分块矩阵的概念和运算
- 格式:ppt
- 大小:1.90 MB
- 文档页数:20
在数学中,分块矩阵初等行变换求秩的不等式是一个重要的概念。
通过对分块矩阵进行初等行变换,我们可以得到一个新的矩阵,并通过对这个新矩阵进行求秩,得到一些重要的不等式关系。
接下来,我将会详细探讨这一主题,并按照从简到繁的方式进行解释。
一、分块矩阵的定义让我们回顾一下分块矩阵的定义。
一个分块矩阵是由若干个子矩阵组成的大矩阵。
通常情况下,这些子矩阵可以是任意大小的矩阵,它们之间通过分块符号进行分割。
一个分块矩阵可以表示为:\[ A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22}\end{bmatrix} \]其中 \(A_{11}\)、\(A_{12}\)、\(A_{21}\)、\(A_{22}\) 分别是子矩阵。
这种表示方法在矩阵分析和线性代数中经常被使用,特别是在矩阵的运算和性质分析中。
二、分块矩阵初等行变换接下来,让我们来探讨分块矩阵的初等行变换。
我们知道,在矩阵的运算中,初等行变换是一种通过交换行、数乘行、行加减倍数行来改变矩阵的运算方法。
对于分块矩阵,我们可以运用相似的方法进行初等行变换。
对于一个分块矩阵:\[ A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22}\end{bmatrix} \]我们可以对其中的子矩阵 \(A_{11}\)、\(A_{12}\)、\(A_{21}\)、\(A_{22}\) 分别进行初等行变换,如交换行、数乘行、行加减倍数行等操作。
通过这些初等行变换,我们可以得到一个经过变换的新矩阵。
三、求秩的不等式关系有了经过初等行变换的新矩阵,我们可以通过对其进行求秩来得到一些不等式关系。
根据矩阵求秩的性质,我们可以得到如下的不等式关系:\[ rank(A) + rank(B) - n \leq rank \begin{pmatrix} A & B\end{pmatrix} \leq rank(A) + rank(B) \]其中,\(rank(A)\) 和 \(rank(B)\) 分别表示矩阵 \(A\) 和 \(B\) 的秩,\(n\) 表示矩阵的列数。
引言为了研究行数、列数较高的矩阵,常常对矩阵采用分块的方法。
类似于集合的划分,是把矩阵完全地分成一些互不相交的子矩阵,使得原矩阵的每一个元落到一个分快的子矩阵中。
以这些子块为元素的矩阵就称为分块矩阵。
线形代数以其独特的理论体系和解题技巧而引人入胜。
在线性代数中,分块矩阵是一个十分重要的概念,它可以使矩阵的表示简单明了,使矩阵的运算得以简化.而且还可以利用分块矩阵解决某些行列式的计算问题.而事实上,利用分块矩阵方法计算行列式,时常会使行列式的计算变得简单,并能收到意想不到的效果.而且利用分快矩阵还可以求出某些矩阵的逆矩阵,证明矩阵的秩等。
第一章 矩阵的分块和分块矩阵的定义设A 是数域K 上的m n ⨯矩阵,B 是K 上n k ⨯矩阵,将A 的行分割r 段,每段分别包含12r m m m 个行,又将A 的列分割为s 段,每段包含12s n n n 个列。
A=111212122212s s r r rs A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭于是A 可用小块矩阵表示如下:,其中ij A 是i j m n ⨯矩阵。
对B 做类似的分割,只是要求它的行的分割法和A 的列的分割法一样。
于是B 可以表示为B= 111212122212s s r r rs B B B B B B B B B ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭其中ij B 是i j n k ⨯的矩阵。
这种分割法称为矩阵的分块。
二.分块矩阵加法和乘法运算设()ij m n A a ⨯=()ij m n B b ⨯=为同型矩阵(行和列数分别相等)。
若采用相同的分块法。
A=111212122212s s r r rs A A A A A A A A A ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭B= 111212122212s s r r rs B B B B B B B B B ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭则可以直接相加 乘法:设,则C 有如下分块形式:C=111212122212s s r r rs C C C C C C C C C ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ ,其中ij C 是i j m k ⨯矩阵,且 1nij ij ij i C A B ==∑定义 称数域K 上的分块形式的n 阶方阵A=12S A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭为准对角矩阵,其中为阶方阵(),其余位置全是小块零矩阵。