大学物理(11.3.2)--薄膜干涉----等倾干涉
- 格式:pdf
- 大小:426.29 KB
- 文档页数:13
大学物理薄膜干涉薄膜干涉是光学干涉的一种常见形式,它涉及到两个或多个薄膜层的反射和透射光的相互叠加。
薄膜干涉现象的复杂性使得其在实际应用中具有广泛的应用,例如在光学仪器、光学通信和生物医学领域。
本文将介绍大学物理中薄膜干涉的基本原理及其应用。
一、薄膜干涉的基本原理1、光的干涉现象光的干涉是指两个或多个波源发出的光波在空间中叠加时,产生明暗相间的条纹的现象。
干涉现象的产生需要满足以下条件:(1)光波的波长和传播方向必须相同;(2)光波的相位差必须恒定;(3)光波的振幅必须相等。
2、薄膜干涉的形成薄膜干涉是指光在两个或多个薄膜层之间反射和透射时产生的干涉现象。
当光线照射到薄膜上时,一部分光线会被反射回来,一部分光线会穿透薄膜继续传播。
由于薄膜的厚度通常很薄,所以光的反射和透射都会受到薄膜的影响。
当多个反射和透射的光线相互叠加时,就会形成薄膜干涉现象。
3、薄膜干涉的公式薄膜干涉的公式可以表示为:Δφ = 2πnΔndλ,其中Δφ为光程差,n为薄膜的折射率,Δn为薄膜的厚度变化量,λ为光波的波长。
当光程差满足公式时,就会形成明暗相间的条纹。
二、薄膜干涉的应用1、光学仪器中的应用在光学仪器中,薄膜干涉被广泛应用于表面形貌测量、光学厚度控制和光学表面质量检测等方面。
例如,在表面形貌测量中,可以利用薄膜干涉原理测量表面的粗糙度和高度变化;在光学厚度控制方面,可以利用薄膜干涉原理控制材料的折射率和厚度;在光学表面质量检测方面,可以利用薄膜干涉原理检测表面的缺陷和划痕等。
2、光学通信中的应用在光学通信中,薄膜干涉被广泛应用于光信号的调制和解调等方面。
例如,在光信号的调制方面,可以利用薄膜干涉原理将电信号转换为光信号;在光信号的解调方面,可以利用薄膜干涉原理将光信号转换为电信号。
薄膜干涉还被广泛应用于光学通信中的信号传输和处理等方面。
3、生物医学中的应用在生物医学中,薄膜干涉被广泛应用于生物组织的光学成像和生物分子的检测等方面。
17_04 薄膜干涉 —— 等倾干涉1 薄膜等倾干涉折射率为2n ,厚度为h 的薄膜放在折射率为1n 的介质中(12n n <),单色光照射薄膜时,光在上下两个介质面反射后形成两束反射光。
这两束光是从介面同一点A 点分开产生,具有相同的相位,为相干光。
两束光经过不同路径相遇后,发生干涉。
具体可以用一个会聚透镜将两束平行相干光会聚到焦点上,如图XCH004_058所示。
光束1和光束2在透镜焦点S '相遇时的光程差:2121()n AB BC n AD δ=∆-∆=+- —— CD 两点到焦点的光程相等 应用折射定律,同时考虑到半波损失:222cos 2n h i λδ=+—— 上表面的反射光有半波损失,下表面的反射光没有—— S '点的光强I 的取决于两束光的光程差—— 亮条纹和暗条纹满足的条件 2221,2,3,22cos 2(21)1,2,3,2k k n h i k k λλδλ⎧⋅=⎪⎪=+=⎨⎪+⋅=⎪⎩ 干涉相长干涉相消 —— 入射光角度相同的光具有相同的光程差,在相遇点的干涉光强相同2 增透膜和反射膜1) 增透膜 光学玻璃表面蒸镀一层薄膜减少光的反射 —— 增透膜例题01 在照相机的镜头上镀一层MgF 2薄膜,要使该薄膜对550nm λ=的光反射最小,问薄膜的最小厚度为多少?(增透膜),如图XCH004_060所示。
垂直入射时,两个表面反射光的反射光均有半波损失,两束反射在薄膜表面光相遇时的光程差: 22n d δ=要使反射光最小,光程差满足:22(21)0,1,2,32n h k k λδ==+= 镀膜的最小厚度:21004min h nm n λ== —— 0k =—— 如果MgF 2薄膜的折射率23n n > 光程差:222n h λδ=+ —— 存在半波损失要使反射光最小,光程差满足:22(21)0,1,2,322n h k k λλ+=+=22n h k λ=,镀膜的最小厚度:22002min h nm n λ==2) 反射膜 光学玻璃表面蒸镀一层薄膜增加光的反射 —— 反射膜(例如在激光谐振腔的反射镜)例题12 用白光垂直照射置于空气中厚度0.50h mm =的玻璃片。
大学物理光的干涉详解(二)引言:光的干涉是光学中一种重要的现象,它在许多领域都有广泛的应用。
本文将对大学物理光的干涉进行详细的解析,以帮助读者更好地理解和应用光的干涉现象。
正文:一、双缝干涉1. 构造双缝干涉实验装置的基本原理2. 双缝干涉的条件和特点3. 双缝干涉的干涉条纹及其解释4. 双缝干涉的应用:衍射光栅的原理和工作方式5. 双缝干涉实验的注意事项与常见误差分析二、单缝干涉1. 单缝干涉实验的基本原理2. 单缝干涉的条件和特点3. 单缝干涉的干涉条纹及其解释4. 单缝干涉的应用:干涉测量与像差的消除5. 单缝干涉实验的注意事项与常见误差分析三、牛顿环干涉1. 牛顿环干涉实验的基本原理2. 牛顿环干涉的条件和特点3. 牛顿环干涉的干涉条纹及其解释4. 牛顿环干涉的应用:薄膜的测量与分析5. 牛顿环干涉实验的注意事项与常见误差分析四、薄膜干涉1. 薄膜干涉实验的基本原理2. 薄膜干涉的条件和特点3. 薄膜干涉的干涉条纹及其解释4. 薄膜干涉的应用:反射镜、透射镜和干涉滤光片的工作原理5. 薄膜干涉实验的注意事项与常见误差分析五、光栅干涉1. 光栅干涉实验的基本原理2. 光栅干涉的条件和特点3. 光栅干涉的干涉条纹及其解释4. 光栅干涉的应用:光谱仪的工作原理与光谱分析5. 光栅干涉实验的注意事项与常见误差分析总结:通过对大学物理光的干涉的详细解析,我们深入理解了双缝干涉、单缝干涉、牛顿环干涉、薄膜干涉和光栅干涉的原理、特点、干涉条纹和应用。
这些知识对于我们理解光的行为、进行精确测量和应用于实际中都具有重要意义。
在进行干涉实验时,我们需要注意实验装置的搭建和调整,以及可能出现的误差来源,以确保准确的实验结果。
物理教学内容研究案例--等倾干涉和等厚干涉的差别等倾干涉和等厚干涉是物理教学中常见的两种干涉现象。
它们之间的差别在于干涉产生的原理、特点以及应用方面都有所不同。
本文将详细探讨等倾干涉和等厚干涉的差别,从物理原理、实验现象以及实际应用三个方面进行详细分析。
一、物理原理等倾干涉是指两束相干光通过等倾薄膜或玻璃板后,在干涉图样中观察到的干涉现象。
等倾薄膜是指两片平行的玻璃板之间夹有一层薄膜,当两束光线通过薄膜后,由于薄膜两侧的折射率不同,光线会发生相位差,从而产生干涉现象。
而等厚干涉是指两束相干光通过等厚介质板,也就是两片平行的玻璃板之间没有夹膜的干涉现象。
当两束光线通过等厚介质板时,由于介质板的等厚性,光线在通过介质板后会发生相位差,从而产生干涉现象。
从物理原理上来看,等倾干涉是由于薄膜两侧折射率不同而导致的相位差,而等厚干涉则是由于介质板等厚性导致的相位差。
二、实验现象等倾干涉和等厚干涉在实验现象上也有明显的区别。
在等倾干涉实验中,我们可以观察到明暗条纹交替排列的干涉图样。
这是由于等倾薄膜两侧的折射率不同,导致通过薄膜的光线会发生相位差,从而在干涉图样中形成明暗条纹。
而在等厚干涉实验中,观察到的干涉图样往往是均匀亮暗交替的条纹。
这是由于等厚介质板的等厚性导致通过介质板的光线也会发生相位差,形成均匀的干涉条纹。
实验现象的不同也反映了等倾干涉和等厚干涉在物理性质上的差异。
三、实际应用等倾干涉和等厚干涉在实际应用中有着不同的用途。
等倾干涉常常用于薄膜的测厚和材料的质量检测中。
通过观察等倾干涉图样的明暗条纹,可以测定薄膜的厚度和材料的质量。
而等厚干涉则常常用于非球面透镜的制作和测量中。
由于等厚介质板会产生均匀的干涉条纹,因此可以用于非球面透镜的制作和检验。
在实际应用中,等倾干涉和等厚干涉都发挥着重要的作用,但其应用领域和方法有所不同。
综上所述,等倾干涉和等厚干涉在物理原理、实验现象和实际应用上都有着明显的差异。