第九章 下承式简支钢桁梁-01pdf
- 格式:pdf
- 大小:4.23 MB
- 文档页数:84
钢桥施工技术——钢桁梁桥钢桁梁(图6.3.1)的出现来自钢板梁的演变,人们根据梁的截面在中性轴附近应力最小的理论,研究从板梁的腹板中挖掉若干方格以节省钢料和减轻梁的自重的办法,并逐步演变为用三角形组成的桁架来代替板梁。
钢桁梁和板梁的主要区别是:桁架以腹杆(斜杆和竖杆)代替板梁,在竖向荷载作用下,桁架中的所有杆件都顺着杆件轴向承受压力或拉力,杆件截面上的材料都发挥相同的效能。
与板梁相比,桁梁的主要优点:一是跨越能力较大;二是当跨度较大时,自重也较轻,节省钢材,一般使用跨度都大于30 m。
钢桁梁主要类型有上承式简支钢桁梁、下承式简支钢桁梁、下承式连续钢桁梁等。
其主要由桥面、桥面系、主桁、连接系及支座等 5 个部分组成。
列车作用于钢桁梁的荷载,首先通过桥面的基本轨传送给桥枕,桥枕传给桥面系的纵梁,纵梁传给横梁,横梁传给主桁,主桁传给支座,支座传给墩台。
一、主桁主桁(图6.3.2)是钢桁梁桥的主要承重结构。
钢桁梁桥有两片主桁架,每片桁架一般由上弦杆、下弦杆、斜杆及竖杆等组成,斜杆和竖杆统称为腹杆。
两片主桁架的作用相当于板梁的两片主梁。
铁路钢桁梁桥一般采用下承式。
图6.3.1 钢桁梁图6.3.2 下承式钢桁梁组成示意图1. 主桁形式我国中等跨度(48~80 m)的下承式桁梁桥,其主桁结构常采用图6.3.3(a)中的几何图示,而不采用图6.3.3(b)。
二者的斜杆方向不同,基于此,在竖向荷载作用下,图式6.3.3(a)的竖杆较图式(b)受力较小,受压斜杆的数量也较少,而且图式6.3.3(a)的弦杆内力不像图式6.3.3(b)那样在每个节间都得变化一次,因而图式 6.3.3(a)的弦杆截面,易于选择得较为经济合理。
由于这些原因,使图式6.3.3(a)比图式6.3.3(b)更为节省钢料。
具有图6.3.3(a)这种形式的桁梁桥,其构造简单,部件类型较少,适应设计定型化,有利于制造与安装,宜于选作标准设计桁梁桥的主桁图式。
《钢桥》课程设计任务书(土木工程10 级 2013-2014 学年第1 学期)一、设计题目跨度L=68m 单线铁路下承式简支栓焊钢桁梁设计二、设计依据1. 相关规范铁道部《铁路桥涵设计基本规范》(TB10002.1-2005)铁道部《铁路桥梁钢结构设计规范》(TB10002.2-2005)2. 结构基本尺寸计算跨度L=68m;桥跨全长L=68.10m;节间长度d=8.50m;主桁节间数n=8;主桁架高度h=10.50m、11.00m、11.50m。
3. 钢材及基本容许应力杆件及构件用Q345qD;高强度螺栓用20MnTiB 钢;精制螺栓用BL3;螺母及垫圈用45 号优质碳素钢;铸件用ZG25Ⅱ;辊轴用锻钢35。
钢材的基本容许应力参照《铁路桥梁钢结构设计规范》。
4. 结构的连接方式及连接尺寸连接方式:桁梁杆件及构件采用工厂焊接,工地高强度螺栓连接;人行道托架采用精制螺栓连接。
连接尺寸:焊缝的最小焊脚尺寸参照《桥规》;高强度螺栓和精制螺栓的杆径为φ22,孔径为d = 23mm。
5. 设计活载等级标准中—活载。
6. 设计恒载主桁高度为11.00m ,主桁m kN p /50.143=,联结系4 2.80kN /m p =; 桥面系2 6.50kN /m p =;高强螺栓6234=++p p p p ⨯()3%;检查设备5 1.00kN /m p =; 桥面111.00kN /m p =; 焊缝7234=++ 1.5%p p p p ⨯()。
计算主桁恒载时,按桥面全宽恒载1234567=++++++p p p p p p p p7 其它荷载: 风荷载、列车摇摆力、列车制动力等 三、设计内容1. 主桁杆件内力计算(全部),并将结果汇整于3 号图上;2. 主桁杆件截面设计与检算(交汇于E 2、A 3 节点的杆件);3. 主桁 E 2、A 3 节点拼接计算与节点设计及检算;4. 分别绘制主桁 E 2、A 3 节点图(两张3 号图)。
单线铁路下承式简支钢桁架桥上部结构设计说到单线铁路下承式简支钢桁架桥上部结构设计,哎呀,这个名字一听就让人头大。
不过,咱们别慌,慢慢来,跟着我一起捋清楚。
你看,铁路桥可不是随便搭的玩意儿,它不仅要让列车稳稳当当地走过去,还得保证它长时间不出问题。
所以,设计这种桥梁,得考虑的东西可多了。
尤其是上部结构,那可是整个桥梁的“颜面”,要是它出点儿问题,下面的列车走起来就得小心翼翼了。
首先啊,咱们要搞清楚什么是单线铁路。
简单来说,就是只有一条轨道的铁路。
听着有点儿简单,但实际上可不是那么容易。
你想啊,列车要在这条轨道上来回穿梭,安全问题肯定得重视。
所以桥梁的设计得足够牢固,不能说一阵大风就晃一晃,或者下点雨就出现裂缝了,搞不好就真成了“水上漂”。
这种桥梁一般都是经过长期的反复检验,确保不会出岔子。
哎,谁还没听说过铁路桥梁被称作“百年老桥”的事儿呢?说到下承式钢桁架桥,这听起来就像是工地大叔天天挂嘴边的专业名词,其实啊,简单来说就是一种桥梁结构。
下承式?嗯,就是说桥梁的主梁和支撑结构在桥面下方。
就像是支架撑起了整个“天花板”,让列车通过的时候不会晃。
至于钢桁架,听起来是挺复杂的,但实际上它就是由很多交错的钢材组成的一个大框架,稳稳当当的支撑着桥梁。
钢桁架嘛,好比是那种有点儿像蜘蛛网一样的结构,看起来有点复杂,但强度可不一般,轻巧又坚固。
钢桁架桥的设计有一个特别的地方,就是它能承受很大的重量。
你想啊,一列火车可不是个小玩意儿,每次经过桥梁,整个桥面都得扛着这个重量。
不仅要承受火车的重量,还得应对火车快速通过时带来的冲击力。
这种冲击力如果不处理好,桥梁早晚会出现问题。
怎么解决呢?那就得通过巧妙的钢桁架设计,把这个力量分散开,不让桥梁的某个地方承担过多压力。
简单说,钢桁架桥就像一个高效的“力量分配器”,把重压均匀地分布到各个支撑点上,确保桥梁始终保持稳定。
再聊聊简支结构。
说白了,这种结构就是桥梁两端有支撑,中间部分没有支撑。
仁爱学院下承式栓焊简支钢桁梁桥课程设计姓名:学号:班级:设计时间:目录第一章设计资料………………………………………………………………第一节基本资料…………………………………………………………第二节设计内容…………………………………………………………第三节设计要求…………………………………………………………第二章杆件内力计算…………………………………………………………第一节主力作用下主桁杆件内力计算…………………………………第二节横向风力作用下的主桁杆件附加内力计算……………………第三节制动力作用下的主桁杆件附加内力计算………………………第四节疲劳内力计算……………………………………………………第五节主桁杆件内力组合………………………………………………第三章主桁杆件截面设计……………………………………………………第一节下弦杆截面设计…………………………………………………第二节上弦杆截面设计…………………………………………………第三节端斜杆截面设计…………………………………………………第四节中间斜杆截面设计………………………………………………第五节吊杆截面设计……………………………………………………第六节腹杆高强度螺栓计算……………………………………………第四章弦杆拼接计算和下弦端节点设计……………………………………第一节E2节点弦杆拼接计算……………………………………………第二节E0节点弦杆拼接计算……………………………………………第三节下弦端节点设计………………………………………………….. 下弦端节点设计图………………………………………………………………第一章设计资料第一节基本资料1 设计规范:铁路桥涵设计基本规范(TB10002.1-2005),铁路桥梁钢结构设计规范(TB10002.2-2005)。
2 桁架尺寸:计算跨度分别为L=48 m、64 m、80 m (按班级人数等分三组,按组序分别对应计算跨度),节间长度8 m,桁高11 m,主桁中心距5.75 m,纵梁中心距2.0 m,纵联计算宽度5.30 m,采用明桥面。
文章编号:1673-6052(2020)11-0032-05D0I:10.15496/j.3ufi.bbt.2020.12.009下承式钢桁梁桥结构设计唐明敏(苏交科集团股份有限公司南京市010210)摘要:下承式钢桁梁桥具有受力明确、建筑高度低、自重轻、跨越能力强、施工快等特点,在满足通行或通航净空要求的同时,也可以减小桥梁施工对周围环境的影响,满足景观效果要求,广泛应用于城市跨节点如航道等工程设计和建设中。
以某跨越规划三级航道下承式钢桁梁桥为工程背景,对其进行有限元建模计算分析研究,结果表明,此桥结构受力较好,计算指标均满足规范要求,可为同类型桥梁结构设计分析提供参考。
关键词:下承式;钢桁梁桥;有限元;结构设计中图分类号:U448.2/.1文献标识码:随着轨道交通、城市道路和航道的扩展,需跨越轨道、市政结构和航道的特大桥梁越来越多,下承式钢桁梁桥具有受力明确、建筑高度低、自重轻、跨越能力强、施工快等特点,在满足通行或通航净空要求的同时也可以减小桥梁施工期对周围环境的影响和满足较好景观效果等优点,因此开始被广泛地运用于城市跨节点如航道等工程建设中L。
苏州市某航道昆山段整治规划后,现状七级航道规划提升为三级航道,为连接航道两侧既有道路,据航道部门要求,背景桥梁主桥要求一跨过河,水中不设墩,先于航道整治前实施,综合各控制因素比较后选择下承式钢桁梁桥为主桥实施方案,对该钢桁梁桥进行有限元建模计算分析研究,为同类型桥梁结构设计分析提供参考。
1结构设计本桥采用计算跨径为99.2m下承式简支钢桁梁一跨跨越规划通航河流。
如图1所示,主桁采用带竖杆的华伦式三角形腹杆体系,节间长度3.5m,主桁高度10~13m,高跨比为1/9.2。
两片主桁主心距采用10.3m,宽跨比为1/4.66,桥面宽度20.2 m,如图2所示。
主桁上下弦杆均采用箱形截面,截面宽度700 mm,高度均为722mm,板厚22~40mm,工厂焊接,在工地通过高强螺栓在节点内拼接。
仁爱学院下承式栓焊简支钢桁梁桥课程设计姓名:学号:班级:设计时间:目录第一章设计资料………………………………………………………………第一节基本资料…………………………………………………………第二节设计内容…………………………………………………………第三节设计要求…………………………………………………………第二章杆件内力计算…………………………………………………………第一节主力作用下主桁杆件内力计算…………………………………第二节横向风力作用下的主桁杆件附加内力计算……………………第三节制动力作用下的主桁杆件附加内力计算………………………第四节疲劳内力计算……………………………………………………第五节主桁杆件内力组合………………………………………………第三章主桁杆件截面设计……………………………………………………第一节下弦杆截面设计…………………………………………………第二节上弦杆截面设计…………………………………………………第三节端斜杆截面设计…………………………………………………第四节中间斜杆截面设计………………………………………………第五节吊杆截面设计……………………………………………………第六节腹杆高强度螺栓计算……………………………………………第四章弦杆拼接计算和下弦端节点设计……………………………………第一节E2节点弦杆拼接计算……………………………………………第二节E0节点弦杆拼接计算……………………………………………第三节下弦端节点设计………………………………………………….. 下弦端节点设计图………………………………………………………………第一章设计资料第一节基本资料1 设计规范:铁路桥涵设计基本规范(TB10002.1-2005),铁路桥梁钢结构设计规范(TB10002.2-2005)。
2 桁架尺寸:计算跨度分别为L=48 m、64 m、80 m (按班级人数等分三组,按组序分别对应计算跨度),节间长度8 m,桁高11 m,主桁中心距5.75 m,纵梁中心距2.0 m,纵联计算宽度5.30 m,采用明桥面。
第一章设计资料 (3)第一节基本资料 (3)第二节设计内容 (3)第二章主桁杆件内力计算 (3)第一节主力作用下主桁杆件内力计算 (3)1 恒载 (3)2 活载 (4)3 列车横向摇摆力产生的弦杆内力 (5)4 MIDAS计算结果 (6)第二节横向风力作用下的主桁杆件附加力计算 (7)1 风荷载施加 (7)2 风荷载计算结果 (8)第三节制动力作用下的主桁杆件附加力计算 (8)1 下弦杆制动力计算 (8)第四节疲劳内力计算 (9)第五节主桁杆件内力组合 (10)1 主力组合 (10)2 主力和附加力组合 (10)第三章主桁杆件截面设计 (12)第一节下弦杆截面设计 (12)1 中间下弦杆E2E4 (12)1)初选杆件截面 (12)2)刚度验算 (12)3)拉力强度验算 (12)4)疲劳强度验算 (12)2 端下弦杆E0E2 (13)1)初选截面 (13)2)刚度验算 (13)3)拉力强度验算 (13)4)疲劳强度验算 (14)第二节上弦杆截面设计 (14)1 端上弦杆A1A2 (14)1)初选截面 (14)2)刚度验算 (14)3)强度以及总体稳定验算 (15)4)局部稳定验算 (15)2 中上弦杆A3A4 (15)1)初选截面 (15)2)刚度验算 (16)3)强度以及总体稳定验算 (16)4)局部稳定验算 (16)第三节端斜杆E0A1截面设计 (16)1)初选截面 (16)2)刚度验算 (17)3)强度以及总体稳定验算 (17)4)局部稳定验算 (18)第四节中间斜杆截面设计 (19)1 斜杆A1E2 (19)1)初选截面 (19)2)刚度验算 (19)3)强度以及总体稳定验算 (19)4)局部稳定验算 (20)5)疲劳验算 (20)2 斜杆A3E2、A3E4 (20)第五节吊杆截面设计 (21)1)初选截面 (21)2)刚度验算 (21)3)拉力强度验算 (21)4)疲劳强度验算 (21)第六节腹杆高强度螺栓计算 (22)第四章弦杆拼接计算和下弦端节点设计 (23)第一节E2节点弦杆拼接计算 (23)1 下弦杆的拼接计算 (23)1)拼接板截面设计 (23)2)拼接螺栓和拼接板长度 (23)3)内拼接板长度 (24)2 斜杆的拼接计算 (24)3 吊杆的拼接计算 (24)第二节E0节点弦杆拼接计算 (24)1)拼接板截面设计 (24)2)拼接螺栓和拼接板长度 (25)3)内拼接板长度 (25)第三节下弦端节点设计 (25)第五章桁架梁桥空间模型计算 (25)第一节建立空间详细模型 (25)第二节恒载以及恒载和活载下竖向变形计算 (26)第三节主力作用下内力校核 (27)第四节主力+风荷载作用下内力校核 (27)第五节主力+制动力荷载作用下内力校核 (28)第六章设计总结 (28)第一章设计资料第一节基本资料1.设计规范:铁路桥涵设计基本规范(TB10002.1-2005),铁路桥梁钢结构设计规范(TB10002.2-2005)。