3)断屑困难:高锰钢的韧性是45号钢的8倍,切削时切屑不易拳曲和折断。 (4)尺寸精度不易控制:高锰钢的线膨胀系数与黄铜差不多,在高的切削温度下,局部产生热变形,尺寸精度不易控制。切削高锰钢时,应先进行粗加工,工件冷却后再进行精加工,以保证工件的尺寸精度。 3.怎样通过热处理改善高锰钢的切削性能? 金属材料的切削性能主要取决于材料的力学、物理性能,如:强度、硬度、塑性、韧性、耐磨性及线膨胀系数等。通过热处理可以改变金属材料的力学、物理性能,从而改善其切削性能。改善高锰钢的切削性能可以通过高温回火来实现。将高锰钢加热至600℃~650℃,保温两小时后冷却,使高锰钢的奥氏体组织转变为索氏体组织,其加工硬化程度显著降低,加工性能明显改善。加工完成的零件在使用前应进行淬火处理,使其内部组织重新转变为单一的奥氏体组织。 4.切削高锰钢时怎样选择刀具材料?

高锰钢抗磨性提高的方法

高锰钢抗磨性提高的方法 摘要:采用细化晶粒和沉淀硬化的方法来提高高锰钢抗磨性。 关键词:高锰钢抗磨性细化晶粒沉淀硬化 对于承受较大冲击负荷的磨粒磨损条件下,通常采用奥氏体锰钢。因为这种具有高的韧性和高的应变硬化能力,在高冲击载荷下具有高的耐磨性。适宜制作具有抵抗凿削磨损的耐磨件。但在很多磨料磨损的情况下,如高锰钢齿板、碎煤机环锤、衬板未能表现出较高的抗磨粒性能,甚至还出现了早期失效。为此,本工作采用细化晶粒和沉淀硬化的方法来解决这个问题,提高奥氏体锰钢的抗磨性,适应工况条件的要求。 1、实验内容 采用两种实验方案:细化奥氏体晶粒,以提高奥氏体锰钢的强韧性;进行沉淀硬化处理,进一步强化锰钢基体,改善屈服强度,获得弥散分布的碳化物组织,提高抗磨性。 1.1 细化晶粒 ZGMn13钢的化学成分如表1所示。 快速循环热处理工艺:用基尔试块制作金相及夏氏冲击试样,用梅花试样制作拉伸试样。其热处理工艺如下表2所示。 通过快速循环热处理,可使高锰钢奥氏体晶粒获得细化。显微组织的观察表明,阶梯加热,循环加热和交替加热等三种热处理方法,均可获得比普通水韧处理细得多的奥氏体晶粒。图1为循环热处理后的组织,晶粒度为6-8级。图2为普通水韧处理的组织,晶粒度1-3级。 1.2 沉淀硬化处理 在原循环热处理工艺基础上,分别进行低温和中温长时间失效,温度为350℃、450℃和540℃,时间为6小时,8小时和10小时,通过不同工艺处理后,得出下列结果。其工艺方案如表3所列。机械性能如表4所列。(如表3) 高锰钢在细化奥氏体晶粒后,再经过450℃×8小时的失效处理,使其碳化物不论在晶内或晶界都达到了弥散分布,而且呈粒状。而经1080℃×3小时固溶,再经过450℃×8小时失效的高锰钢,则未能得到弥散分布的碳化物,并且碳化物呈块状、针状、且聚集于晶界附近。通过比较可以看出,高锰钢细化晶粒后,进行沉淀硬化处理,可以得到比较满意的奥氏体+弥散分布的细粒状碳化物组织。 当时效温度超过450℃时,碳化物则逐渐由粒状变成针状,而且逐渐粗大。组织变脆,但硬度达到失效峰值为HRC45-47。(如表4) 2、工业实验 工业试验在HSZ300的小型破碎机上进行的。破碎矿物主要是煤矿,其中有部分煤矸石,粒度不规则,硬度为7-8(f),破碎比为1/10。环锤已破碎11000小时矿物,还没有明显磨损,仍在继续使用。原普通水韧处理的锤头,平均破碎8000多小时就磨损得磨损。另外,经过快速循环热处理的齿板,其耐磨性也得到较大的提高。 3、结语 (1)通过快速循环热处理等强韧化方法,明显地细化了高锰钢奥氏体组织,使其晶粒度分别达到5-8级(普通水韧处理可达1-3级)。提高了钢的强韧性。(2)在细化的奥氏体锰钢基体上,进行沉淀硬化处理。既得奥氏体+弥散分布粒状碳化

高强度螺栓加工工艺

高强度螺栓加工工艺 螺栓类零件是一种重要标准件,用做连接紧固件,在各领域的应用相当广泛,根据其机械和物理性能的不同,分成10种类别,其中机械性能等级大于等于8.8级的螺栓,我们通常称其为高强度螺栓。 一、高强度螺栓主要结构及作用 高强度螺栓种类较多,形状也不尽相同,外部尺寸更是千变万化,但整体上其主要结构和整体外部形状具有一定的相似性。根据这些相似性,我们将其分成三个主要部分:头部、杆部和螺纹部分。如下简图所示: 下面我们简要介绍一下各部分的作用极其重点要素: 1. 头部头部主要作用是在螺母与螺栓配合时施加一个反向力矩,保证螺母有足够拧紧力矩。形式种类较多,主要有方头、半圆头、六角头等形式。另外,一些非标准件高强度螺栓头部形式由设计者根据装配需要特别设计。 2. 杆部杆部主要起导向作用,特别是导径螺栓,装配后承受一定的径向剪切力,要求与孔小间隙配合,对杆部外圆精度和粗糙度要求严格。一些装配后只承受轴向拉伸力的螺栓对杆部要求不是很严格,外圆尺寸公差较大。对高强度螺栓来说,杆部与头部接触部位要求一定圆角,避免承受较大拉力时该部位断裂,同时避免热处理冷却时产生裂纹,是加工重点注意要素。 3. 螺纹部分螺纹部分是螺栓最主要部分,主要起连接紧固作用。可以分成有效螺纹部分,收尾部分(退刀部分)和螺纹末端三部分;螺纹三个主要要素:螺距、牙形半角和螺距,直接影响螺纹配合精度,也是加工重点注意要素。 二、高强度螺栓工艺分析 高强度螺栓机械加工一般不需要精度极高的专用机床,在普通设备上即可完成加工。根据其三个主要部分,我们将其加工工艺分成三部分:头部的加工、杆部加工和螺纹加工。每一部分的加工工艺又因其尺寸形状及技术要求的不同分成若干种类,采用不同的加工方法;虽然我们将其分成了三部分,但三部分的加工是相辅相成的,相互关联的,可能共存于同一工序,也可能共存于同一工步。 1. 头部的加工 ⑴毛坯 毛坯形式:螺栓头部形状直接决定产品毛坯形式。一般来说,方头螺栓毛坯可选用冷拉方钢,六角头螺栓毛坯可选用冷拉六角钢,半圆头螺栓毛坯应选用锻件毛坯;头

高锰钢件消失模铸态直接水韧处理

高锰钢浇注和水韧工艺参数 一:结晶组织对高锰钢性能的影响 粗大的柱状晶组织必然伴随有枝晶间的显微缺陷,如显微疏松。也会伴随有较高程度的化学偏析,使力学性能和耐磨性降低。再有就是铸态组织中碳化物形貌和分布特征受一次结晶组织粗细的影响,初晶组织细则它也细。碳化物虽然在热处理时可以溶解、但粗大的碳化物往往使热处理后奥氏体晶界的致密度降低,且奥氏体基体内化学成分不均匀,使力学性能降低。固此一次结晶组织对高锰钢的性能影响是很大的! 1)浇铸温度对一次结晶和机械性能的影响: 浇铸温度/℃一次结晶组织特征σb/MPaa K/J。Cm 21460 细等轴晶392.27 166.71 1550 等轴晶372.65 127.49 1620 柱状晶362.84 58.84 2)浇铸温度和载面厚度对晶区比例的影响: 浇铸温度 /℃ 等轴晶区占高度/%柱状晶区占高度/%120mm载面60mm载面120mm载面60mm载面 1550 32~35 14~16 48~50 28~30 1450 38~42 22~24 32~35 10~12 1400 73~75 100 20~22 ——

3)浇铸温度对力学性能的影响: 浇铸温度 /℃ 力学性能 σb/MPaδ/%φ/%aK/J。Cm2 1310~1360 715.88 23.0 22.2 215.75 1360~1410 630.57 17.0 22.5 140.24 由此可知浇铸温度对高锰钢的力学性能有极为明显的影响! 4) 铸型冷却能力对一次结晶特征的影响: 铸型种类 浇铸温度/ ℃ 1380~1420 1420~1430 1450~1460 干砂型等轴晶等轴晶等轴晶 冷金属型边缘少量柱状晶断面大部分柱状晶柱状晶贯穿全断面消失模铸态直接水韧处理 一:工艺要点 (1)消失模样组装要尽量将大小、壁厚相当的模样组装在一起,使铸件的冷却速度基本一致、才能满足铸件同时入水时对水韧温度的要求。(2)型砂的选择:由于铸态水淬没有热处理过程中的再结晶和成分的均匀化,因此为加强铸件在凝固过程中的冷却速度,得到较细的一次结晶组织!宜选用宝珠砂、锆英矿砂、铬铁矿砂和钛铁矿砂等,它们的导热系数为石英砂的2~3倍,可加快铸型的凝固速度。 (3)打箱与入水时间的确定:入水温度直接关系到水韧处理的成败!一般打箱时铸件温度应低于1100 ℃,入水温度应高于950℃。因此应根据铸件的大小、壁厚及室温主高低来确定打箱与入水时间。

螺栓的热处理方法

螺栓的热处理方法 【慧聪表面处理网】 螺栓加工工艺为:热轧盘条-(冷拨)-球化(软化)退火-机械除鳞-酸洗-冷拨-冷锻成形-螺纹加工-热处理- 检验 一,钢材设计: 在紧固件制造中,正确选用紧固件材料是重要一环,因为紧固件的性能和其材料有着密切的关系。如材料选择不当或不正确,可能造成性能达不到要求,使用寿命缩短,甚至发生意外或加工困难,制造成本高等,因此紧固件材料的选用是非常重要的环节。冷镦钢是采用冷镦成型工艺生产的互换性较高的紧固件用钢。由于它是常温下利用金属塑性加工成型,每个零件的变形量很大,承受的变形速度也高,因此,对冷镦钢原料的性能要求十分严格。在长期生产实践和用户使用调研的基础上,结合 GB/T6478-2001《冷镦和冷挤压用钢技术条件》 GB/T699-1999《优质碳素结构钢》及日本 JISG3507-1991《冷镦钢用碳素钢盘条》的特点,以8.8级,9.8级螺栓螺钉的材料要求为例,各种化学元素的确定。C含量过高,冷成形性能将降低;太低则无法满足零件机械性能的要求,因此定为0.25%-0.55%。Mn能提高钢的渗透性,但添加过多则会强化基体组织而影响冷成形性能;在零件调质时有促进奥氏体晶粒长大的倾向,故在国际的基础上适当提高,定为0.45%-0.80%。Si能强化铁素体,促使冷成形性能降低,材料延伸率下降定为Si小于等于0.30%。S.P.为杂质元素,它们的存在会沿晶界产生偏析,导致晶界脆化,损害钢材的机械性能,应尽可能降低,定为P小于等于0.030%,S小于等于0.035%。B.含硼量最大值均为0.005%,因为硼元素虽然具有显著提高钢材渗透性等作用,但同时会导致钢材脆性增加。含硼量过高,对螺栓,螺钉和螺柱这类需要良好综合机械性能的工件是十分不利的。 二,球化(软化)退火: 沉头螺钉,内六角圆柱头螺栓采用冷镦工艺生产时,钢材的原始组织会直接影响着冷镦加工时的成形能力。冷镦过程中局部区域的塑性变形可达60%-80%,为此要求钢材必须具有良好的塑性。当钢材的化学成分一定时,金相组织就是决定塑性优劣的关键性因素,通常认为粗大片状珠光体不利于冷镦成形,而细小的球状珠光体可显著地提高钢材塑性变形的能力。对高强度紧固件用量较多的中碳钢和中碳合金钢,在冷镦前进行球化(软化)退火,以便获得均匀细致的球化珠光体,以更好地满足实际生产需要。对中碳钢盘条软化退火而言,其加热温度多选择在该钢材临界点上下保温,加热温度一般不能太高,否则会产生三次渗碳体沿晶界析出,造成冷镦开裂,而对于中碳合金钢的盘条采用等温球化退火,在AC1+(20-30%)加热后,炉冷到略低于Ar1,温度约700摄氏度等温一段时间,然后炉冷至500摄氏度左右出炉空冷。钢材的金相组织由粗变细,由片状变球状,冷镦开裂率将大大减少。35\45\ML35\SWRCH35K钢软化退火温度一般区域为715-735摄氏度。 三,剥壳除鳞: 冷镦钢盘条去除氧化铁板工序为剥亮,除鳞,有机械除鳞和化学酸洗两种方法。用机械除鳞取代盘条的化学酸洗工序,既提高了生产率,又减少了环境污染。此除鳞过程包括弯曲法(普遍使用带三角形凹槽的圆轮反覆弯曲盘条),喷九法等,除鳞效果较好,但不能使残余铁鳞去净(氧化铁皮清除率为97%),尤其是氧化铁皮粘附性很强时,因此,机械除鳞受铁皮厚度,结构和应力状态的影响,使用于低强度紧固件(小于等于6.8级)用的碳钢盘条。高强度紧固件(大于等于8.8级)用盘条在机械除鳞后,为除净所有的氧化铁皮,再经化学酸洗工序即复合除鳞。对低碳钢盘条而言,机械除鳞残留的铁皮容易造成粒拔模不均匀磨损。当粒拔模孔由于盘条钢丝摩擦外温时粘附上铁皮,使盘条钢丝表面产生纵向粒痕,盘条钢丝冷镦凸缘螺栓或圆柱头螺钉时,头部出现微裂纹的原因,95%以上是钢丝表面在拉拔过程中产生的划痕所引起。因此,机械除鳞法不宜用来高速拉拔。

高锰钢工艺

1<高猛钢有哪几种其性能如何 猛含量约为11%?18%的钢称高镒钢。常用的铸造高镭钢ZMnl3的化学成分为:Mn含量11%?14%, C含量%?%,Si含量%?%, P含量<%, S含量<%。 高猛钢是一种耐磨钢,经过水韧处理的高镭钢可以得到较高的塑性和冲击韧性。所谓水韧处理,就是把钢加热到IOOO O C?1100°C,保温一段时间,使钢中的碳化物全部溶入奥氏体中,然后迅速冷却,使碳化物来不及从奥氏体中析出, 从而保持了 单一的均匀的奥氏体组织。经过水韧处理的高镭钢称为高猛奥氏体钢。其力学性能为:O b=980MPa, σs=392 MPa, HB210, δ =80%, Qk=MJ / 高猛钢具有很高的耐磨性,虽然它的硬度只有HB210,但它的屈服点OS较低, 只有Ob的40%,因此具有较高的塑性和韧性。高镭钢在受到外来压力和冲击载荷时,会产生很大的塑性变形或严重的加工硬化现象,钢被剧烈强化,硬度显著提高,可达HB450?550,因此有了较高的耐磨性。 高镒钢可分为高碳高猛耐磨钢、中碳高猛无磁钢、低碳高猛不锈钢和高猛耐热钢。儿种高镭钢的牌号和性能见表54。 1 2. 高链钢有哪些切削加工特点 高猛钢猛含量高达11%?18%,具有较高的塑性和韧性,在切削加工中有以下特点:

(1) 加工硬化严重:高猛钢在切削过程中,山于塑性变形大,奥氏体组织转变为细晶粒的马氏体组织,从而产生严重的硬化现象。加工前硬度一般为HB200?220,加工后表面硬度可达HB450?550,硬化层深度?mm,其硬化程度和深度要比45号钢高儿倍。严重的加工*更化使切削力增大,加剧了刀具磨损,也容易造成刀具崩刃而损坏。 (2) 切削温度高:山于切削功率大,产生的热量多,而高镒钢的导热系数比不锈钢还低,只有中碳钢的1/4,所以切削区温度很高。当切削速度Vc<50 m/min 时,高镭钢的切削温度比45号钢拓200。C?250 °C,因此,刀具磨损严重,耐用度降低。 ⑶断屑困难:高猛钢的韧性是45号钢的8倍,切削时切屑不易拳曲和折断。 (4)尺寸精度不易控制:高镒钢的线膨胀系数与黃铜差不多,在高的切削温度下,局部产生热变形,尺寸精度不易控制。切削高猛钢时,应先进行粗加工,工件冷却后再进行精加工,以保证工件的尺寸精度。 3. 怎样通过热处理改善高锈钢的切削性能 金属材料的切削性能主要取决于材料的力学、物理性能,如:强度、硬度、塑性、韧性、耐磨性及线膨胀系数等。通过热处理可以改变金属材料的力学、物理性能,从而改善其切削性能。改善高猛钢的切削性能可以通过高温回火来实现。将高镭钢加热至600°C?650o C,保温两小时后冷却,使高镭钢的奥氏体组织转变为索氏体组织,其加工硕化程度显著降低,加工性能明显改善。加工完成的零件在使用前应进行淬火处理,使其内部组织重新转变为单一的奥氏体组织。 4. 切削高猛钢时怎样选择刀具材料 高猛钢属难加工材料,对刀具材料要求较高。一般来说,要求刀具材料红硬性高、耐磨性好,有较高的强度、韧性和导热系数。切削高镭钢可选用硬质合金、金属陶瓷做刀具材科,也可以用CN25涂层刀片或CBN(立方氮化硼)刀具。□前应用最普遍的还是硬质合金,其中YG类硬质合金具有较高的抗弯强度和冲击韧性(与YT类硬质合金比较),可减少切削时的崩刃。同时,YG类硬质合金的导热性较好,有利于切削热从刀尖散走,降低刀尖温度,避免刀尖过热软化。YG类硬质合金的磨加工性较好,可以磨出锐利的刃口。一般情况下,刀具的耐用度取决于刀具材料的红硬性、耐磨性和冲击韧性。YG类硬质合金中含钻量较多时,抗弯强度和冲击韧性好,特别是提高了疲劳强度,因此适于在受冲击和震动的条件下作粗加工用;含钻量较少时,其硬度、耐磨性和耐热性较高,适合作连续切削的精加工。 YT类硬质合金具有较高的硬度和较高的耐热性,但与YG类硬质合金相比,其强

浅谈高强度螺栓加工工艺

浅谈高强度螺栓加工工艺 刘伟底盘零件厂 摘要 本文所阐述高强度螺栓加工用设备均为普通机床,加工工艺主要指传统典型加工工艺。文章中着重介绍高强度螺栓机械加工工艺,对高强度螺栓的热处理工艺和表面处理工艺只做简要描述。又介绍了在高强度螺栓加工过程中未来的发展方向。 关键词:高强度螺栓、机械加工工艺、未来工艺过程 Abstract The processing equipments of High-intensity Bolts in this article are general machine tools, technology mainly referring to typical traditional technology. Article highlights High-intensity Bolts machining, heat treatment technology and the surface treatment High-intensity Bolts crafts itself a brief description. Key words: High-intensity Bolts、machining、technology processes in the future

浅谈高强度螺栓加工工艺 螺栓类零件是一种重要标准件,用做连接紧固件,在各领域的应用相当广泛,根据其机械和物理性能的不同,分成10种类别,其中机械性能等级大于等于8.8级的螺栓,我们通常称其为高强度螺栓。 一、高强度螺栓主要结构及作用 高强度螺栓种类较多,形状也不尽相同,外部尺寸更是千变万化,但整体上其主要结构和整体外部形状具有一定的相似性。根据这些相似性,我们将其分成三个主要部分:头部、杆部和螺纹部分。如下简图所示: 下面我们简要介绍一下各部分的作用极其重点要素: 1. 头部头部主要作用是在螺母与螺栓配合时施加一个反向力矩,保证螺母有足够拧紧力矩。形式种类较多,主要有方头、半圆头、六角头等形式。另外,一些非标准件高强度螺栓头部形式由设计者根据装配需要特别设计。 2. 杆部杆部主要起导向作用,特别是导径螺栓,装配后承受一定的径向剪切力,要求与孔小间隙配合,对杆部外圆精度和粗糙度要求严格。一些装配后只承受轴向拉伸力的螺栓对杆部要求不是很严格,外圆尺寸公差较大。对高强度螺栓来说,杆部与头部接触部位要求一定圆角,避免承受较大拉力时该部位断裂,同时避免热处理冷却时产生裂纹,是加工重点注意要素。 3. 螺纹部分螺纹部分是螺栓最主要部分,主要起连接紧固作用。可以分成有效螺纹部分,收尾部分(退刀部分)和螺纹末端三部分;螺纹三个主要要素:螺距、牙形半角和螺距,直接影响螺纹配合精度,也是加工重点注意要素。 二、高强度螺栓工艺分析 高强度螺栓机械加工一般不需要精度极高的专用机床,在普通设备上即可完成加工。根据其三个主要部分,我们将其加工工艺分成三部分:头部的加工、杆部加工和螺纹加工。每一部分的加工工艺又因其尺寸形状及技术要求的不同分成若干种类,采用不同的加工方法;虽然我们将其分成了三部分,但三部分的加工是相辅相成的,相互关联的,可能共存于同一工序,也可能共存于同一工步。 1. 头部的加工 ⑴毛坯 毛坯形式:螺栓头部形状直接决定产品毛坯形式。一般来说,方头螺栓毛坯可选用冷拉方钢,六角头螺栓毛坯可选用冷拉六角钢,半圆头螺栓毛坯应选用锻件毛坯;头

17-4 热处理工艺

标准:GB/T 1220-1992 ●特性及应用: 0Cr17Ni4Cu4Nb是由铜、铌/钶构成的沉淀、硬化、马氏体不锈钢。0Cr17Ni4Cu4Nb有较高的强度、耐蚀性、抗氧化性,0Cr17Ni4Cu4Nb这个等级具有高强度、硬度(高达300℃/572℉)和抗腐蚀等特性。经过热处理后,产品的机械性能更加完善,可以达到高达1100-1300MPa(160-190 ksi) 的耐压强度。这个等级不能用于高于300℃(572℉) 或非常低的温度下,它对大气及稀释酸或盐都具有良好的抗腐蚀能力,它的抗腐蚀能力与304和430一样。 ●应用领域: 1.海上平台、直升机甲板、其他平台 2.食品工业 3.纸浆及造纸业 4.航天(涡轮机叶片) 5.机械部件 6.核废物桶 ●化学成分: 0Cr17Ni4Cu4Nb化学成分: C Si Mn P S Ni Cr Mo Cu Nb 其他 ≤0.07 ≤1.00 ≤1.00 ≤0.035 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 - 美国ASTMS17400,AISI630,UNS630化学成分 C Si Mn P S Ni Cr Mo Cu Nb 其他 ≤0.07 ≤1.00 ≤1.00 ≤0.040 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 - 日本SUS630化学成分 C Si Mn P S Ni Cr Mo Cu Nb+Tao 其他 ≤0.07 ≤1.00 ≤1.00 ≤0.040 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 - 欧洲X5CrNiCuNb16-4化学成分 C Si Mn P S Ni Cr Mo Cu Nb+Tao 其他 ≤0.07 ≤1.00 ≤1.00 ≤0.040 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 - ●力学性能: 抗拉强度σb (MPa):480℃时效,≥1310; 550℃时效,≥1060; 580℃时效,≥1000; 620℃时效,≥930 条件屈服强度σ0.2 (MPa):480℃时效,≥1180;550℃时效,≥1000;580℃时效,≥865;620℃时效,≥725 伸长率δ5 (%):480℃时效,≥10;550℃时效,≥12;580℃时效,≥13;620℃时效,≥16 断面收缩率ψ (%):480℃时效,≥40;550℃时效,≥45;580℃时效,≥45;620℃时效,≥50 硬度:固溶,≤363HB和≤38HRC;480℃时效,≥375HB和≥40HRC; 550℃时效,≥331HB和≥35HRC;580℃时效,≥302HB和≥31HRC;620℃时效,≥277HB和 ≥28HRC ●热处理规范及金相组织: 热处理规范:1)固溶1020~1060℃快冷;2)480℃时效,经固溶处理后,470~490℃空冷; 3)550℃时效,经固溶处理后,540~560℃空冷; 4)580℃时效,经固溶处理 后,570~590℃空冷;5)620℃时效,经固溶处理后,610~630℃空冷。 金相组织:组织特征为沉淀硬化型。 ●交货状态:一般以热处理状态交货,其热处理种类在合同中注明;未注明者,按不热处理状态交货。

高锰钢水韧处理的加热温度

水韧处理的加热速度 高锰钢铸件进行水韧处理,加热时的温度低于400℃的范围内,铸态组织中没有明显变化。450℃左右开始有针状碳化物析出。500℃时碳化物数量明显增加。大约在550℃是碳化物析出数量最多。到600℃时针状碳化物的长度铸件变短但是片层变得宽厚。700℃以上铸态组织中的碳化物铸件溶入奥氏体中。开始时是晶内针状碳化物先溶解,800℃时晶内碳化物大部分消失了,,只是在晶界上和晶界附近尚有未溶的碳化物。850℃以上晶界上的碳化物因逐渐溶解而变细、变窄成断网状,900℃以上晶界上残余的碳化物铸件消失并成为孤立的集聚状态。这种未溶的碳化物随着温度的升高而逐渐缩小,950℃以上即全部溶入奥氏体中。加热过程中在550-600℃发生共析转变,形成珠光体。开始时在碳化物的周围奥氏体分解,以后逐渐扩大范围。开始形成的珠光体是层片状,温度升高时趋于粒状化。加热到共析转变温度以上,珠光体型的组织会发生奥氏体的重结晶。这个过程是一个在相界面上奥氏体核心形成和长大的过程,由于重结晶的过程奥氏体晶粒可以有一定程度的细化。但是在通常的热处理升温速度的条件下,铸态组织中的奥氏体不可能全部分解,因此这个细化作用是不明显的。而且经过高温保温阶段之后往往高锰钢的晶粒还有所长大,甚至在热处理之后的组织较铸态还要粗大。高锰钢在升温过程中,若升温速度足够快,奥氏体中就来不及析出碳化物,就不发生共析反应。由于高锰钢的导热性低、热膨胀系数高,加以铸态组织中有大量的网状碳化物,钢的性能很脆。加热时很容易因应力而开裂。入炉温度取决于高锰钢铸件的尺寸、重量、结构的复杂程度和钢中碳含量等因素。加热过程中温度低于700℃时最危险,因为低温时钢的性能很脆。升温到650-700℃时保温一段时间,以便使温度均匀,消除一部分应力。保温时间长短视件大小而定。加热速度根据具体情况,厚大件可以在35-50℃/h,多数铸件可以在80-100℃/h。为了防止形成裂纹,磷含量、碳含量和升温速度之间应综合予以考虑。在700℃以下,升温速度和碳、磷含量的关系,碳、磷含量增加时,升温速度应相应降低。

相关主题
文本预览
相关文档 最新文档