污泥厌氧消化
- 格式:ppt
- 大小:2.24 MB
- 文档页数:39
污泥厌氧消化的方法是什么?污泥厌氧消化的阶段有哪些?污泥厌氧消化的特点是什么?污泥厌氧消化在无氧条件下,污泥中的有机物由厌氧微生物进行降解和稳定的过程称为厌氧消化。
污泥中的有机物含量很高,采用好氧法能耗太大,一般采用厌氧消化法:即在无氧的条件下,由兼性菌及专性厌氧细菌降解有机物,最终产物是二氧化碳和甲烷气(或称污泥气、消化气),使污泥得到稳定。
所以污泥厌氧消化过程也称为污泥生物稳定过程。
污泥厌氧消化是一个极其复杂的过程,多年来厌氧消化被概括为两阶段过程,第一阶段是酸性发酵阶段,有机物在产酸细菌的作用下,分解成脂肪酸及其他产物,并合成新细胞;第二阶段是甲烷发酵阶段,脂肪酸在专性厌氧菌——产甲烷菌的作用下转化成CH4和CO2。
1979年,伯力特(Bryant)等人根据微生物的生理种群,提出了厌氧消化三阶段理论,是当前较为公认的理论模式。
三阶段消化突出了产氢产乙酸细菌的作用,并把其独立地划分为一个阶段。
三阶段消化的第一阶段,是在水解与发酵细菌作用下,使碳水化合物,蛋白质与脂肪水解与发酵转化成由糖、氨基酸、脂肪酸,甘油及二氧化碳、氢等;第二阶段,是在产氢产乙酸菌的作用下,把第一阶段的产物转化成氢、二氧化碳和乙酸。
第三阶段,是通过两组生理上不同的产甲烷菌的作用,一组把氢和二氧化碳转化成甲烷,另一组是对乙酸脱羟产生甲烷。
影响污泥消化的主要有以下因素:l)温度:温度影响消化速度,也影响消化深度。
温度为5-15℃称低温消化,30-35℃称中温消化,50-55℃称高温消化。
高温消化几乎可以杀灭一切病原微生物,但操作管理复杂,加热费用高;中温消化只能杀灭部分病原微生物,低温消化效率很低,所以一般采取中温消化。
2)投配率:即每天投入消化池内的生污泥量与池内熟污泥量的百分率。
投配率的大小影响池内污泥的PH值和消化速率。
投配率小污泥消化速度快而充分,产气量高,但要加大池体积;投配率大,消化速度慢,PH值降低,抑制甲烷细菌的生长,破坏正常的消化过程。
污泥厌氧消化出水水质分析随着城市化进程的加速,各种废水处理技术也迎来了蓬勃发展。
其中,污泥厌氧消化技术是一种节能降耗的处理方式,逐渐被广泛应用于各大污水处理厂。
然而,污泥厌氧消化出水也存在着水质问题。
本文就对污泥厌氧消化出水的水质进行分析。
一、污泥厌氧消化出水的处理原理污泥厌氧消化技术是利用微生物在无氧环境下分解污泥,从而将有机物转化为甲烷等气体的一种处理方法。
在该技术下,有机物会分解为甲烷、二氧化碳等气体,同时也会产生水,即出水。
出水中含有大量的甲烷、氧化物等物质,如果不经过处理直接排放,会对环境造成较大影响。
二、污泥厌氧消化出水的水质特征1. pH值污泥厌氧消化出水的pH值一般在7.0左右,偏向中性,符合环保要求。
2. SSSS(悬浮物)是指水中能够在1小时内在常温下沉淀的可见或不可见的小颗粒并在上。
污泥厌氧消化出水中的SS含量较高,通常在100mg/L左右。
3. CODCOD(化学需氧量)是指在充氧条件下,各种有机物和无机物与氧以化学方式作用时所需氧气的总量。
污泥厌氧消化出水的COD值在100-200mg/L之间,属于较高的水质等级。
4. BOD5BOD5(五日生化需氧量)是指理想情况下,通过微生物在5天内将有机物分解为无机物所需的氧气量。
污泥厌氧消化出水中BOD5的含量较低,通常在20mg/L左右。
5. 监测项目根据国家标准《污水综合排放标准》(GB 8978-1996)规定,污泥厌氧消化出水需监测的项目包括COD、SS、BOD5、氨氮、总氮和总磷等指标,以及PH、电导率等理化性质。
三、污泥厌氧消化出水的处理方法针对污泥厌氧消化出水的水质特点,我们可采取以下的水处理方法:1. 深度处理采用深度处理技术对出水进行处理,包括AC、NF、RO、MBR等,是一种目前比较常见的处理方式。
这些处理技术可以有效地分离有害物质和水分子,提高出水的水质。
2. 混合处理混合处理是将污泥厌氧消化出水与其他污水混合,然后进行统一处理。
污水处理厂污泥厌氧消化工艺选择与设计要点概要污水处理厂是处理城市污水的重要设施,在处理过程中产生的污泥是不可避免的副产品。
污泥处理的关键是通过适当的处理工艺将其稳定化,减少体积,降低有机物含量,最终达到无害化处理的要求。
厌氧消化是一种常见的处理污泥的方法,本文将详细介绍污泥厌氧消化工艺的选择与设计要点。
一、污泥厌氧消化工艺选择污泥厌氧消化是将污泥暴露于缺氧条件下,通过厌氧消化菌群的作用,将有机物分解为甲烷和二氧化碳等气体。
具体的工艺选择可考虑以下几个因素:1.污泥特性:包括含水率、固体含量、有机物含量等。
不同特性的污泥适合不同的厌氧消化工艺。
对于具有较高含水率的污泥,可选择高固体含量的高干物含量厌氧消化工艺;对于有机物含量较高的污泥,则可选择高有机负荷的高负荷厌氧消化工艺。
2.处理效果要求:厌氧消化工艺的选择也要考虑处理效果的要求。
例如,如果目标是达到更高的甲烷产量,可以选择温度控制的高温厌氧消化工艺。
3.资源利用:厌氧消化过程中产生的甲烷是可再生能源,可用于发电、热能供应等方面。
因此,工艺选择时也要考虑是否有资源利用的需求。
二、污泥厌氧消化工艺设计要点在进行污泥厌氧消化工艺设计时,需要考虑以下几个要点:1.厌氧消化温度:厌氧消化适宜的温度是其正常运作的关键。
通常,选择35-55摄氏度的中温厌氧消化工艺,可以在较短的时间内达到稳定处理效果。
对于高温厌氧消化,温度一般需要控制在50-65摄氏度。
2.反应器类型选择:常见的厌氧消化反应器类型包括连续搅拌反应器(CSTR)、上升流式厌氧消化反应器(UASB)等。
CSTR适用于处理污泥浓度较低、泥量较多的情况;UASB适用于处理污泥浓度较高、泥量较少的情况。
3.进气与搅拌:在厌氧消化过程中,需要保证反应器内的气体和污泥充分混合。
可以通过进气系统和搅拌系统来实现。
进气可采用自然通气或机械通气,搅拌可采用机械搅拌或气泡搅拌等方式。
4.pH控制:厌氧消化过程中,pH值的控制对于菌群的生长和产气有重要影响。
污泥处理技术二:厌氧消化1. 原理与作用厌氧消化是利用兼性菌和厌氧菌进行厌氧生化反应,分解污泥中有机物质,实现污泥稳定化非常有效的一种污泥处理工艺。
污泥厌氧消化的作用主要体现在:(1)污泥稳定化。
对有机物进行降解,使污泥稳定化,不会腐臭,避免在运输及最终处置过程中对环境造成不利影响;(2)污泥减量化。
通过厌氧过程对有机物进行降解,减少污泥量,同时可以改善污泥的脱水性能,减少污泥脱水的药剂消耗,降低污泥含水率;(3)消化过程中产生沼气。
它可以回收生物质能源,降低污水处理厂能耗及减少温室气体排放。
厌氧消化处理后的污泥可满足国家《城镇污水处理厂污染物排放标准》GB18918中污泥稳定化相关指标的要求。
2. 应用原则污泥厌氧消化可以实现污泥处理的减量化、稳定化、无害化和资源化,减少温室气体排放。
该工艺可以用于污水厂污泥的就地或集中处理。
它通常处理规模越大,厌氧消化工艺综合效益越明显。
3. 厌氧消化工艺3.1. 厌氧消化的分类1)中温厌氧消化中温厌氧消化温度维持在35℃±2℃,固体停留时间应大于20d,有机物容积负荷一般为2.0~4.0kg/m3⋅d,有机物分解率可达到35%~45%,产气率一般为0.75~1.10Nm3/kgVSS(去除)。
2)高温厌氧消化高温厌氧消化温度控制在55℃±2℃,适合嗜热产甲烷菌生长。
高温厌氧消化有机物分解速度快,可以有效杀灭各种致病菌和寄生虫卵。
一般情况下,有机物分解率可达到35%~45%,停留时间可缩短至10~15d。
缺点是能量消耗较大,运行费用较高,系统操作要求高。
3.2. 传统厌氧消化工艺流程与系统组成传统厌氧消化系统的组成及工艺流程,如图4-1所示。
当污水处理厂内没有足够场地建设污泥厌氧消化系统时,可将脱水污泥集中到其他建设地点,经适当浆液化处理后再进行污泥厌氧消化,其系统的组成及工艺流程图,如图4-2所示。
图1传统污泥厌氧消化工艺流程图图2脱水污泥厌氧消化工艺流程图传统污泥厌氧消化系统主要包括:污泥进出料系统、污泥加热系统、消化池搅拌系统及沼气收集、净化利用系统。
简介:污泥厌氧消化是指污泥在无氧条件下,由兼性菌和厌氧细菌将污泥中的可生物降解的有机物分解成二氧化碳、甲烷和水等,使污泥得到稳定的过程,是污泥减量化、稳定化的常用手段之一。
机理:污泥厌氧消化是一个多阶段的复杂过程,完成整个消化过程,需要经过三个阶段(目前公认的),即水解、酸化阶段,乙酸化阶段,甲烷化阶段。
各阶段之间既相互联系又相互影响,各个阶段都有各自特色微生物群体。
水解酸化阶段:一般水解过程发生在污泥厌氧消化初始阶段,污泥中的非水溶性高分子有机物,如碳水化合物、蛋白质、脂肪、纤维素等在微生物水解酶的作用下水解成溶解性的物质。
水解后的物质在兼性菌和厌氧菌的作用下,转化成短链脂肪酸,如乙酸、丙酸、丁酸等,还有乙醇、二氧化碳。
乙酸化阶段:在该阶段主要是乙酸菌将水解酸化产物,有机物、乙醇等转变为乙酸。
该过程中乙酸菌和甲烷菌是共生的。
甲烷化阶段:甲烷化阶段发生在污泥厌氧消化后期,在这一过程中,甲烷菌将乙酸(CH3COOH)和H2、CO2分别转化为甲烷,如下:2CH3COOH→2CH4↑+ 2CO2↑4H2+CO2→CH4+ 2H2O在整个厌氧消化过程中,由乙酸产生的甲烷约占总量的2/3,由CO2和H2转化的甲烷约占总量的1/3。
影响因素:温度:在污泥厌氧消化过程中,温度对有机物负荷和产气量有明显影响。
根据微生物对温度的适应性,可将污泥厌氧消化分为中温(一般30~36℃)厌氧消化和高温(一般50~55℃)厌氧消化。
研究表明,在污泥厌氧消化过程中,温度发生±3℃变化时,就会抑制污泥消化速度;温度发生±5℃变化时,就会突然停止产气,使有机酸发生大量积累而破坏厌氧消化。
酸碱度:研究表明,污泥厌氧消化系统中,各种细菌在适应的酸碱度范围内,只允许在中性附件波动。
微生物对pH的变化非常敏感。
水解与发酵菌及产氢、产乙酸菌适应的pH范围为5.0~6.5,甲烷菌适应的pH范围为6.6~7.5。
如果水解酸化和乙酸化过程的反应速度超过甲烷化过程速度,pH就会降低,从而影响产甲烷菌的生活环境,进而影响污泥厌氧消化效果,然而,由于消化液的缓冲作用,在一定范围内避免这种情况的发生。
污泥厌氧消化处置技术简介
一、处置流程图
沼气能源回收和土地利用为主的厌氧消化技术路线厌氧反应流程:
二、厌氧消化具有以下优点
(1)提高后续处理的效率并减少后续处理能耗。
通常认为厌氧反应可以实现污泥减量化、稳定化。
通过厌氧反应,污泥中有机物去除40%-60%,有害病菌减少。
此外,厌氧消化提高污泥脱水稳定性,让焚烧等后续处理减少35%以上的能耗。
(2)厌氧消化成本较低。
根据《中国环境报》统计,单纯厌氧
消化投资成本约为20-40万元/(吨/日),由于不用鼓风曝气等,节约了成本,单纯厌氧消化运行费用约为60-120 元/吨(含水率80%,不包括浓缩和脱水),而好氧发酵运行费用为120-160 元/吨。
欧美50%以上的污泥采用厌氧消化处理,产生的沼气转化为电能可满足污水厂所需电力的33%-100%。
但污泥厌氧消化在我国应用的并不顺畅。
我国建设的约50 座污泥厌氧消化设施中,可以稳定运营的只有20 余座。
主要原因是由我国污泥泥质差、处理厂运行管理水平低。
我国污泥含砂量较高、有机物含量较低、污泥可生化性差,消化设备运行的稳定性和产沼气率等指标普遍未达到国外标准。
此外,我国缺乏沼气利用的激励机制,设备的投资费用高,系统运行较为复杂不易掌握。
不过采用碱解处理、热处理、超声波处理、微波处理等方法对污泥进行预处理,可以提高污泥水解速率,改善污泥厌氧消化性能。
并通过项目经验的积累,企业也逐步掌握了较为全面的操作技能。
污泥厌氧消化技术会是未来的一个主流方向。