油层物理实验报告岩石孔隙度测定
- 格式:doc
- 大小:164.00 KB
- 文档页数:5
岩石孔隙度测定实验报告实验目的:本实验旨在通过测量实验样品的体积和质量,确定样品的平均密度和孔隙度,并掌握岩石孔隙度的测定方法。
实验原理:孔隙度是指岩石中由各种类型和尺度的孔隙组成的总体积与岩石总体积之比。
孔隙可以分为原生孔隙和次生孔隙,原生孔隙是岩石形成时就具有的,次生孔隙是后期在岩石中形成的。
测定岩石孔隙度的方法通常有置换法和密度法。
本实验采用浮法测定岩石孔隙度。
浮法是利用岩石密度与测量液体密度的差异,通过浸泡法测得岩石体积与液体体积之比来求解。
实验步骤:1. 取实验样品,将其用水清洗干净,然后用干布或纸巾将其外表擦干。
2. 将样品放在秤盘上,测量其重量,并记录结果。
3. 取一个干净的容器,先将容器放在天平上,记录容器的重量。
4. 用清水将容器装至约7/8的容积。
5. 用手将装有清水的容器置于实验样品上,至少盖住实验样品的顶部。
6. 记录液体的体积。
为了减小误差,我们建议用毫升阅读浮标的容积器或移液管等专用工具测量。
记录液体体积的时候一定要注意去掉液体表面的涟漪。
7. 将容器取出,记录液体温度,并用差压计测得大气压强。
8. 计算岩石的密度和孔隙度。
岩石密度=实验样品重量/实验样品体积孔隙度=(1- 岩石平均密度/实验液体密度)×100%注意事项:1. 实验液体的温度和压强必须测量,并考虑它们对密度的影响。
实验液体的温度应在室温范围内,实验液体的密度最好与岩石密度相近。
2. 手操作时注意避免样品坠落,以免破坏样品。
3. 一定要注意记录数据时的精度,在做测量时尽量减小误差。
4. 在进行测量前,要先检查仪器是否正常运转。
实验结果及分析:本实验采用浮法测定岩石孔隙度。
最终结果如下:实验样品重量:102.50g实验液体温度:25℃大气压强:100kPa实验液体体积:250.00ml平均密度:2.67g/cm³孔隙度:17.33%通过实验测得的平均密度和孔隙度结果表明,无论是平均密度还是孔隙度都是合理的。
1 / 4实验一 岩石孔隙度的测定一.实验原理气体孔隙度仪是测量体积的一种仪器,用它可以测定岩样的骨架体积和孔隙度体积,利用气体膨胀原理,即玻义尔定律,已知体积的气体在其确定压力下向未知体积等温膨胀,膨胀后可测定最终的平衡压力。
平衡压力的大小取决于未知体积的大小,而未知体积的大小由玻义尔定律求得。
该仪器可用两种气体作为驱替介质,氮气和氦气,对于一般的砂岩可用氦气,对于较为致密的灰岩和孔隙较小的岩样可用氦气测定。
根据玻义尔定律,如图—2所示:气体的已知体积V k 与所测压力P k 下等温膨胀到未知室体积V 中,膨胀后测量最终平衡压力P ,这个平衡压力取决于未知体积量,未知体积可以用玻义尔定律求得:V k P k =VP +V k P (1) V =V k (P k −P)/P (2)对于低压真实气体,在弹性体积中作等温膨胀,考虑到器壁的压变性,忽略一些次要因素,计算由下式表示: V =V k (P k −P P)+P+P 0PG (P k −P) (3)式中:V ——未知室空间体积,cm 3V k ——已知室空间体积,cm3P k ——已知室的(原始)压力,MPa P ——平衡压力,MPaP 0——当天大气压力,MPa G ——体积的压变系数。
(一)岩样颗粒体积的测定:由上述所知,只有用同样的方法进行两次实验就可以确定出岩样的颗粒体积,即未知室不装岩样时得到的平衡压力为P 1,未知室空间体积为V 1。
V 1=V k (P k −P 1P 1)+P 1+P 0P 1G (P k −P 1) (4)未知室里装上岩样时得到的平衡压力P ,未知室的空间(包括岩心当中的空习体积)体积V 2 V 2=V k (P k −P P)+P+P 0PG (P k −P) (5)式(4)—式(5)为岩样的颗粒体积为V gV g =V 1−V 2这里应该指出的是:由于我们所用的气体空隙度仪结构设计上考虑了精度和已知室的校正问题,所以在岩样杯(未知室)中装满了不同体积的钢块,在测定P 1时应在岩样杯中装满钢块,测定P 时应从杯中取出与岩样体积相当的钢块体积,记录取出的钢块体积V 钢,所以颗粒体积为V g =V 1+V 钢−V 2 (6)(二)岩样外表体积和孔隙度的确定1、外表体积的求法:V f =HD 2π/4 (7) 式中:V f ——岩样外表体积,cm 3D ——岩样直径,cm H ——岩样高度,cm 2、孔隙度的求法根据下式就可求出岩样的空隙度Φ: Φ=1−V g /V f (8)(三)公式(3)中V k 、G 的确定其方法是在同一原始压力P k 下测定: 1、 岩样杯中装满钢块时的平衡压力P 1; 2、 从杯中取出1号钢块后的平衡压力P 2;3、 从杯中取出3号钢块(同时装入1号钢块)后的平衡压力P 3;根据公式(3)就可以知道下面三个描述性方程:V 1=V k (P k −P 1P 1)+P 1+P 0P 1G (P k −P 1) (9) V 2=V k (P k −P 2P 2)+P 2+P 0P 2G (P k −P 2) (10) V 3=V k (P k −P 3P 3)+P 3+P 0P 3G (P k −P 3) (11)由(11)—(9)式得:V 3−V 1=V k (P k P 3−P k P 1)+[(P k P 3−1)(P 3+P 0)−(Pk P 1−1)(P 1+P 0)]G (12)由(10)—(9)式得: V 2−V 1=V k (P k P 2−P k P 1)+[(P k P 2−1)(P 2+P 0)−(Pk P 1−1)(P 1+P 0)]G (13)令:A =P k P 3−P kP 1B =(P k P 3−1)(P 3+P 0)−(P kP 1−1)(P 1+P 0)C =P k P 2−P kP 1D =(P k P 2−1)(P 2+P 0)−(P kP 1−1)(P 1+P 0)有:V 3−V 1=A ∙V k +B ∙GV2−V1=C∙V k+D∙G 经整理得G=A(V2−V1)−C(V3−V1)AD−BC(14)V k=D(V3−V1)−B(V2−V1)AD−BC(15)式中(V2-V1)——第一次取出的1号钢块体积;cm3(V3-V1)——第一次取出的3号钢块体积;cm3P0——大气压力;MPa二.测量参数表三.用式(14)和(15)计算v k和G 根据实验测得的数据,计算出:A=P kP3−P kP1=0.309B=(P kP3−1)(P3+P0)−(P kP1−1)(P1+P0)=0.399MpaC=P kP2−P kP1=0.069D=(P kP2−1)(P2+P0)−(P kP1−1)(P1+P0)=0.093Mpa V2−V1=V01=1.453cm33/ 4V3−V2=V03=6.401cm3因此,根据式(14)和式(15)得:G=A(V2−V1)−C(V3−V1)AD−BC =6.060 cm3Mpa⁄V k=D(V3−V1)−B(V2−V1)AD−BC=12.891 cm³四.用式(8)计算岩样孔隙度根据实验测得数据,计算出:V1=V k(P k−P1P1)+P1+P0P1G(P k−P1)=1.016 cm³V2=V k(P k−PP )+P+P0PG(P k−P)=1.254 cm³V g=V1+V钢−V2= 20.429 cm³V f=HD2π/4=24.406 cm³因此,根据式(8),得:Φ=1−V g/V f=0.163。
孔隙度测试实验报告引言孔隙度是岩石中所有孔隙的总体积与岩石样品总体积的比值,是评价岩石储层性质的重要参数之一。
测试孔隙度的目的是为了获得岩石样品中的孔隙度信息,从而进一步了解岩石中的储层特性。
本实验使用氮气置换法测试了岩石样品的孔隙度,并详细记录了实验过程和结果。
实验原理氮气置换法是一种常见的测试孔隙度的方法。
该方法利用氮气的特性,通过测量被测样品在氮气压力作用下的体积变化来获得孔隙度信息。
具体的原理如下:1. 孔隙度的计算公式孔隙度(φ)的计算公式为:质量(g)压力(MPa)体积(cm^3)孔隙度(%)-1 3×4×5 15.2 1.5 22.6 15.42 2×3×4 10.5 1.2 16.8 12.53 4×4×5 20.1 1.8 27.0 17.8从实验结果来看,不同样品的孔隙度存在一定的差异,这是由于样品的不同物理结构和成分差异导致的。
中国石油大学 渗流物理_实验报告实验日期:2014年9月22日 成绩:______ 班级:_ _学号: 姓名:_ _教师:_________同组者:__ _________________________________________________储层岩石孔隙度的测定一、 实验目的.1、 巩固岩石孔隙度的概念,掌握其测定原理2、 掌握气体膨胀法测定孔隙度的方法二、 实验原理在标准室内充满一定压力的气体,打开标准室与岩心室之间的开关,标准室中的高压气体将进入岩心室,其压力降低。
根据波义尔定律,在恒定温度下,岩心室体积一定,放入岩心室岩样的固相体积越小,则岩心室中气体所占体积越大,与标准室联通后,平衡压力就降低;反之,放入岩心室岩样的固相体积越大,平衡压力就越高。
绘制标准块的体积与平衡压力的标准曲线,测定待测岩样的平衡压力后,根据标准曲线反查岩样固相体积,按公式计算岩样孔隙度公式:fsff p V V V V V -==φ φ------孔隙度 测定岩样骨架体积的原理:根据气体等膨胀定律:)()-(10211s 00V V V P V P V V P s +-=+ 用表压表示---))(()()-(100210g 1s 00V V V P P V P P V V P s g +-+=++其中-,2g 1g P P 表示表压化简后得1g 1102)(V P V V V P s g =+-三、 实验流程s V1V气源o P1P四、 实验操作步骤1、 用游标卡尺测量各个钢圆盘和岩样的直径与长度(将钢盘由小到大编号为1,2,3和4),并记录在数据表中。
2、 将2号钢盘装入岩心杯,并把岩心杯装入夹持器中,转动T 形转柄,使之密封。
打开样品阀及放空阀,确保岩心室中的压力为大气压。
3、 关闭样品阀及放空阀,打开气源阀和供气阀。
调节调压阀,使标准室内的气体压力为560KPa 。
待压力稳定后,关闭供气阀,并记录标准室内的气体压力。
测定岩石孔隙度的方法
测定岩石孔隙度的方法有以下几种:
1. 接触法:将岩石样品放入已知密度的液体中,测量液面的升降高度,就可以通过公式计算岩石孔隙度。
2. 吸附法:将一定数量的气体或液体在给定温度和压力下吸附在岩石孔隙中,通过测量吸附前后的重量差,计算出岩石的孔隙度。
3. 测井法:使用测井仪器测量岩石的电导率、密度、声速等参数,进而推算出岩石孔隙度。
4. 光学法:使用光学显微镜观测岩石薄片的孔隙结构,通过图像分析计算岩石的孔隙度。
以上是常用的几种测定岩石孔隙度的方法,每种方法都有其优缺点和适用范围,需要根据实际情况选择合适的方法进行测定。
中国石油大学《油层物理》实验报告实验日期: 2011.10.21 成绩:班级: 石工10-15 学号:10131504 姓名: 于秀玲 教师:同组者:实验一 岩石孔隙度测定一、实验目的1. 掌握气测孔隙度的流程和操作步骤。
2. 巩固岩石孔隙度的概念,掌握其测定原理。
二、实验原理根据玻义尔定律,在恒定温度下,岩心室一定,放入岩心杯岩样的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。
绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,根据标准曲线反求岩样固相体积。
按下式计算岩样孔隙度:100%f s fV V V ϕ-=⨯式中 φ—孔隙度f V —岩样外表体积s V —岩样固相体积测定岩石骨架体积可以用①气体膨胀法11221()()Po Vo Vs PV P Vo V V -+=-+②气体孔隙度仪测定岩石外形体积可以用①尺量法 ——适用于外形规则的岩石②排开汞的体积法——适用于外形不规则的岩石三.实验流程图1 实验流程图四、实验操作步骤1. 将钢圆盘从小到大编号为1、2、3、4;2. 用游标卡尺测量各个钢圆盘和岩样的直径与长度,并记录在数据表中;3. 打开样品阀及放空阀,确保岩心室气体为大气压;4. 将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。
5. 关样品阀及放空阀,开气源阀、供气阀,调节调压阀,将标准室压力调至某一值,如560kPa。
待压力稳定后,关闭供气阀,并记录标准室气体压力。
6. 开样品阀,气体膨胀到岩心室,待压力稳定后,记下此平衡压力。
7. 开放空阀至大气压,关样品阀,逆时针转动T形转柄一周,将岩心室向外推出,取出钢圆盘。
8. 用同样方法将3号、4号、全部(1号-4号)及两两组合的三组钢圆盘装入岩心室中,重复步骤2-5,记下平衡压力。
9. 将待测岩样装入岩心室,按上述方法测定装岩样后的平衡压力。
《油层物理》实验报告岩石孔隙度测定《油层物理》实验报告:岩石孔隙度测定一、实验目的本实验旨在通过物理方法测定岩石样品的孔隙度,以了解岩石的孔隙特征,为石油、天然气等资源的开发与利用提供基础数据。
二、实验原理孔隙度是岩石中孔隙体积与岩石总体积之比,是描述岩石储油、储气能力的重要参数。
根据实验原理,我们可以通过以下步骤测定岩石孔隙度:1.准备一定质量的纯砂或玻璃珠作为标准物质;2.测定标准物质的密度ρs;3.测定岩石样品的密度ρr;4.将岩石样品和标准物质浸入水中,测定它们的视密度ρrs和视密度ρrs,w;5.根据实验原理公式计算岩石孔隙度。
三、实验步骤1.准备样品:选取具有代表性的岩石样品,将其破碎、研磨,确保样品表面平整、无裂纹;2.准备标准物质:选用纯砂或玻璃珠作为标准物质,确保其密度均匀、无孔隙;3.测定密度ρs:将标准物质放入比重瓶中,加水至淹没,加热至沸腾,冷却至室温后,读取比重瓶中水的质量m1,计算标准物质的体积Vs;再称取干燥的标准物质的质量ms,计算其密度ρs;4.测定岩石样品密度ρr:将岩石样品放入比重瓶中,加水至淹没,加热至沸腾,冷却至室温后,读取比重瓶中水的质量m2,计算岩石样品的体积Vr;再称取干燥的岩石样品的质量rr,计算其密度ρr;5.浸水实验:将岩石样品和标准物质分别放入广口瓶中,加水至淹没,静置24小时后,读取广口瓶中水的质量m3和m4,计算岩石样品和标准物质的视密度ρrs和视密度ρrs,w;6.计算孔隙度:根据实验原理公式计算岩石孔隙度。
四、实验结果与数据分析1.标准物质密度ρs:通过比重瓶法测得标准物质的密度为1.66 g/cm³;2.岩石样品密度ρr:通过比重瓶法测得岩石样品的密度为2.77 g/cm³;3.岩石样品视密度ρrs:通过浸水实验测得岩石样品的视密度为2.37g/cm³;4.岩石样品视密度ρrs,w:通过浸水实验测得岩石样品的视密度为1.87g/cm³;5.根据实验原理公式计算得到岩石孔隙度为37%。
中国石油大学(油层物理)实验报告实验日期: 2012.5.28 成绩:班级: 勘查09—2 学号: 09012210 姓名: 李新鹏教师: 张丽丽 同组者: 刘森实验名称:岩石孔隙度的测定一、实验目的1. 巩固岩石孔隙度的概念,掌握其测定原理。
2. 掌握气测孔隙度的流程与操作步骤。
二、实验原理根据波义耳定律,在恒定温度下,岩心室体积一定,放入岩心是样品的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准是连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。
绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,据标准曲线反求岩样固相体积。
按下式计算岩样孔隙度:%100⨯-=f sf V V V φ三、实验流程与设备(a ) 流程图(b)控制面板设备:QKY-II型气体孔隙度仪仪器部件组成:①气源阀:供给孔隙度仪调节器低于10KPa的气体。
当供气阀开启时,调节器通过常泄,使压力保持稳定。
②调节阀:将10KPa的气体准确地调节到指定压力(小于10KPa)。
③供气阀:连接经调节阀后的气体到标准室和压力传感器。
④压力传感器:测量体系中气体压力,用来只是准确标准室的压力,并指示体系的平衡压力。
⑤样品阀:能使标准室的气体连接到岩心室。
⑥放空阀:使岩心室中的初始压力为大气压,也可使平衡后的岩心室与标准室的气体放入大气。
四、实验步骤1.用有表喀尺测量各个刚圆盘和岩样的直径与长度(为了便于区分,将刚圆盘从小到大编号为1、2、3、4),并记录在数据表中。
2.浆2号刚圆盘装入岩心杯,并把岩心杯放入加持器中,顺指针转动T形转柄,使之密封。
打开样品阀及放空阀,确保岩心室气体为大气压。
3.关样品阀及放空阀,开气源阀和供气阀。
调节调压阀,将标准室气体压力调至某一值,如560kPa。
待压力稳定后,关闭供气阀,并记录标准室气体压力。
4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力。
中国石油大学油层物理实验报告实验日期: 成绩:班级: 学号: 姓名: 教师:同组者:实验一岩石孔隙度测定一、实验目的(1)掌握测定岩石孔隙度、骨架体积及岩石外表体积的原理;(2)学会使用气体法测定岩石孔隙度。
二、实验原理气体法孔隙度测定原理是气体玻义耳定律,其原理示意图如图1-1所示。
容器阀门样品室图1-1 气体法孔隙度测定原理示意图容器中气体压力为P1,样品室压力为大气压。
打开阀门,容器与样品室连通。
压力平衡后,整个系统的压力为P2。
每次使容器中气体压力保持不变。
当样品室中放置不同体积的钢块时,连通后系统的压力不同。
可得到钢块体积与系统压力的关系曲线,称为标准曲线。
然后将样品室中的钢块换成待测岩心。
可得到连通后系统压力。
根据此压力从标准曲线上可查到对应的体积,即为岩心的骨架体积。
通过其它测量手段,可以测出岩心的视体积,从而求出岩心孔隙度φ。
三、实验仪器气体孔隙度测定仪。
如图1-2所示。
图1-2 气体孔隙度仪四、操作步骤(1)逆时针旋转气瓶阀门,打开气瓶开关(注意:打开气瓶开关前,除放空阀外,其它阀门均处于关闭状态。
(2)顺时针旋转减压阀开关,气瓶出口压力调至1MPa左右;(3)打开气源阀;(4)顺时针旋转调压阀,将压力调至0.3~0.4MPa;(5)打开供气阀,给容器供气,然后关闭供气阀。
(6)逆时针旋转样品室夹持器把手,取出样品室,装入一标准钢块(样品室有4 个标准钢块,厚度分别为1〃,1/2〃,3/8〃,1/8〃),将样品室装入夹持器,顺时针旋紧夹持器把手。
(7)关闭放空阀,打开样品阀,使容器与样品室连通。
记录钢块体积和系统压力。
(8)打开放空阀,关闭样品阀,更换钢块。
(9)重复步骤(5)~(8),得到不同钢块体积所对应的系统压力,绘制钢块体积与系统压力关系曲线。
(10)将待测岩心放入样品室,测量所对应的系统压力P x,然后从标准曲线上查出所对应的横坐标值,即为岩心的骨架体积V x。
(11)利用游标卡尺测量岩心直径和长度,计算岩心视体积。
中国石油大学《油层物理》实验报告实验日期:成绩:班级:石工11-1班学号:姓名:李悦静教师:同组者:徐睿智实验一岩石孔隙度测定一、实验目的1. 掌握气测孔隙度的流程和操作步骤。
2. 巩固岩石孔隙度的概念,掌握其测定原理。
二、实验原理根据玻义尔定律,在恒定温度下,岩心室一定,放入岩心杯岩样的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。
绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,根据标准曲线反求岩样固相体积。
按下式计算岩样孔隙度:测定岩石骨架体积可以用①气体膨胀法②气体孔隙度仪三.实验流程图1 实验流程图图2 QKY-Ⅱ型气体孔隙度仪四、实验操作步骤1. 将钢圆盘从小到大编号为1、2、3、4;2. 用游标卡尺测量各个钢圆盘和岩样的直径与长度,并记录在数据表中;3. 打开样品阀及放空阀,确保岩心室气体为大气压;4. 将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。
5. 关样品阀及放空阀,开气源阀、供气阀,调节调压阀,将标准室压力调至某一值,如560kPa。
待压力稳定后,关闭供气阀,并记录标准室气体压力。
6. 开样品阀,气体膨胀到岩心室,待压力稳定后,记下此平衡压力。
7. 开放空阀至大气压,关样品阀,逆时针转动T形转柄一周,将岩心室向外推出,取出钢圆盘。
8. 用同样方法将3号、4号、全部(1号-4号)及两两组合的三组钢圆盘装入岩心室中,重复步骤2-5,记下平衡压力。
9. 将待测岩样装入岩心室,按上述方法测定装岩样后的平衡压力。
10. 将上述数据填入原始记录表。
五、实验数据处理表 1 岩石孔隙度测定原始记录表式中 d —岩样直径,cm L —岩样长度,cm 例:2号钢圆盘体积322817.94000.2500.24cm Ld V =⨯⨯=⋅⋅=ππ2. 绘制标准曲线。
一.孔隙度定义:岩石的总体积V b ,是由孔隙的体积V p 及固体颗粒体积(基质体积)V s 两部分组成。
孔隙度(∅)是指岩石中孔隙体积V p 与岩石总体积V b 的比值。
表达式为∅=V p V b×100% 它是说明储集层储集能力的相对大小的基本参数。
二.孔隙度的分类1.岩石的绝对孔隙度(∅a )岩石的绝对孔隙度(∅a )指掩饰的总孔隙体积(V a )与岩石外表体积(V b )之比,即∅a =V a V b×100% 2.岩石的有效孔隙度(∅e )有效孔隙度是指岩石中有效孔隙的体积(V e )与岩石外表体积(V b )之比,即:∅e =V e V b×100% 计算储量和评价油气层特性时一般之有效孔隙度。
3.岩石的流动孔隙度(∅f )微毛细管孔隙虽然彼此连通,但未必都能让流体流过。
例如对于喉道半径极小的孔隙来说,通常的开采压差难以使流体流过;亲水岩石孔壁表面附着的水膜使得孔隙通道大大缩小。
所以流动孔隙度是指含油岩石中,可流动的孔隙体积(V f )与岩石外表体积(V b )之比,即:∅f =V f V b×100% 流动孔隙度与有效孔隙度不同,它既排除了死孔隙,又排除了微毛细管孔隙体积。
流动孔隙度不是一个定值,它随地层中的压力梯度和液体的物理化学性质而变化。
在油气田开发中,流动孔隙度具有一定的实用价值。
三者的关系为:绝对孔隙度>有效孔隙度>流动孔隙度三.孔隙度分级标准四.双重介质岩石空孔隙度双重孔隙介质储层具有两种孔隙系统。
第一类是岩石颗粒之间的孔隙空间构成的粒间孔隙构成的孔隙度,称为原生孔隙度;第二类是裂缝和空洞的空隙空间形成的系统构成的孔隙度,称为次生孔隙度。
总孔隙度∅t 、裂缝孔隙度∅f 和岩石原生孔隙度∅p 之间有如下关系:∅p =∅p +∅f式中∅f=裂缝空隙体积/岩石总体积∅p=基质孔隙体积/岩石总体积五.孔隙度的影响因素A 颗粒的排列方式:等径颗粒理想排列的孔隙度计算公式:∅=1−6(1−cosθ)√1+2cosθB 颗粒的分选性分选越好,孔隙度也越大。
一.孔隙度定义:岩石的总体积V b ,是由孔隙的体积V p 及固体颗粒体积(基质体积)V s 两部分组成。
孔隙度(∅)是指岩石中孔隙体积V p 与岩石总体积V b 的比值。
表达式为∅=V p V b×100% 它是说明储集层储集能力的相对大小的基本参数。
二.孔隙度的分类1.岩石的绝对孔隙度(∅a )岩石的绝对孔隙度(∅a )指掩饰的总孔隙体积(V a )与岩石外表体积(V b )之比,即∅a =V a V b×100% 2.岩石的有效孔隙度(∅e )有效孔隙度是指岩石中有效孔隙的体积(V e )与岩石外表体积(V b )之比,即:∅e =V e V b×100% 计算储量和评价油气层特性时一般之有效孔隙度。
3.岩石的流动孔隙度(∅f )微毛细管孔隙虽然彼此连通,但未必都能让流体流过。
例如对于喉道半径极小的孔隙来说,通常的开采压差难以使流体流过;亲水岩石孔壁表面附着的水膜使得孔隙通道大大缩小。
所以流动孔隙度是指含油岩石中,可流动的孔隙体积(V f )与岩石外表体积(V b )之比,即:∅f =V f V b×100% 流动孔隙度与有效孔隙度不同,它既排除了死孔隙,又排除了微毛细管孔隙体积。
流动孔隙度不是一个定值,它随地层中的压力梯度和液体的物理化学性质而变化。
在油气田开发中,流动孔隙度具有一定的实用价值。
三者的关系为:绝对孔隙度>有效孔隙度>流动孔隙度三.孔隙度分级标准四.双重介质岩石空孔隙度双重孔隙介质储层具有两种孔隙系统。
第一类是岩石颗粒之间的孔隙空间构成的粒间孔隙构成的孔隙度,称为原生孔隙度;第二类是裂缝和空洞的空隙空间形成的系统构成的孔隙度,称为次生孔隙度。
总孔隙度∅t 、裂缝孔隙度∅f 和岩石原生孔隙度∅p 之间有如下关系:∅p =∅p +∅f式中∅f=裂缝空隙体积/岩石总体积∅p=基质孔隙体积/岩石总体积五.孔隙度的影响因素A 颗粒的排列方式:等径颗粒理想排列的孔隙度计算公式:∅=1−6(1−cosθ)√1+2cosθB 颗粒的分选性分选越好,孔隙度也越大。
中国石油大学《油层物理》实验报告
实验日期: 成绩:
班级:石工11-1班 学号: 姓名:李悦静 教师:
同组者: 徐睿智
实验一 岩石孔隙度测定
一、实验目的
1. 掌握气测孔隙度的流程和操作步骤。
2. 巩固岩石孔隙度的概念,掌握其测定原理。
二、实验原理
根据玻义尔定律,在恒定温度下,岩心室一定,放入岩心杯岩样的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。
绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,根据标准曲线反求岩样固相体积。
按下式计算岩样孔隙度:
100%f s f
V V V ϕ-=
⨯
测定岩石骨架体积可以用①气体膨胀法
11221()()Po Vo Vs PV P Vo V V -+=-+
②气体孔隙度仪
三.实验流程
图1 实验流程图
图2 QKY-Ⅱ型气体孔隙度仪
四、实验操作步骤
1. 将钢圆盘从小到大编号为1、2、3、4;
2. 用游标卡尺测量各个钢圆盘和岩样的直径与长度,并记录在数据表中;
3. 打开样品阀及放空阀,确保岩心室气体为大气压;
4. 将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。
5. 关样品阀及放空阀,开气源阀、供气阀,调节调压阀,将标准室压力调至某一值,如560kPa。
待压力稳定后,关闭供气阀,并记录标准室气体压力。
6. 开样品阀,气体膨胀到岩心室,待压力稳定后,记下此平衡压力。
7. 开放空阀至大气压,关样品阀,逆时针转动T形转柄一周,将岩心室向外推出,取出钢圆盘。
8. 用同样方法将3号、4号、全部(1号-4号)及两两组合的三组钢圆盘装入
岩心室中,重复步骤2-5,记下平衡压力。
9. 将待测岩样装入岩心室,按上述方法测定装岩样后的平衡压力。
10. 将上述数据填入原始记录表。
五、实验数据处理
表 1
岩石孔隙度测定原始记录表
1. 根据下式计算各个钢圆盘和岩样外表体积,填入上表中;
21
4
f V d L π=
式中 d —岩样直径,cm L —岩样长度,cm 例:2号钢圆盘体积322817.94
000
.2500.24
cm L
d V =⨯⨯=
⋅⋅=
ππ
2. 绘制标准曲线。
以钢圆盘体积为横坐标,平衡压力为纵坐标绘制曲线,如图3;
钢圆盘编号 2号 3号 4号 1-4号 自由组合钢盘 岩样编号 3、4 2、4 1、3 B9-2 直径d (cm ) 长度L (cm )
体积f V (3cm )
原始压力
)(a KP P 1
560 560 560 560 560 560 560 560
测得压力
)(a KP P 2
197 206 251 469 327 308 211 239
岩样φ
%
图3 P-V 标准曲线图
3. 由装样后测得的平衡压力,在标准曲线上反查出固相体积Vs ;
查的Vs=
4. 由下式计算岩样的孔隙度:
%
100⨯-=
f
s
f V V V φ
式中 φ—孔隙度
f V —岩样外表体积
s V —岩样固相体积
对于本实验的岩样有:
%79.33%100)741.325.211(%100-13
3
s =⨯-=⨯=cm
cm V V f )(φ 六、实验总结
通过本次实验我对岩石的孔隙度有了更深层次的认识,并熟练掌握了其测定原理,本次实验的原理相对简单,最重要的是操作过程中对压力的调节,实验刚开始时,由于自己经验不足,对实验仪器不熟悉,调节花费了不少时间,最后逐渐掌握规律,才顺利完成了以后的操作,通过本次试验,我认识到做实验一定要保持一颗求真求实的心,不管做什么事一定要有耐心,关键时候一定要沉稳。