第二章流体运动基本方程和基本规律
- 格式:ppt
- 大小:1.73 MB
- 文档页数:10
第二节 流体流动的基本方程式化工厂中流体大多是沿密闭的管道流动,液体从低位流到高位或从低压流到高压,需要输送设备对液体提供能量;从高位槽向设备输送一定量的料液时,高位槽所需的安装高度等问题,都是在流体输送过程中经常遇到的。
要解决这些问题,必须找出流体在管内的流动规律。
反映流体流动规律的有连续性方程式与柏努利方程式。
1-2-1 流量与流速一、流量单位时间内流过管道任一截面的流体量称为流量。
若流体量用体积来计量,称为体积流量,以V s 表示,其单位为m 3/s ;若流体量用质量来计量,则称为质量流量,以w s 表示,其单位为kg/s 。
体积流量与质量流量的关系为:w s =V s ·ρ (1-16) 式中 ρ——流体的密度,kg/m 3。
二、流速单位时间内流体在流动方向上所流经的距离称为流速。
以u 表示,其单位为m/s 。
实验表明,流体流经管道任一截面上各点的流速沿管径而变化,即在管截面中心处为最大,越靠近管壁流速将越小,在管壁处的流速为零。
流体在管截面上的速度分布规律较为复杂,在工程计算中为简便起见,流体的流速通常指整个管截面上的平均流速,其表达式为: A V u s = (1-17)式中 A ——与流动方向相垂直的管道截面积,m 2。
流量与流速的关系为:w s =V s ρ=uA ρ (1-18) 由于气体的体积流量随温度和压强而变化,因而气体的流速亦随之而变。
因此采用质量流速就较为方便。
质量流速,单位时间内流体流过管路截面积的质量,以G 表示,其表达式为:ρρu A V A w G s s === (1-19)式中 G ——质量流速,亦称质量通量;kg/(m 2·s )。
必须指出,任何一个平均值都不能全面代表一个物理量的分布。
式1-17所表示的平均流速在流量方面与实际的速度分布是等效的,但在其它方面则并不等效。
一般管道的截面均为圆形,若以d 表示管道内径,则 24d V u s π= 于是 uV d sπ4=(1-20) 流体输送管路的直径可根据流量及流速进行计算。
第二章计算流体力学的基本知识流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。
这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。
2.1计算流体力学简介2.1.1计算流体力学的发展流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。
20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。
数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。
从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。
数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。
数值计算方法最近发展很快,其重要性与日俱增。
自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。
最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。
航空技术的发展强烈推动了流体力学的迅速发展。
流体运动的规律由一组控制方程描述。
计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。
但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。
计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。
计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler或Navier-Stokes方程)以发现各种流动现象规律的学科。
第二章流体的运动复杂的心脏流动模式可以利用速度场中假象粒子的轨迹直观地表示出来。
此图使用时间分辨三维相差磁共振成像技术通过粒子轨迹直观地表示了流入左心室的血流本章是用这些一般规律去研究适用于液体和气体流动的较为特殊的规律。
液体和气体的各部分之间可以有相对运动,因而没有固定的形状。
物体各部分之间可以有相对运动的特性,称为流动性。
具有流动性的物体,称为流体。
从具有流动性来看,液体和气体都是流体。
流体的运动规律在水利、电力、煤气和石油的输送等工程部门都有广泛的应用。
在人体生命活动中,也起着十分重要的作用。
本章研究流体运动的方法,选用欧拉法,即通过确定流体质元每一时刻在空间各点的密度和速度来描述流体的运动。
实际流体是复杂的,具有可压缩性和粘滞性,研究流体的运动时,可分为理想流体和粘性流体。
一般流体的运动也是复杂的,根据流体的运动状态可分为层流(即稳定流动)、湍流和过渡流。
实际流体及其运动都是复杂的。
实际流体具有可压缩性和粘滞性;一般实际流体运动时,流速是空间点(位置)及时间的函数,即v = f ( x ,y, z, t )。
但在某些问题中可以突出起作用的主要因素,忽略掉作用不大的次要因素,而使问题简化。
因此,提出流体的理想模型——绝对不可压缩、完全没有粘滞性的流体,称为理想流体。
把在流体中,各点质元流速不随时间改变的流动称为稳定流动(或定常流动)。
为了形象地描述流体的运动情况,引入流线和流管;为了便于描述流体在管道中运动,定义了横截面上的体积流量和平均速度等物理概念。
经分析得出不可压缩的流体、稳定流动时的运动规律——连续性方程。
可压缩性:流体的体积(或密度)随压力的大小而变化的性质,称为流体的可压缩性。
压力增大时,流体的体积减小:压力减小时,流体的体积增大。
液体的可压缩性很小;气体流动时,可压缩性可以忽略。
粘滞性:流体分层流动时,速度不同的各流层之间存在着沿分界面的切向摩擦力(即内摩擦力),流体的这种性质称为流体的粘滞性。
流体力学方程流体力学方程是描述流体运动的基本方程,它由质量守恒方程、动量守恒方程和能量守恒方程组成。
这些方程描述了流体在空间和时间上的变化以及与周围环境的相互作用。
流体力学方程在多个领域中具有广泛的应用,包括天气预报、风洞实验、水力工程和生物学等。
一、质量守恒方程质量守恒方程又称连续性方程,它描述了流体的质量在空间和时间上的变化规律。
质量守恒方程可以用以下形式表示:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇·(ρv)是速度矢量的散度。
质量守恒方程表明,流体在任意一点的质量密度的变化率等于通过该点的质量流入量与质量流出量之差。
二、动量守恒方程动量守恒方程描述了流体在外力作用下的运动规律。
根据流体力学的推导,动量守恒方程可以用以下形式表示:ρ(∂v/∂t + v·∇v) = -∇p + μ∇²v + ρg其中,p是流体的压力,μ是流体的动力粘度,g是重力加速度。
动量守恒方程表明,流体在任意一点的动量密度的变化率等于流体所受外力(包括压力力、粘性力和重力)的合力。
三、能量守恒方程能量守恒方程描述了流体在热力学过程中能量的转换和传递。
能量守恒方程可以用以下形式表示:∂(ρe)/∂t + ∇·(ρev) = -∇·q + μ∇²v + ρv·g其中,e是流体的单位质量内能,∇·q表示热传导通量,g是重力加速度。
能量守恒方程表明,流体在任意一点的能量密度的变化率等于能量的产生与损失之差。
流体力学方程的求解是复杂的,通常需要借助数值方法进行近似求解。
数值模拟方法如有限差分法、有限元法和计算流体力学方法等被广泛应用于解决流体力学问题。
这些方法能够提供流体在不同条件下的速度、压力和温度等重要参数,为工程设计和科学研究提供可靠依据。
总结:本文介绍了流体力学方程的基本内容,包括质量守恒方程、动量守恒方程和能量守恒方程。