小学的六年级数学旋转图形专项练习
- 格式:doc
- 大小:192.00 KB
- 文档页数:15
六年级面的旋转概念练习题解答一:1.题目:将顺时针旋转45度后的正方形图形,用文字描述出旋转后的外观。
解答:将顺时针旋转45度后的正方形图形,其外观仍然是一个正方形,只是相对于原来的位置发生了旋转。
四个顶点的位置相对于原来的位置依次顺时针旋转45度,并且保持相对距离不变,而边依然保持平行,长度也保持不变。
因此,旋转后的正方形图形外观仍然是一个等边长的正方形,只是整体发生了旋转。
2.题目:将逆时针旋转90度后的长方形图形,用文字描述出旋转后的外观。
解答:将逆时针旋转90度后的长方形图形,其外观变成了一个高度和宽度交换的新的长方形。
原来的顶点位置相对于原来的位置依次逆时针旋转90度,并且保持相对距离不变,而边依然保持平行,长度也保持不变。
因此,旋转后的长方形图形外观变成了一个新的长方形,它的高度和原来的宽度相等,而宽度和原来的高度相等。
3.题目:顺时针旋转180度的图形外观如何和原图形相比?解答:顺时针旋转180度的图形外观与原图形完全相同。
旋转180度后,图形的顶点位置相对于原来的位置反向旋转180度,而边依然保持平行,长度也保持不变。
因此,旋转180度后的图形外观与原图形完全一致。
解答二:4.题目:将逆时针旋转270度的正方形图形外观如何?解答:将逆时针旋转270度的正方形图形,其外观变成了一个顶点位置相对于原来的位置逆时针旋转270度,并且保持相对距离不变,而边依然保持平行,长度也保持不变的新的正方形。
由于逆时针旋转270度相当于顺时针旋转90度,所以该图形的外观与题目“将逆时针旋转90度后的长方形图形,用文字描述出旋转后的外观”中的描述相同。
5.题目:如何将一个无边的圆旋转180度后的外观?解答:一个无边的圆无论怎样旋转,都无法改变其外观。
无论逆时针还是顺时针旋转180度,圆的形状都保持不变,仍然是一个无边界的圆。
因此,无边的圆旋转180度后的外观与原来的圆形状完全相同。
6.题目:将正方形图形绕中心点逆时针旋转45度后的外观如何?解答:将正方形图形绕中心点逆时针旋转45度后的外观是一个新的正方形。
3.1--3.2 《图形的旋转》综合练习一、看图填空。
1.如下图,指针从点A开始,绕点O逆时针旋转()°到点B;指针从点C开始顺时针旋转()°到点D;指针从点B开始,绕点O逆时针旋转90°到点();指针从点D开始,绕点O顺时针旋转90°到点()。
D题1图题2图2. 如下图:(1)以点A为中心旋转的图形是( )。
(2)以点B为中心旋转的图形是( ) 。
(3)以点C为中心旋转的图形是( ) 。
3. 如右图:(1)图形1绕点O逆时针旋转90°得到图形( )。
(2)图形1绕点O( )时针旋转( )得到图形2。
(3)图形1绕点O顺时针旋转( )得到图形3。
二、画图题。
题3图1.画出线段AB绕点B顺时针旋转90°后的线段。
2.画出线段AB绕点A逆时针旋转90°后的线段。
3.如图,点O是线段CD上的一点,请按下列要求分别画图。
(1)将线段CD绕点O逆时针旋转90°。
(2)将线段CD绕点O顺时针旋转90°。
C D. O C D. O4.先画出图中直角梯形①绕点M顺时针旋转90° 5.画出字母“E”以点O为中心逆时针后的图形再圆出直角梯形②绕点N逆时针旋转旋转90°后的图形。
90°后的图形。
三、简答题。
1.观察下面钟面,回答问题。
从3时到6时,时针绕中心点顺时针旋转了多少度?从6时到12时,时针绕中心点顺时针旋转了多少度?2.拿礼物。
(1)从开始起,绕点O顺时针旋转()°能拿到小兔。
(2)从开始起,绕点O()时针旋转()°能拿到小羊。
(3)从开始起,绕点O逆时针旋转()°能拿到金鱼。
(4)你想要什么礼物?怎样才能拿到?O3.观察下图,按照变化规律在空白处画出相应的图形。
3.1--3.2 《图形的旋转》综合练习参考答案一、1、90;270;C;C 2、3;1;2 3、4;顺,90°;180°二、画图略三、1、90°;180°2、90°;顺,180°;90°;(4)略3、略。
小学旋转测试题及答案一、选择题(每题2分,共10分)1. 一个正方形旋转90度后,它的形状会改变吗?A. 会B. 不会C. 不确定答案:B2. 一个圆在平面内旋转360度后,它的位置会改变吗?A. 会B. 不会C. 不确定答案:B3. 一个等边三角形绕着它的一个顶点旋转120度后,它的位置会改变吗?A. 会B. 不会C. 不确定答案:B4. 一个矩形绕着它的中心点旋转180度后,它的形状和位置会改变吗?A. 形状和位置都会改变B. 形状不会改变,位置会改变C. 形状和位置都不会改变答案:C5. 如果一个图形绕着一个点旋转了360度,那么这个图形的位置会回到原来的位置吗?A. 会B. 不会C. 不确定答案:A二、填空题(每题2分,共10分)1. 一个图形绕着一个点旋转____度后,会回到原来的位置。
答案:3602. 一个图形旋转后,它的形状____改变。
答案:不会3. 一个图形绕着它的中心点旋转,它的形状和位置____改变。
答案:不会4. 一个图形旋转180度后,它的位置____改变。
答案:会5. 一个图形绕着一个点旋转90度后,它的位置____改变。
答案:会三、判断题(每题2分,共10分)1. 一个正方形旋转180度后,它的形状和位置都会改变。
()答案:×2. 一个圆在平面内旋转任意角度后,它的形状都不会改变。
()答案:√3. 一个矩形绕着它的一个顶点旋转90度后,它的形状不会改变。
()答案:√4. 一个等边三角形绕着它的中心点旋转120度后,它的位置不会改变。
()答案:√5. 一个图形旋转360度后,它的位置一定会回到原来的位置。
()答案:√四、简答题(每题5分,共20分)1. 请简述旋转对称图形的特点。
答案:旋转对称图形是指一个图形绕着一个点旋转一定角度后,能够与自身重合的图形。
这样的图形在旋转过程中,其形状和大小不会发生改变,只是位置发生了变化。
2. 为什么一个圆在平面内旋转任意角度后,它的形状不会改变?答案:一个圆在平面内旋转任意角度后,它的形状不会改变,因为圆是所有点到圆心距离相等的点的集合,无论旋转多少角度,这些点到圆心的距离都保持不变,因此圆的形状不会发生改变。
小学六年级数学旋转图形专项练习图形的旋转1、如图,将△ABC绕点A旋转50°后成为△AB′C′,那么点B的对应点是_____,点C的对应点是_________,线段AB的对应线段是线段________,线段BC的对应线段是线段_________;∠B的对应角是_________,∠C的对应角是__________,旋转中心是点_______,旋转的角度是_____________;2、如图,△ABC是等腰三角形,∠BAC=36°,D是BC上一点,△ABD经过旋转后到达△ACE的位置,⑴旋转中心是哪一点?⑵旋转了多少度?⑶如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?4、如图,四边形ABCD是正方形,△DAE旋转后能与△DCF重合。
⑴旋转中心是哪一点?⑵旋转了多少度?⑶如果连接EF,那么△DEF是怎样的三角形?5:钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了多少度?6:本图案可以看做是一个菱形通过几次旋转得到的?每次旋转了多少度?AE MA BC DEF旋转的特征AC′B′BC3:(1)将一个平面图形F上的每一点,绕这个平面一_____ 点旋转,得到图形F’,图形的这种变换就叫做旋转。
(2)对应点到对应中心的距离____________.(3)对应点与旋转中心所成的角彼此_______,且等于_________角(4)旋转不改变图形的________和_______.4、如图,△ABC按逆时针方向转动一个角后到△AB′C′,则线段AB=_______,AC=_______,BC=________;∠BAC=_________,∠B=_________,∠C=___________;6:运用已学的知识,请画出线段AB 绕点B 逆时针旋转60°后的线段A ’B 。
并指出旋转角。
7:已知:把△ABC 顺时针旋转60°后能与△A ’BC ’重合, 求:(1)找出旋转中心,(2)指出对应顶点和对应边, (3)指出旋转角(4)连接A A ’, △ABA ’是什 么三角形?为什么?连接CC ’,△CBC ’呢?8:如图,四边形ABCD 是长方形,四边形AEFG 也是长方形,E 在AD 上,如果长方形ABCD 旋转后能与长方形AEFG 重合,那么(1)旋转中心是哪一点?(2)旋转角是几度?9:如图,如果四边形CDEF 旋转后能与正方形ABCD 重合,那么图形所在的平面上,可以作旋转中心的点共有几个?10:如图:若∠AOD=∠BOC=60°,A 、O 、C 三点在同一条线上,△AOB 与△COD 是能够重合的图形。
小学旋转的练习题一、选择题1. 一个图形绕某一点旋转了90度,这个点被称为图形的:A. 旋转中心B. 旋转轴C. 旋转半径D. 旋转角度2. 一个正方形顺时针旋转90度后,它的四个顶点的位置:A. 保持不变B. 位置互换C. 位置不变但方向改变D. 位置和方向都改变3. 如果一个图形绕某点旋转180度,那么这个图形将:A. 回到原来的位置B. 位置不变,方向改变C. 位置改变,方向不变D. 位置和方向都不变4. 一个图形绕其一边的中点旋转180度,这个图形:A. 保持不变B. 位置互换C. 位置不变,方向改变D. 位置和方向都改变5. 一个图形绕其一个顶点旋转90度,这个图形:A. 保持不变B. 位置互换C. 位置不变,方向改变D. 位置改变,方向不变二、填空题6. 一个图形绕某点旋转____度,这个点被称为图形的旋转中心。
7. 当一个图形绕其一边的中点旋转180度时,这个图形的位置____。
8. 如果一个图形绕其一个顶点旋转90度,这个图形的位置____。
9. 一个图形顺时针旋转90度后,它的四个顶点的位置____。
10. 一个图形绕某点旋转180度,那么这个图形将____。
三、判断题11. 一个图形旋转后,它的形状和大小都不会改变。
()12. 一个图形绕其一边的中点旋转180度后,图形的每个部分都回到原来的位置。
()13. 一个正方形顺时针旋转90度后,它的面积不变。
()14. 一个图形绕某点旋转90度后,图形的每个部分都回到原来的位置。
()15. 一个图形绕其一个顶点旋转90度后,图形的面积会改变。
()四、简答题16. 描述一个图形绕其一边的中点旋转180度后,图形的哪些部分发生了变化?17. 解释为什么一个图形旋转后,它的形状和大小不会改变。
18. 如果一个图形绕其一个顶点旋转90度,图形的哪些部分保持不变?19. 为什么一个正方形顺时针旋转90度后,它的面积不会改变?20. 描述一个图形绕某点旋转90度后,图形的哪些部分发生了变化,并解释原因。
六年级图形旋转练习题图形旋转是数学中的一个重要内容,它是指把一个图形绕一个点旋转一定角度后得到的新图形。
通过图形旋转的练习,学生能够加深对图形性质的理解并提高空间想象力。
本文将为六年级学生提供一些图形旋转的练习题,希望能够给大家的数学学习带来帮助。
1. 矩形旋转给定一个矩形ABCDEF,其中AB=12cm,BC=8cm,以点A为中心逆时针旋转60度,求旋转后的矩形的周长和面积。
解析:首先,我们可以绘制出矩形ABCDEF,并找到旋转的中心点A。
然后,根据题意,将矩形逆时针旋转60度,得到矩形A'B'C'D'E'F'。
接下来,我们计算旋转后的矩形的周长和面积。
旋转后的矩形A'B'C'D'E'F',其周长即为A'B'+B'C'+C'D'+D'E'+E'F'+F'A',可以通过计算得出。
另外,旋转后的矩形的面积可以通过计算A'B'和A'C'的长度,并相乘得到。
2. 三角形旋转给定一个等边三角形ABC,边长为10cm,以点B为中心逆时针旋转120度,求旋转后的三角形的周长和面积。
解析:我们先绘制等边三角形ABC,并找到旋转的中心点B。
根据题意,将三角形逆时针旋转120度,得到三角形A'B'C'。
接下来,我们计算旋转后的三角形的周长和面积。
旋转后的三角形A'B'C',其周长即为A'B'+B'C'+C'A',可以通过计算得出。
另外,旋转后的三角形的面积可以通过计算A'B'和A'C'之间的距离并乘以原来三角形的高度,再除以2得到。
3. 圆形旋转给定一个半径为5cm的圆O,以点O为中心顺时针旋转45度,求旋转后的圆的周长和面积。
图形旋转测试题及答案一、选择题1. 一个图形绕某点旋转了90°,下列说法正确的是:A. 图形的大小不变B. 图形的形状不变C. 图形的位置不变D. 以上说法都不正确答案:A、B2. 下列哪个图形旋转180°后与原图形完全重合?A. 正方形B. 圆形C. 长方形D. 三角形答案:B二、填空题3. 若一个图形绕中心点O旋转____度,可以得到与原图形关于点O对称的图形。
答案:1804. 一个等腰三角形绕底边的中点旋转____度,可以得到与原图形完全重合的图形。
答案:180三、简答题5. 描述一个正方形绕其一个顶点旋转90°后,图形的位置变化情况。
答案:正方形绕其一个顶点旋转90°后,其四个顶点的位置将分别移动到原来对角线的顶点位置。
具体来说,如果原正方形的顶点分别为A、B、C、D,且A为旋转中心,则旋转后,A点位置不变,B点移动到C点位置,C点移动到D点位置,D点移动到B点位置。
四、计算题6. 已知一个正六边形绕其中心点O旋转60°后,求旋转后顶点的新位置。
答案:正六边形的每个顶点绕中心点O旋转60°后,每个顶点的新位置将沿着正六边形的外接圆的圆周上移动,每个顶点相对于原来的位置旋转了60°的弧度。
五、论述题7. 论述图形旋转的性质及其在几何学中的应用。
答案:图形旋转是一种几何变换,它保持图形的大小和形状不变,只改变图形的位置。
旋转的性质包括旋转角度的可加性,即连续旋转两个角度相当于旋转这两个角度的和。
在几何学中,图形旋转常用于证明图形的对称性,解决几何构造问题,以及在变换几何中研究图形的不变性质等。
小学数学旋转问题练习题旋转问题是小学数学中的一个重要内容,它不仅能够培养学生的观察力和逻辑思维能力,还能提高他们的几何想象能力。
下面是一些有关旋转问题的练习题,希望能够帮助同学们更好地理解和掌握这一知识点。
题目一:旋转图形的坐标变化已知点A(-2, 3),要求绕原点逆时针旋转90°,求旋转后点的坐标。
解析:根据旋转的特点,逆时针旋转90°后,点A的横坐标变为原来的纵坐标的相反数,纵坐标变为原来的横坐标。
所以,旋转后的点的坐标为(3, 2)。
题目二:矩形绕顶点旋转已知长方形ABCD的顶点A(2, 4),要求将该矩形绕顶点A逆时针旋转180°,求旋转后矩形的顶点坐标。
解析:绕顶点A逆时针旋转180°后,矩形的顶点D变为A,顶点C变为B,顶点B变为C,顶点A变为D。
因此,旋转后矩形的顶点坐标为A(2, 4),B(-2, 4),C(-2, -4),D(2, -4)。
题目三:正方形绕中心点旋转已知正方形EFGH的中心点为O(0, 0),边长为4个单位,要求将该正方形逆时针旋转270°,求旋转后正方形的顶点坐标。
解析:绕中心点O逆时针旋转270°后,正方形的顶点顺序依次变为G、H、E、F。
利用正方形的对称性可知,旋转后正方形的顶点坐标分别为G(2, -2),H(2, 2),E(-2, 2),F(-2, -2)。
题目四:三角形绕中心点旋转已知三角形IJK的中心点为P(0, 0),顶点分别为I(1, 1),J(1, -1),K(-1, -1),要求将该三角形逆时针旋转120°,求旋转后三角形的顶点坐标。
解析:绕中心点P逆时针旋转120°后,三角形的顶点顺序变为J、K、I。
利用旋转的性质可知,旋转后三角形的顶点坐标分别为J(0, -2),K(1.732, -0.366),I(-1.732, -0.366)(保留小数点后有效数字)。
通过以上练习题的解析,我们可以发现,旋转问题的解答关键在于观察和运用几何知识。
旋转专项练习题在几何学中,旋转是一种常见的变换操作,它可以将一个图形沿着中心点或轴线旋转一定角度。
通过多次练习旋转操作,不仅可以锻炼我们的思维能力,还能够提高我们的几何学知识。
本文将为您提供一些旋转专项练习题,帮助您巩固和拓展相关知识。
题目一:旋转矩形对于给定的矩形ABCD,中心点为O,若将该矩形按顺时针方向绕O点旋转90度,求旋转后各点的坐标。
解析:根据旋转规则,顺时针旋转90度可以理解为每个点的坐标绕O点逆时针旋转90度。
已知矩形ABCD的坐标如下:A(0, 0) B(4, 0) C(4, 2) D(0, 2)根据旋转规则,逆时针旋转90度后的坐标为:A'(-0, 0) B'(0, -4) C'(-2, -4) D'(-2, 0)题目二:旋转三角形对于给定的三角形ABC,中心点为O,若将该三角形按逆时针方向绕O点旋转180度,求旋转后各点的坐标。
解析:根据旋转规则,逆时针旋转180度可以理解为每个点的坐标绕O点旋转180度。
已知三角形ABC的坐标如下:A(0, 0) B(4, 0) C(2, 3)根据旋转规则,旋转180度后的坐标为:A'(0, 0) B'(-4, 0) C'(-2, -3)题目三:旋转正方形对于给定的正方形ABCD,中心点为O,若将该正方形按逆时针方向绕O点旋转270度,求旋转后各点的坐标。
解析:根据旋转规则,逆时针旋转270度可以理解为每个点的坐标绕O点逆时针旋转270度。
已知正方形ABCD的坐标如下:A(0, 0) B(4, 0) C(4, 4) D(0, 4)根据旋转规则,逆时针旋转270度后的坐标为:A'(0, 0) B'(0, 4) C'(-4, 4) D'(-4, 0)题目四:旋转圆形对于给定的圆形O,若将该圆形按逆时针方向绕O点旋转45度,求旋转后各点的坐标。
解析:由于圆形的每个点到中心点的距离都相等,因此旋转后每个点的坐标仍然是相对于中心点O的极坐标系。
小学图形旋转练习题一、选择题1. 下列哪个图形经过旋转后,形状不变?A. 正方形B. 圆形C. 长方形D. 三角形2. 一个图形绕某点旋转了180度,这个图形会:A. 位置不变B. 形状改变C. 位置和形状都不变D. 位置改变,形状不变3. 一个图形绕中心点旋转90度后,图形的:A. 面积不变B. 周长不变C. 面积和周长都不变D. 面积和周长都改变二、填空题4. 一个正方形绕其中心点旋转____度,可以回到原来的位置。
5. 如果一个图形绕某点旋转360度,那么这个图形的位置____。
三、判断题6. 所有图形旋转后,其面积都会改变。
()7. 一个图形旋转后,其周长不会改变。
()四、简答题8. 请描述一个图形旋转的过程,并说明旋转前后图形的特点。
五、操作题9. 请画出一个等边三角形,并标出旋转中心点。
然后,描述如何旋转这个三角形,使其回到原位。
六、计算题10. 假设有一个边长为10厘米的正方形,计算它绕中心点旋转90度后,边长的变化。
七、综合题11. 给定一个半径为5厘米的圆,计算它绕中心点旋转任意角度后,圆的面积和周长。
八、拓展题12. 如果一个图形可以绕某点旋转任意角度后回到原位,我们称这个点为图形的旋转中心。
请列举出几个常见的旋转中心,并说明它们的特点。
九、应用题13. 一个风车有四个等长的叶片,当风车旋转时,叶片的旋转中心是哪里?如果风车旋转了一周,叶片会回到原来的位置吗?十、创新题14. 设计一个图形,它在旋转一定角度后,形状会发生变化,但旋转360度后,形状和位置都回到原位。
请画出这个图形,并描述其旋转过程。
十一、思维题15. 在一个正方形的四个顶点上各放置一个相同的小圆,这些小圆绕正方形的中心旋转,当正方形旋转90度时,这些小圆的位置会如何变化?十二、探索题16. 观察生活中的物体,找出哪些物体在旋转时,形状和位置都不会改变。
请列举至少三个例子,并简要说明原因。
通过这些练习题,学生可以更好地理解图形旋转的基本概念,掌握旋转的性质和特点,提高空间想象能力和解决问题的能力。
几何旋转图形专项练习
图形的旋转
1、如图,将△ABC绕点A旋转50°后成为△AB′C′,那么点B的对应点是_____,点C的对应点是_________,线段AB的对应线段是线段________,线段BC的对应线段是线段_________;∠B的对应角是_________,∠C的对应角是__________,旋转中心是点_______,旋转的角度是_____________;
2、如图,△ABC是等腰三角形,∠BAC=36°,D是BC上一点,△ABD经过旋转后到达△ACE的位置,
⑴旋转中心是哪一点?
⑵旋转了多少度?
⑶如果M是AB的中点,那么经过上述旋转后,点M转到了
什么位置?
A
E M
4、如图,四边形ABCD是正方形,△DAE旋转后能与△DCF重合。
⑴旋转中心是哪一点?
⑵旋转了多少度?
⑶如果连接EF,那么△DEF是怎样的三角形?
5:钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;
(2)经过20分,分针旋转了多少度?6
C D
E
F
旋转的特征
A
C′
B′
B
C
3:(1)将一个平面图形F上的每一点,绕这个平面一_____ 点旋转,得到图形F’,图形的这种变换就叫做旋转。
(2)对应点到对应中心的距离____________.(3)对应点与旋转中心所成的角彼此_______ ,
且等于_________角(4)旋转不改变图形的________和_______ .
4、如图,△ABC按逆时针方向转动一个角后到△AB′C′,则线段AB=_______,AC=_______,BC=________;∠BAC=_________,∠B=_________,∠C=___________;
6:运用已学的知识,请画出线段AB绕点B逆时针旋转60°后的线段A’B。
并指出旋转角。
7:已知:把△ABC顺时针旋转60°后能与△A’BC’重合,
求:(1)找出旋转中心,
(2)指出对应顶点和对应边,
A B
A'
B
C
(3)指出旋转角
(4)连接A A ’, △ABA ’是什 么三角形?为什么?连 接CC ’,△CBC ’呢?
8:如图,四边形ABCD 是长方形,四边形AEFG 也是长方形,E 在AD 上,如果长方形ABCD 旋转后
能与长方形AEFG 重合,那么 (1)旋转中心是哪一点? (2)旋转角是几度?
9:如图,如果四边形CDEF 旋转后能与正方形ABCD 重合,那么图形所在的平面上,可以作旋转中心的点共有几个?
A
10:如图:若∠AOD=∠BOC=60°,A 、O 、C 三点在同一条线上,△AOB 与△COD 是能够重合的图形。
求:(1)旋转中心,(2)旋转角度数, (3)图中经过旋转后能重合的三 角形共有几对?若A 、O 、C 三点不共线,结论还成立 吗?为什么?
(4)求当△BOC 为等腰直角三角形 时的旋转角度
(5)若∠A=15°,则求当A 、C 、B 在同一条线上时的旋 转角度
A E
D F
E
B
D
12、画出△ABC 绕点A 逆时针90°后的图形。
13、画出所绘图形绕点D 顺时针旋转90°后的图形, 再经几次90°旋转可以与原图重合?
14、如图,△ACD 、△ECB 都是等边三角形,画出△ACE 以点C 为旋转中心顺时针方向旋转 60°后的三角形。
A
C
A
B C
D
D
E
15:试一试:某个学生为学校设计了一个直角三角形的绿化带,有一块是正方形草坪和两块直角三角形的花坛组成,现在只知道两个直角三角形的两条斜边长分别为3米和6米,你能求出花坛的面积是多少吗?
旋转对称图形
1、请画出两个日常生活中旋转对称图形的实例。
5、如图所示的图形,绕哪一点旋转多少度方能与自身重合?
⑴⑵
8、在纸上任意画一个△ABC,再任意画一个点P,然后画出△ABC绕点P逆时针方向旋转45°后
的三角形。
10、正六边形ABCDEF中,点O是对角线的交点,正六边形ABCDE以点O为旋转中心旋转多少度后才能与原来的图形重合?
A
B
C D
E
F
O
11、请你设计一个60°后能与自身重合的图形。
14:、综合难题。
根据下面的图形镶嵌图,试说明图形2、3、4、5、6分别可以看成由图形1经过图形的什么运动而得到。
若是轴对称,请指出对称轴;若是平移,请指出平移的方向与平移的距离;若是旋转,请指出旋转的中心与旋转的角度;若是几个运动的结合,请分别加以说明。