三段式电流保护整定和接线
- 格式:ppt
- 大小:996.50 KB
- 文档页数:39
三段式过流保护整定原则一、三段式过流保护概述三段式过流保护由电流速断保护(Ⅰ段)、限时电流速断保护(Ⅱ段)和定时限过电流保护(Ⅲ段)组成,分别用于快速切除近处故障、切除本线路全长范围内的故障以及作为相邻线路保护的后备保护,在电力系统的安全稳定运行中起着重要作用。
二、电流速断保护(Ⅰ段)整定原则1. 动作电流- 按照躲过被保护线路末端的最大短路电流来整定。
这是因为如果不躲过,在被保护线路末端发生短路时,电流速断保护就会误动作,将本线路切断,而实际上故障应该由下一级线路的保护去切除。
其动作电流计算公式为I_{op1}=K_{rel}I_{k.max},其中I_{op1}为电流速断保护的动作电流,K_{rel}为可靠系数(一般取1.2 - 1.3),I_{k.max}为被保护线路末端的最大短路电流。
2. 动作时间- 动作时间一般取t_{1}=0s(实际上考虑到继电器固有动作时间等因素,大约为0.06 - 0.1s),这是为了实现快速切除故障,尽可能减少故障对系统的影响。
三、限时电流速断保护(Ⅱ段)整定原则1. 动作电流- 按照躲过下级线路电流速断保护的动作电流来整定。
这样可以保证在下级线路的速断保护范围以外发生故障时,本级的限时电流速断保护才动作,避免无选择性动作。
其动作电流计算公式为I_{op2}=K_{rel}I_{op1下},其中I_{op2}为本级限时电流速断保护的动作电流,K_{rel}为可靠系数(一般取1.1 - 1.2),I_{op1下}为下级线路电流速断保护的动作电流。
2. 动作时间- 动作时间比下级线路电流速断保护的动作时间高出一个时间级差Δ t,一般Δ t = 0.5s。
这是为了保证动作的选择性,即当下级线路的速断保护先动作时,本级的限时电流速断保护不动作;只有当下级线路速断保护拒动时,本级限时电流速断保护才在高出一个时间级差后动作。
四、定时限过电流保护(Ⅲ段)整定原则1. 动作电流- 按照躲过被保护线路的最大负荷电流来整定。
三段式电流保护工作原理、整定计算什么是三段式电流保护三段式电流保护指的是电流速断保护(第一段)、限时电流速断保护(第二段)、定时限过电流保护(第三段)相互配合构成的一套保护、下面我们就来详细介绍一下三段时电流保护的工作原理和整定计算方法。
一、电流速断保护(第I段)简单网络接线示意图对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护。
为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。
以上图1所示的网络接线为例,假定每条线路上均装有电流速断保护,对于安装在A母线处的保护1来讲,其起动电流必须整定得大于d2点处短路时,可能出现的最大短路电流,即在最大运行方式下B母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在A母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在B母线处的保护2就能起动,最后动作于跳断路器2。
后面几段线路的电流速断保护整定原则同上。
电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。
但由于引入的可靠系数,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。
运行实践证明,电流速断保护的保护范围大概是本线路的85%~90%。
二、限时电流速断保护(第II段)1、工作原理及整定计算的基本原则由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。
由于要求它必须保护本线路的全长,因此它的保护范围必然要延伸到下一条线路中去,这样当下一条线路出口处(如图1中,对于保护1来说,d2点处)发生短路时,它就要起动,在这种情况下,为了保证动作的选择性,就必须使保护的动作带有一定的时限,但又为了使这一时限尽量缩短,我们就考虑使它的保护范围不超过下一条线路速断保护(如图1中的保护2)的保护范围,而动作时限则比下一条线路速断保护高出一个时间阶段,即如图2(a)所示,由于它能以较小的时限快速切除全线路范围以内的故障,所以我们称它为限时电流速断保护。
无时限电流速断保护(电流I段)反应电流增大而能瞬时动作切除故障的电流保护,称为电流速断保护也称为无时限电流速断保护。
1.几个基本概念(1)系统最大运行方式与系统最小运行方式最大运行方式:就是在被保护线路末端发生短路时,系统等值阻抗最小,而通过保护装置的短路电流为最大的运行方式。
最小运行方式:就是在同样短路条件下,系统等值阻抗最大,而通过保护装置的短路电流为最小的运行方式。
(2)最小短路电流与最大短路电流在最大运行方式下三相短路时,通过保护装置的短路电流为最大,称之为最大短路电流。
在最小运行方式下两相短路时,通过保护装置的短路电流为最小,称之为最小短路电流。
(3)保护装置的起动值对应电流升高而动作的电流保护来讲,使保护装置起动的最小电流值称为保护装置的起动电流。
(4)保护装置的整定所谓整定就是根据对继电保护的基本要求,确定保护装置起动值,灵敏系数,动作时限等过程。
2、整定计算(1)动作电流为保证选择性,保护装置的起动电流应按躲开下一条线路出口处短路时,通过保护的最大短路电流来整定。
即Idz>Id.max=KK Id.Bmax 式中可靠系数KK =1.2~1.3,结论:电流速断保护只能保护本条线路的一部分,而不能保护全线路,其最大和最小保护范围Lmax和Lmin。
(2) 保护范围(灵敏度KLm)计算(校验)《规程》规定,在最小运行方式下,速断保护范围的相对值 Lb%>(15%~20%)时,为合乎要求,即(3)动作时限无时限电流速断保护没有人为延时,在速断保护装置中加装一个保护出口中间继电器。
一方面扩大接点的容量和数量,另一方面躲过管型避雷器的放电时间,防止误动作。
t=0s3、对电流速断保护的评价优点:是简单可靠,动作迅速。
缺点:(1)不能保护线路全长;(2)运行方式变化较大时,可能无保护范围。
注意: (1) 在最大运行方式下整定后,在最小运行方式下无保护范围。
二、限时电流速断保护(电流II段)的电流速断保护限时电流速断保护:按与相邻线路电流速断保护相配合且以较短时限获得选择性的电流保护。
2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。
K1rel——可靠系数,一般取1.2~1.3。
I1op1——保护动作电流的一次侧数值。
nTA——保护安装处电流互感器的变比。
灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。
要求最小保护范围不得低于15%~20%线路全长,才允许使用。
2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。
所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。
故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。
要求作为本线路主保护的后备以及相邻线路或元件的远后备。
动作电流按躲过最大负荷电流整定。
式中:KⅢrel——可靠系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。
灵敏度分别按近后备和远后备进行计算。
式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。
即:最小运行方式下,两相相间短路电流。
要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。
已知:1)线路AB长20km,线路BC长30km,线路电抗每公里0.4欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为9.5MW,功率因数0.9,自起动系数取1.3;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗7.9欧,系统最小电抗4.5欧。
实验一三段式电流保护一、传统电磁型继电器三段式电流保护(1)实验目的1.掌握无时限电流速断保护、带时限电流速断保护及过电流保护的电路原理、工作特性及整定原则。
2.理解输电线路阶段式电流保护的原理图、展开图及保护装置中各继电器的功用。
(2)实验原理1.阶段式电流保护的构成无时限电流速断只能保护线路的一部分,带时限电流速断只能保护本线路全长,但却不能作为下一线路的后备保护,还必须采用过电流保护作为本线路和下一线路的后备保护。
由无时限电流速断、带时限电流速断与定时限过电流保护相配合可构成的一整套输电线路阶段式电流保护,叫做三段式电流保护。
输电线路并不一定都要装三段式电流保护,有时只装其中的两段就可以了。
例如用于“线路-变压器组”保护时,无时限电流速断保护按保护全线路考虑后,此时,可不装设带时限电流速断保护,只装设无时限电流速断和过电流保护装置。
又如在很短的线路上,装设无时限电流速断往往其保护区。
图1 三段式电流保护各段的保护范围及时限配合很短,甚至没有保护区,这时就只需装设带时限电流速断和过电流保护装置,叫做二段式电流保护。
在只有一个电源的辐射式单侧电源供电线路上,三段式电流保护装置各段的保护范围和时限特性见图2.11-1。
XL-1线路保护的第Ⅰ段为无时限电流速断保护,它的保护范围为线路XL-1的前一部分即线路首端,动作时限为t1I,它由继电器的固有动作时间决定。
第Ⅱ段为带时限电流速断保护,它的保护范围为线路XL-1的全部并延伸至线路X L-2的一部分,其动作时限为t1II= t2I+△t。
无时限电流速断和带时限电流速断是线路XL-1的主保护。
第Ⅲ段为定时限过电流保护,保护范围包括X L-1及XL-2全部,其动作时限为t1III,它是按照阶梯原则来选择的,即t1III=t2III+△t ,t2III为线路XL-2的过电流保护的动作时限。
三段式电流保护整定的计算方法什么是三段式电流保护?三段式电流保护指的是电流速断保护(第一段)、限时电流速断保护(第二段)、定时限过电流保护(第三段),相互配合构成的一套保护、下面我们就来详细介绍一下三段时电流保护的工作原理和整定计算方法。
一、电流速断保护(第I段)简单网络接线示意图对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护。
为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。
以上图1所示的网络接线为例,假定每条线路上均装有电流速断保护,对于安装在A母线处的保护1来讲,其起动电流当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在B 母线处的保护2就能起动,最后动作于跳断路器2。
后面几段线路的电流速断保护整定原则同上。
电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。
但由于引入的可靠系数,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。
运行实践证明,电流速断保护的保护范围大概是本线路的85%~90%。
二、限时电流速断保护(第II段)1、工作原理及整定计算的基本原则由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。
实验三三段式电流保护一、实验目的1.加深了解三段式电流保护的原理。
2.掌握三段式电流保护的参数整定及各段保护之间的配合。
二、实验内容三段式电流保护分电流速断保护(I段保护),限时电流速断保护(II 段保护)和过电流保护(III段保护):包括以下4个部分:(1)电流保护I段:它是经过傅立叶模块变换的电流与预先设置的继电器电流相比较,若大于预置值则输出0,反之输出1。
其动作电流按躲开线路末端发生三相短路的短路电流整定;因为电流I段是瞬时动作,所以延时时间很小(延时0.05S)。
它只能保护线路的一部分,不能保护全长。
(2)电流保护II段:其动作原理与电流I段相同,其动作电流按与下一级线路的I段或II段配合来整定,整定值小于I段,延时时间0.5S,它能保护本线路的全长。
(3)电流保护I段:其动作原理与电流保护I段相同,其动作电流按躲开最大负荷电流整定,保护经过一个动作延时启动并切出故障,它不仅能保护本线路的全长,而且能保护下级相邻线路的全长。
当满足灵敏度的情况下,它的动作时间应与下一保护的ni段相配合。
(4)保护出口部分,该部分的功能就是将电流I、II和n段的输出信号相与。
模拟单侧电源系统中,线路发生故障时保护的动作情况。
ContinuousThnee-Pha&e Sfluroe 1)三相电源模排,战电压为1MV二A相的相柱南为0:^电内部连接方式为Yg;内部电限力内部也感为0,04比疑问2)格踞殁模块起始状态身close,勾iiA, H,白拜美,不在胃触发:勾逸开、断时间为外部校前方式□・» In1 DirtlSwtKygtem 3Three-PhaseFault5)故障发时4)二相卤端,500KW9.图3-1仿真模型图3-2子系统模型主要模块参数设置如下:(1)三相电源模块:线电压设置为10kV ; A 相的相位角设置参数为0;频 率设置参数为50Hz,内部连接方式设置为Yg ,星形连接;电源的内部电阻 设置参数为3。