第一章 矩阵_分块矩阵及其运算
- 格式:ppt
- 大小:333.00 KB
- 文档页数:24
线性代数各章节内容重点难点(大一第一
学期)
教学难点:向量空间、子空间、基、维数等概念的理解和应用,向量的内积和正交矩阵的性质的证明。
第一章:行列式
本章主要介绍了行列式的定义、性质和运算,以及克莱姆法则的应用。
学生需要了解行列式的基本概念和性质,掌握二、三、四阶行列式的计算方法,以及简单的n阶行列式的计算方法。
此外,学生还需要理解克莱姆法则的结论,并会应用于实际问题中。
本章教学难点在于行列式性质的证明。
第二章:矩阵
本章主要介绍了矩阵的概念和各种运算及其规律,包括单位矩阵、对角矩阵、三角矩阵、对称矩阵等的性质,矩阵的线性运算、乘法、转置等,以及逆矩阵、伴随矩阵、初等变换、矩阵等价、矩阵秩等概念和方法。
学生需要掌握这些概念和方法,并能够灵活运用于实际问题中。
本章教学难点在于矩阵可
逆的充分必要条件的证明,初等矩阵及其性质,以及分块矩阵及其运算。
第三章:向量
本章主要介绍了向量的概念和相关性质,包括向量组的线性相关与线性无关的概念和性质,向量组的极大线性无关组的概念,向量组的等价和向量组的秩的概念,向量组的秩与矩阵的秩之间的关系,以及向量空间、子空间、基、维数等概念和向量的内积、正交矩阵等性质。
学生需要掌握这些概念和方法,并能够灵活运用于实际问题中。
本章教学难点在于向量空间、子空间、基、维数等概念的理解和应用,以及向量的内积和正交矩阵的性质的证明。
分块矩阵运算法则
分块矩阵运算法则是一种将大的矩阵划分成更小块矩阵进行计算的方法。
这种方法可以简化复杂矩阵的运算,并且使得计算更加高效和易于理解。
下面是分块矩阵运算法则的一些基本规则:
1. 矩阵的加法:将大矩阵划分为多个小块矩阵,然后对应位置上的小块矩阵进行加法运算。
2. 矩阵的乘法:将大矩阵划分为多个小块矩阵,然后按照乘法的定义对小块矩阵进行乘法运算。
具体地,对于两个分块矩阵A和B,它们的乘积C的每个小块矩阵C_ij可以通过以下公式计算得到:
C_ij = A_ik * B_kj
3. 矩阵的转置:对于分块矩阵的转置,只需将每个小块矩阵进行转置即可。
4. 矩阵的逆:对于分块矩阵的逆,可以使用分块矩阵求逆的公式进行计算。
具体方法会因矩阵的分块方式而有所不同。
5. 其他运算:其他矩阵的运算,如矩阵的行列式、特征值等,也可以使用分块矩阵的方式进行计算,将大矩阵划分为多个小块矩阵,然后对小块矩阵进行相应的运算。
需要注意的是,分块矩阵运算法则在划分大矩阵为小块矩阵时需要选择合适的划分方式,使得计算过程更加简单和高效。
不
同的划分方式可能会产生不同的结果。
因此,在应用分块矩阵运算法则时,需要根据具体问题和矩阵的特性选择合适的划分方式。
第一章 矩阵1 矩阵的概念特殊矩阵:行矩阵、列矩阵、对角矩阵、上三角阵、下三角矩阵、单位矩阵、对称矩阵、反对称矩阵。
2 矩阵的运算:(1)矩阵的线性运算及其运算规律-矩阵的加法(减法)和数乘。
(2)矩阵的乘法:能够进行乘法运算必须具备的条件,运算方法,左乘与右乘的区别。
乘法的运算规律(应用较为普遍的是矩阵乘法满足结合律) (3)矩阵的转置:(AB)T =B T A T(4)矩阵的逆:AB=BA=I →A -1=B 矩阵的逆唯一 运算规律: (A -1) -1= A ;(λA) -1= λ-1A -1;(AB) -1=B -1A -1;(A T ) -1=(A -1) T 矩阵逆的计算方法:待定系数法、初等变换法、伴随矩阵法。
3 分块矩阵及其运算第二章 线性方程组与矩阵初等变换 1 线性方程组与矩阵的一一对应关系2 高斯消元法:线性方程组的三种变换→阶梯形方程组。
3 利用矩阵初等变换解线性方程组:三种初等变换→行阶梯形矩阵→行最简形矩阵4 非齐次线性方程组解的三种情形的讨论⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++++0000000000000000000011,221,2222111,111211r r rn r r rr nr r nr r d d c c c d c c c c d c c c c c(1)无解(2)唯一解(3)无数解 5矩阵等价的概念 6 初等矩阵的概念7 初等矩阵与矩阵初等变换的关系8 逆矩阵定理:设A 是n 阶矩阵,那么下列各命题等价: (1)A 是可逆矩阵;(2)齐次线性方程组Ax =0只有零解; (3)A 可以经过有限次初等行变换化为In ; (4)A 可表示为有限个初等矩阵的乘积。
9 利用矩阵初等变换求矩阵的逆 A 可以经过一系列初等行变换化为I ; I 经过这同一系列初等行变换化为A -1P s …P 2P 1 (A | I n )=(I n |A -1)第三章 行列式1 n 阶行列式的定义(1)全排列及其奇偶性:逆序数的概念,对换,相邻对换。
引言为了研究行数、列数较高的矩阵,常常对矩阵采用分块的方法.类似于集合的划分,是把矩阵完全地分成一些互不相交的子矩阵,使得原矩阵的每一个元落到一个分快的子矩阵中。
以这些子块为元素的矩阵就称为分块矩阵。
线形代数以其独特的理论体系和解题技巧而引人入胜。
在线性代数中,分块矩阵是一个十分重要的概念,它可以使矩阵的表示简单明了,使矩阵的运算得以简化.而且还可以利用分块矩阵解决某些行列式的计算问题.而事实上,利用分块矩阵方法计算行列式,时常会使行列式的计算变得简单,并能收到意想不到的效果。
而且利用分快矩阵还可以求出某些矩阵的逆矩阵,证明矩阵的秩等。
第一章 矩阵的分块和分块矩阵的定义设A 是数域K 上的m n ⨯矩阵,B 是K 上n k ⨯矩阵,将A 的行分割r 段,每段分别包含12r m m m 个行,又将A 的列分割为s 段,每段包含12s n n n 个列。
A=111212122212s s r r rs A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭于是A 可用小块矩阵表示如下:,其中ij A 是i j m n ⨯矩阵.对B 做类似的分割,只是要求它的行的分割法和A 的列的分割法一样。
于是B 可以表示为B= 111212122212s s r r rs B B B B B B B B B ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭其中ij B 是i j n k ⨯的矩阵。
这种分割法称为矩阵的分块。
二.分块矩阵加法和乘法运算设()ij m n A a ⨯=()ij m n B b ⨯=为同型矩阵(行和列数分别相等)。
若采用相同的分块法.A=111212122212s s r r rs A A A A A A A A A ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ B= 111212122212s s r r rs B B B B B B B B B ⎛⎫⎪ ⎪⎪ ⎪⎝⎭则可以直接相加 乘法:设,则C 有如下分块形式:C=111212122212s s r r rs C C C C C C C C C ⎛⎫⎪ ⎪⎪⎪⎝⎭,其中ij C 是i j m k ⨯矩阵,且 1nij ij ij i C A B ==∑定义 称数域K 上的分块形式的n 阶方阵A=12S A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭为准对角矩阵,其中为阶方阵(),其余位置全是小块零矩阵。