微扰理论
- 格式:ppt
- 大小:400.00 KB
- 文档页数:18
第五章 微扰理论5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。
据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 rze r U 024πε-=)()(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出, ⎰∞-=r E d r e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,4344102003003303420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rE d re E d r e r U ⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(822030020022203002r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε 由于0r 很小,所以)(2ˆˆ022)0(r U H H+∇-=<<'μ,可视为一种微扰,由它引起的一级修正为(基态r a Ze a Z 02/1303)0(1)(-=πψ) ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∴0a r <<,故102≈-r a Z e 。
∴ ⎰⎰+--=0302404220330024)1(1)3(2r r r d ra e Z dr r r r r a e Z Eπεπε 2030024505030300242)5(2r a e Z r r r a e Z πεπε+--= 23002410r a e Z πε= 20302452r a e Z s = #5.2 转动惯量为I 、电偶极矩为D 的空间转子处在均匀电场在ε中,如果电场较小,用微扰法求转子基态能量的二级修正。
微扰理论与非微扰方法介绍微扰理论与非微扰方法是量子力学领域中一种重要的计算技术,用于解决复杂的物理系统问题。
微扰理论通过将一个较难求解的系统分解成较容易处理的简单部分,从而得到近似解。
非微扰方法则是通过直接求解系统的哈密顿量,不依赖于近似处理。
本文将重点探讨微扰理论与非微扰方法的基本原理、应用领域以及优缺点。
一、微扰理论1. 基本原理微扰理论适用于具有已知能谱的系统,通过对系统的哈密顿量施加微小的扰动,进而获得系统能级的修正。
微扰理论通常分为一阶、二阶和高阶微扰,利用微扰展开公式,通过求解微扰项系数,可以计算系统的能级修正值。
在实际应用中,通常选择扰动项为系统的相互作用哈密顿量或外场的影响。
2. 应用领域微扰理论在量子力学、统计力学以及量子场论等领域中具有广泛的应用。
它可以用于解释原子和分子的能级结构、光谱分析以及固体物理中的能带结构等问题。
微扰理论的优势在于精度高、计算相对简单,但在处理强扰动或高阶修正时可能存在收敛问题。
二、非微扰方法1. 基本原理非微扰方法是一种精确求解系统能量本征态的方法,适用于没有已知能谱的系统。
非微扰方法通过直接求解薛定谔方程或利用变分原理等方式,获得系统的精确解。
常用的非微扰方法有矩阵对角化方法、变分法以及数值求解等。
2. 应用领域非微扰方法在处理复杂的多粒子问题、强相互作用系统以及量子多体问题等方面具有重要应用。
它可以用于求解分子结构、低温物理中的超流与超导现象以及强关联电子体系等问题。
非微扰方法的优势在于可以获得准确的数值解,但计算量通常较大且对问题的特定形式要求较高。
三、微扰理论与非微扰方法的比较1. 优点微扰理论相对计算简单,适用于众多物理问题的近似解。
它提供了对系统能级的修正值,能够揭示物理体系中的微小变化。
非微扰方法可以获得精确的解,特别适用于需要高精度计算的问题。
2. 缺点微扰理论在处理强扰动或高阶修正时可能存在收敛问题,适用范围较窄。
它提供的是主要在较小扰动下的近似解。
量子力学微扰理论量子力学微扰理论是量子力学中一个重要的理论工具,它可以用来研究体系在外加微弱扰动下的行为。
这个理论被广泛应用于各个领域,如原子物理、固体物理和量子化学等。
在本文中,我们将介绍微扰理论的基本原理、应用以及一些相关的研究进展。
一、量子力学微扰理论的基本原理量子力学微扰理论的基本原理是基于微扰理论的思想,通过将体系的哈密顿量拆分为一个容易求解的部分和一个微弱扰动部分,从而简化求解复杂问题的过程。
根据微扰的性质,我们可以将微扰分为两类:一类是无简并微扰,即体系本身的能级是非简并的;另一类是简并微扰,即体系本身的能级是简并的。
对于无简并微扰,我们可以使用微扰理论的一阶近似来计算体系的能级和波函数的改变。
一阶微扰理论的基本公式可以表示为:E_n^{(1)} = E_n^{(0)} + \langle n^{(0)}|V|n^{(0)}\rangle其中,E_n^{(1)}为包含微扰的能级修正,E_n^{(0)}为无微扰的能级,|n^{(0)}\rangle为无微扰下的波函数,V为微弱扰动的哈密顿量。
对于简并微扰,由于在简并态上的微扰能级修正不再是一个确定的值,我们需要使用微扰理论的高阶近似来计算体系的能级和波函数的改变。
高阶微扰理论的计算过程更加复杂,需要考虑简并态之间的耦合效应。
二、量子力学微扰理论的应用1. 原子物理领域在原子物理领域中,微扰理论广泛应用于计算原子的能级结构和跃迁概率。
通过引入微弱的扰动,我们可以计算原子能级的微小变动,并且预测产生的光谱线的频率和强度。
这对于原子吸收光谱和发射光谱的解释具有重要意义。
2. 固体物理领域在固体物理领域中,微扰理论被用来研究固体中的电子能级和电子态密度。
通过引入微弱的外电场或者磁场,我们可以计算固体材料的电子能级的变化,并且研究外界扰动对电子输运性质的影响。
3. 量子化学领域在量子化学领域中,微扰理论被广泛用于计算分子的能谱和分子反应的速率常数。
多体系统中的微扰理论简介引言:多体系统是指由多个粒子组成的系统,其中每个粒子都与其他粒子相互作用。
研究多体系统的行为和性质是理论物理学的重要课题之一。
微扰理论是一种常用的方法,用于描述多体系统中微小扰动引起的变化。
本文将简要介绍多体系统中的微扰理论。
一、微扰理论的基本思想微扰理论是一种近似方法,通过将系统的哈密顿量分解为一个已知的简单系统和一个微小的扰动,来研究系统的性质。
基本思想是将扰动项视为小量,通过级数展开的方式求解。
微扰理论在量子力学、统计物理学等领域有广泛应用。
二、微扰理论的形式表达微扰理论的形式表达通常采用级数展开的形式,可以通过求解一系列的微扰项来逐步逼近真实的系统。
一般而言,微扰理论可以分为非简并微扰理论和简并微扰理论两种情况。
1. 非简并微扰理论非简并微扰理论适用于系统的能级不发生简并的情况。
在这种情况下,通过将扰动项加入到系统的哈密顿量中,可以得到一系列的修正能级。
通过逐阶计算修正能级,可以得到系统的能级结构的近似解。
2. 简并微扰理论简并微扰理论适用于系统的能级发生简并的情况。
在这种情况下,需要通过对简并子空间进行对角化来求解系统的能级结构。
简并微扰理论中,还存在一阶微扰和高阶微扰的概念,通过求解一系列的微扰项,可以得到系统能级的修正。
三、微扰理论的应用微扰理论在物理学的各个领域都有广泛的应用。
以下是一些常见的应用领域:1. 量子力学中的微扰理论微扰理论在量子力学中有广泛应用,用于求解各种系统的能级结构。
例如,氢原子中电子的自旋-轨道耦合问题可以通过微扰理论求解。
2. 统计物理学中的微扰理论统计物理学中的微扰理论可以用于求解复杂系统的平均性质。
例如,通过微扰理论可以计算气体的压强、磁化率等宏观性质。
3. 固体物理学中的微扰理论微扰理论在固体物理学中也有重要应用。
例如,可以通过微扰理论来计算固体中电子的能带结构和输运性质。
结论:微扰理论是一种重要的近似方法,用于描述多体系统中微小扰动引起的变化。
微扰理论 (量子力学)维基百科,自由的百科全书跳转至:导航、搜索量子力学的微扰理论引用一些数学的微扰理论的近似方法于量子力学。
当遇到比较复杂的量子系统时,这些方法试着将复杂的量子系统简单化或理想化,变成为有精确解的量子系统,再应用理想化的量子系统的精确解,来解析复杂的量子系统。
基本的点子是,从一个简单的量子系统开始,这简单的系统必须有精确解,在这简单系统的哈密顿量里,加上一个很弱的微扰,变成了较复杂系统的哈密顿量。
假若这微扰不是很大,复杂系统的许多物理性质(例如,能级,量子态)可以表达为简单系统的物理性质加上一些修正。
这样,从研究比较简单的量子系统所得到的知识,我们可以进而研究比较复杂的量子系统。
微扰理论可以分为两类,不含时微扰理论与含时微扰理论。
不含时微扰理论的微扰哈密顿量不相依于时间;而含时微扰理论的微扰哈密顿量相依于时间,详见含时微扰理论。
本篇文章只讲述不含时微扰理论。
此后凡提到微扰理论,皆指不含时微扰理论。
目录[隐藏]∙ 1 微扰理论应用∙ 2 历史∙ 3 一阶修正∙ 4 二阶与更高阶修正∙ 5 简并∙ 6 参阅∙7 参考文献∙8 外部链接[编辑]微扰理论应用微扰理论是量子力学的一个重要的工具。
因为,物理学家发觉,甚至对于中等复杂度的哈密顿量,也很难找到其薛定谔方程的精确解。
我们所知道的就只有几个量子模型有精确解,像氢原子、量子谐振子、与盒中粒子。
这些量子模型都太过理想化,无法适当地描述大多数的量子系统。
应用微扰理论,我们可以将这些理想的量子模型的精确解,用来生成一系列更复杂的量子系统的解答。
例如,通过添加一个微扰的电位于氢原子的哈密顿量,我们可以计算在电场的作用下,氢原子谱线产生的微小偏移(参阅斯塔克效应)。
应用微扰理论而得到的解答并不是精确解,但是,这方法可以计算出相当准确的解答。
假若我们使展开的参数变得非常的小,得到的解答会很准确。
通常,解答是用有限数目的项目的的幂级数来表达。
[编辑]历史薛定谔在创立了奠定基石的量子波力学理论后,经过短短一段时间,于 1926 年,他又在另一篇论文里,发表了微扰理论[1]。