上大材料科学基础简答题
- 格式:doc
- 大小:1.21 MB
- 文档页数:7
材料科学基础简答题汇总材料科学基础简答题㈠-01-⽰意画出平衡态碳钢的强度随钢含碳量的变化曲线,并从成分—组织—性能的⾓度定性解释。
答:强度随碳含量增加先增⾼后下降,在碳含量约1.0%时为强度极⼤值。
强度的这种变化与平衡态碳钢中的组织随碳含量变化有关:当碳含量⼩于0.77%时,钢中的组织为铁素体+珠光体,且珠光体的分数随碳含量增⾼⽽增⼤,⽽珠光体在钢中起强化作⽤,故强度随碳含量增加⽽增⾼;当碳含量⼤于0.77%后,钢中的组织为⼆次渗碳体+珠光体,⼆次渗碳体以⽹状分割珠光体,且⼆次渗碳体的分数随碳含量增⾼⽽增⼤。
渗碳体硬⽽脆,少量的不连续分布的⼆次渗碳体起强化作⽤,故强度随碳含量增加继续增⾼;但当碳含量⼤于1.0%后,⼆次渗碳体的分数增加到呈连续⽹状分布,则会在外⼒作⽤下⾸先断裂形成微裂纹,故强度下降。
-02-已知727℃时,碳在奥⽒体中的溶解度为WC=0.77%,⽽在铁素体中的极限溶解度仅为WC=0.0218%。
请解释⼆者差别如此明显的原因。
答:奥⽒体为⾯⼼⽴⽅结构,碳原⼦位于其⼋⾯体间隙中;铁素体为体⼼⽴⽅结构,碳原⼦也位于其⼋⾯体间隙中。
⾯⼼⽴⽅的⼋⾯体间隙半径与铁原⼦半径之⽐(0.414)⼤于体⼼⽴⽅的⼋⾯体间隙半径与铁原⼦半径之⽐(0.155),⽽碳原⼦半径⼤于间隙半径,⼀个碳原⼦固溶于奥⽒体中所引起的晶体能量增⾼远⼩于固溶于铁素体中所引起的晶体能量增⾼。
-03-何谓⾦属的形变强化?⽤位错理论说明⾦属形变强化的原因;⾦属的形变强化在材料⼯程上有何利弊?如何克服所引起的弊端?答:⾦属在塑性变形阶段,其流变应⼒随变形程度增加⽽增加的现象。
或⾦属经塑性变形后,其强度、硬度升⾼,⽽塑性、韧性下降的现象。
在变形过程中,位错之间相互作⽤,产⽣交割,阻碍位错运动;反应⽣成固定位错,使位错难以运动;位错增殖,位错密度增⼤,增⼤了位错运动的阻⼒。
利:强化⾦属的重要⼿段;使⾦属材料压⼒加⼯得以顺利进⾏;使⾦属零构件得以抵抗偶然过载。
材料科学基础答案1.为什么室温下金属晶粒越细强度,硬度越高,塑性韧性也越好答:金属晶粒越细,晶界面积越大,位错障碍越多,需要协调的具有不同位向的晶粒越多,金属塑性变形的抗力越高,从而导致金属强度和硬度越高。
金属的晶粒越细,单位体积内晶粒数目越多,同时参与变形的晶粒数目也越多,变形越均匀,推迟了裂纹的形成和扩展,使得在断裂前发生较大的塑性变形。
在强度和塑性同时增加的情况下,金属在断裂前消耗的功增大,因而其韧性也比较好。
因此,金属的晶粒越细,其塑性和韧性也越好。
2.冷塑性变形金属产生加工硬化的原因随变形量增加,空密度增加。
④由于晶粒由有利位向而发生几何硬化,因此使变形抗力增加。
随变形量增加,亚结构细化,亚晶界对位错运动有阻碍作用。
答:①晶体内部存在位错源,变形时发生了位错增值,随变形量增加,位错密度增加。
由于位错之间的交互作用,使变形抗力增加。
3.某厂用冷拉钢丝绳吊运出炉热处理工件去淬火,钢丝绳的承载能力远超过工件的质量,但在工件的运送过程中钢丝绳发生断裂,试分析其原因答:冷拉钢丝绳是利用热加工硬化效应提高其强度的,在这种状态下的钢丝中晶体缺陷密度增大,强度增加,处于加工硬化状态。
在淬火的温度下保温,钢丝将发生回复、再结晶和晶粒长大过程,组织和结构恢复软化状态。
在这一系列变化中,冷拉钢丝的加工硬化效果将消失,强度下降,在再次起吊时,钢丝将被拉长,发生塑性变形,横截面积减小,强度将比保温前低,所以发生断裂。
4细化晶粒方法1.在浇注过程中: 1)增大过冷度; 2)加入变质剂; 3)进行搅拌和振动等。
2. 在热轧或锻造过程中: 1)控制变形度; 2)控制热轧或锻造温度。
3. 在热处理过程中:控制加热和冷却工艺参数利用相变重结晶来细化晶粒。
4. 对冷变形后退火态使用的合金: 1)控制变形度; 2)控制再结晶退火温度和时间5、试说明滑移,攀移及交滑移的条件,过程和结果,并阐述如何确定位错滑移运动的方向。
解答:滑移:切应力作用、切应力大于临界分切应力;台阶攀移:纯刃位错、正应力、热激活原子扩散;多余半原子面的扩大与缩小交滑移:纯螺位错、相交位错线的多个滑移面;位错增殖位错滑移运动的方向,外力方向与b一致时从已滑移区→未滑移区。
材料科学基础试题及答案一、单项选择题(每题2分,共20分)1. 材料科学中,材料的基本组成单元是()。
A. 分子B. 原子C. 离子D. 电子答案:B2. 金属的塑性变形主要是通过()来实现的。
A. 弹性变形B. 位错运动C. 相变D. 断裂答案:B3. 在材料科学中,硬度的定义是()。
A. 材料抵抗变形的能力B. 材料抵抗磨损的能力C. 材料抵抗压缩的能力D. 材料抵抗拉伸的能力答案:B4. 材料的热处理过程中,淬火的主要目的是()。
A. 提高硬度B. 增加韧性C. 减少变形D. 提高导电性答案:A5. 以下哪种材料不属于复合材料?A. 碳纤维增强塑料B. 钢筋混凝土C. 不锈钢D. 玻璃钢答案:C二、填空题(每空1分,共20分)1. 材料的强度是指材料在受到______作用时,抵抗______的能力。
答案:外力;破坏2. 材料的断裂韧性是指材料在______条件下,抵抗______的能力。
答案:裂纹存在;断裂3. 材料的疲劳是指材料在______作用下,经过______循环后发生断裂的现象。
答案:交变应力;多次4. 材料的导热性是指材料在______条件下,抵抗______的能力。
答案:温度梯度;热量传递5. 材料的电导率是指材料在单位电场强度下,单位时间内通过单位面积的______。
答案:电荷量三、简答题(每题10分,共30分)1. 简述材料的弹性模量和屈服强度的区别。
答案:弹性模量是指材料在弹性范围内,应力与应变的比值,反映了材料抵抗形变的能力。
屈服强度是指材料在受到外力作用下,从弹性变形过渡到塑性变形时的应力值,反映了材料抵抗塑性变形的能力。
2. 描述材料的疲劳破坏过程。
答案:材料的疲劳破坏过程通常包括三个阶段:裂纹的萌生、裂纹的扩展和最终断裂。
在交变应力作用下,材料内部的微裂纹逐渐扩展,当裂纹扩展到一定程度,材料无法承受继续增加的应力时,就会发生断裂。
3. 什么是材料的热处理?请列举几种常见的热处理方法。
《材料科学基础》简答题——答案要点第二章1.硅酸盐晶体结构有何共同特点?答:(1)每一个Si4+存在于4个O2-为顶点的四面体中心,构成[SiO4]4-四面体,它是硅酸盐晶体结构的基础(2)[SiO4]4四面体的每个顶点,即O2-最多只能为两个[SiO4]4-四面体所共有(3)两个邻近的[SiO4]4-四面体之间,如果要联结,只以共顶而不以共棱或共面相联结(4)[SiO4]4-四面体中的Si4+可以被Al3+置换形成硅铝氧骨干,骨干外的金属离子容易被其它金属离子置换,置换不同的离子,对骨干的结构并无多大的变化,但对它的性能却影响很大2.简述硅酸盐晶体的分类依据是什么?可分为几类,每类的结构特点是什么?答:硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式分为孤岛状、组群状、链状、层状和架状五类。
这五类的[SiO4]四面体中,桥氧的数目也依次由0增加至4,非桥氧数由4减至0。
硅离子是高电价低配位的阳离子,因此在硅酸盐晶体中,[SiO4]只能以共顶方式相连,而不能以共棱或共面方式相连。
3.什么是同质多晶?简述同质多晶转变的类型及其各自的特点。
答:化学组成相同的物质,在不同的热力学条件下形成结构不同的晶体现象,称为同质多晶。
根据同质多晶转变时速度的快慢和晶体结构变化的不同,可将多晶转变分为位移性转变和重建性转变。
前者仅仅是结构畸变,转变前后结构差异小,转变时并不打开任何键或改变最邻近的配位数,只是原子的位置发生少许位移,使次级配位有所改变;而后者不能简单地通过原子位移来实现,转变前后结构差异较大,必须破坏原子间的键,形成一个具有新键的结构。
4.为什么石英不同系列变体之间的转化温度比同系列变体之间的转化温度高得多?答:由于石英不同系列变体之间转变是重建性转变,涉及晶体结构中键的破裂和重建;而同一系列变体之间的转变是位移性转变,不涉及晶体结构中键的破裂和重建,仅是键长、键角的调整。
5.钛酸钡是一种重要的铁电陶瓷,其晶型是钙钛矿结构,试问:(a)属于什么点阵?(b)这个结构中离子的配位数为多少?(c)这个结构遵守鲍林规则吗?请做讨论。
材料科学基础试题及答案一、名词解释(每题5分,共25分)1. 晶体缺陷2. 扩散3. 塑性变形4. 应力5. 比热容二、选择题(每题2分,共20分)1. 下列哪种材料属于金属材料?A. 玻璃B. 塑料C. 陶瓷D. 铜2. 下列哪种材料属于陶瓷材料?A. 铁B. 铝C. 硅酸盐D. 聚合物3. 下列哪种材料属于高分子材料?A. 玻璃B. 钢铁C. 聚乙烯D. 陶瓷4. 下列哪种材料属于半导体材料?A. 铜B. 铝C. 硅D. 铁5. 下列哪种材料属于绝缘体?A. 铜B. 铝C. 硅D. 玻璃三、简答题(每题10分,共30分)1. 请简述晶体结构的基本类型及其特点。
2. 请简述塑性变形与弹性变形的区别。
3. 请简述材料的热传导原理。
四、计算题(每题15分,共30分)1. 计算一个碳化硅晶体的体积。
已知碳化硅的晶胞参数:a=4.05 Å,b=4.05 Å,c=8.85 Å,α=β=γ=90°。
2. 计算在恒定温度下,将一个100 cm³的铜块加热100℃所需的热量。
已知铜的比热容为0.39J/(g·℃),铜的密度为8.96 g/cm³。
五、论述题(每题20分,共40分)1. 论述材料科学在现代科技发展中的重要性。
2. 论述材料制备方法及其对材料性能的影响。
答案:一、名词解释(每题5分,共25分)1. 晶体缺陷:晶体在生长过程中,由于外界环境的影响,导致其内部结构出现不完整或不符合理想周期性排列的现象。
2. 扩散:物质由高浓度区域向低浓度区域自发地移动的过程。
3. 塑性变形:材料在受到外力作用下,能够产生永久变形而不恢复原状的性质。
4. 应力:单位面积上作用于材料上的力。
5. 比热容:单位质量的物质温度升高1℃所吸收的热量。
二、选择题(每题2分,共20分)1. D2. C3. C4. C5. D三、简答题(每题10分,共30分)1. 晶体结构的基本类型及其特点:晶体结构的基本类型有立方晶系、四方晶系、六方晶系和单斜晶系。
材料科学基础试卷(二)与参考答案
参考答案
一、简答题(每题4分,共20分)
1.说明柏氏矢量的确定方法,如何利用柏氏矢量和位错线来判断位
错的类型?
答:首先在位错线周围作一逆时针回路,然后在无位错的晶格内作同样的回路,该回路必不闭合,连接终点与起点即为柏氏矢量. 位
错线与柏氏矢量垂直的是刃型位错,平行的是螺型位错.
2.简要说明成分过冷的形成及其对固溶体组织形态的影响。
答: 固溶体凝固时,由于溶质原子在界面前沿液相中的分布发生变化而形成的过冷.
3.为什么晶粒细化既能提高强度,也能改善塑性和韧性?
答: 晶粒细化减小晶粒尺寸,增加界面面积,而晶界阻碍位错运动,提高强度; 晶粒数量增加,塑性变形分布更为均匀,塑性提高; 晶
界多阻碍裂纹扩展,改善韧性.
4.共析钢的奥氏体化有几个主要过程?合金元素对奥氏体化过程有什
么影响?
答: 共析钢奥氏体化有4个主要过程: 奥氏体形成、渗碳体溶解、奥氏体均匀化、晶粒长大。
合金元素的主要影响通过碳的扩散体现,
碳化物形成元素阻碍碳的扩散,降低奥氏体形成、渗碳体溶解、
奥氏体均匀化速度。
1。
第二部分简答题原子间的结合键共有几种?各自的特点如何?【11年真题】答:(1)金属键:基本特点是电子的共有化,无饱和性、无方向性,因而每个原子有可能同更多的原子结合,并趋于形成低能量的密堆结构。
当金属受力变形而改变原子之间的相互位置时不至于破坏金属键,这就使得金属具有良好的延展性,又由于自由电子的存在,金属一般都具有良好的导电性和导热性能。
(2)离子键:正负离子相互吸引,结合牢固,无方向性、无饱和性。
因此,七熔点和硬度均较高。
离子晶体中很难产生自由运动的电子,因此他们都是良好的电绝缘体。
(3)共价键:有方向性和饱和性。
共价键的结合极为牢固,故共价键晶体具有结构稳定、熔点高、质硬脆等特点。
共价结合的材料一般是绝缘体,其导电能力较差。
(4)范德瓦尔斯力:范德瓦尔斯力是借助微弱的、瞬时的电偶极矩的感应作用,将原来稳定的原子结构的原子或分子结合为一体的键合。
它没有方向性和饱和性,其结合不如化学键牢固。
(5)氢键:氢键是一种极性分子键,氢键具有方向性和饱和性,其键能介于化学键和范德瓦耳斯力之间。
说明间隙固溶体与间隙化合物有什么异同。
答:相同点:二者一般都是由过渡族金属与原子半径较小的C、N、H、O、B等非金属元素所组成。
不同点:(1)晶体结构不同。
间隙固溶体属于固溶体相,保持溶剂的晶格类型;间隙化合物属于金属化合物相,形成不同于其组元的新点阵。
(2)间隙固溶体用α、β、γ表示;间隙化合物用化学分子式MX、M2X 等表示。
间隙固溶体的强度、硬度较低,塑性、韧性好;间隙化合物的强度、熔点较高,塑性、韧性差。
为什么只有置换固溶体的两个组元之间才能无限互溶,而间隙固溶体则不能?答:因为形成固溶体时,溶质原子的溶入会使溶剂结构产生点阵畸变,从而使体系能量升高。
溶质与溶剂原子尺寸相差较大,点阵畸变的程度也越大,则畸变能越高,结构的稳定性越低,溶解度越小。
一般来说,间隙固溶体中溶质原子引起的点阵畸变较大,故不能无限互溶,只能有限熔解。
材料科学基础试题及答案一、选择题(每题2分,共20分)1. 材料科学主要研究的是材料的哪些方面?A. 材料的加工方法B. 材料的微观结构C. 材料的性能D. 所有以上选项答案:D2. 金属材料的强度主要取决于其什么?A. 化学成分B. 微观结构C. 宏观尺寸D. 外部环境答案:B3. 以下哪个不是材料的力学性能?A. 硬度B. 韧性C. 导热性D. 弹性答案:C4. 陶瓷材料通常具有哪些特性?A. 高熔点B. 低热导率C. 低电导率D. 所有以上选项答案:D5. 聚合物材料的哪些特性使其在许多应用中受到青睐?A. 可塑性B. 轻质C. 良好的化学稳定性D. 所有以上选项答案:D二、填空题(每空1分,共10分)6. 材料的微观结构包括_______、_______和_______。
答案:晶粒、晶界、相界7. 材料的热处理过程通常包括_______、_______和_______。
答案:加热、保温、冷却8. 金属的塑性变形主要通过_______机制进行。
答案:位错滑移9. 材料的断裂韧性是指材料在_______条件下抵抗断裂的能力。
答案:受到冲击或应力集中10. 复合材料是由两种或两种以上不同_______的材料组合而成。
答案:性质三、简答题(每题10分,共30分)11. 简述金属的疲劳现象及其影响因素。
答案:金属疲劳是指金属在反复加载和卸载过程中,即使应力水平低于材料的屈服强度,也可能发生断裂的现象。
影响金属疲劳的因素包括应力幅度、加载频率、材料的微观结构、环境条件等。
12. 解释什么是相图,并说明其在材料科学中的重要性。
答案:相图是表示不同组分在特定条件下的相平衡状态的图形。
它在材料科学中的重要性体现在帮助科学家和工程师理解材料的相变行为,预测材料的性能,以及指导材料的加工和应用。
13. 描述聚合物材料的玻璃化转变温度(Tg)及其对聚合物性能的影响。
答案:玻璃化转变温度是聚合物从玻璃态转变为橡胶态的温度。
材料科学基础试题及答案一、选择题1. 下列关于材料的定义,正确的是:A. 材料是指由天然资源或人工合成的物质,用于满足人类需求的实体。
B. 材料是指具有一定形态和组织结构的物质,能够展现出特定的性能和功能。
C. 材料是指具有一定物理、化学特征的物质,通过特定的加工过程得到的产品。
D. 材料是指用于制造产品的原始原料,主要包括金属、塑料和木材等。
答案:A2. 下列关于材料分类的说法,正确的是:A. 根据组成方式可将材料分为金属材料、非金属材料和半导体材料。
B. 根据材料的用途可将材料分为结构材料、功能材料和生物医用材料。
C. 根据材料的产生方式可将材料分为天然材料、人工合成材料和再生材料。
D. 根据材料的电导性可将材料分为导电材料、绝缘材料和半导体材料。
答案:B3. 下列关于材料性能的描述,正确的是:A. 机械性能是指材料的硬度、强度、韧性等方面的性质。
B. 热性能是指材料在热环境下的稳定性和导热性等方面的性质。
C. 光学性能是指材料对光的吸收、传输和反射等方面的性质。
D. 电磁性能是指材料对电磁波的传导和屏蔽等方面的性质。
答案:A二、填空题1. 下列是常见材料的表征方法中,________是通过观察材料的形貌、组织结构和晶体形态等方面对材料进行表征的方法。
答案:显微镜观察2. __________是材料用于测量、感知、存储、处理等方面的性能和功能。
答案:功能材料3. __________是制备金属材料的常用加工方法之一,通过热处理和机械加工使材料形成所需形状和性能。
答案:冶金加工三、简答题1. 请简述材料的晶体结构及其对材料性能的影响。
答:材料的晶体结构是指材料中原子、离子或分子的排列方式和周期性特征。
不同的晶体结构决定了材料的特定性能。
例如,金属材料的晶体结构主要为面心立方、体心立方和密堆积等形式,这种结构使金属具有优良的导电性和可塑性。
另外,晶体结构还影响材料的硬度、热膨胀性、熔点等性能。
因此,了解材料的晶体结构对于研究和设计高性能材料具有重要意义。
可编辑修改精选全文完整版材料科学基础---简答题(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二部分简答题第一章原子结构1、原子间的结合键共有几种各自的特点如何【11年真题】答:(1)金属键:基本特点是电子的共有化,无饱和性、无方向性,因而每个原子有可能同更多的原子结合,并趋于形成低能量的密堆结构。
当金属受力变形而改变原子之间的相互位置时不至于破坏金属键,这就使得金属具有良好的延展性,又由于自由电子的存在,金属一般都具有良好的导电性和导热性能。
(2)离子键:正负离子相互吸引,结合牢固,无方向性、无饱和性。
因此,七熔点和硬度均较高。
离子晶体中很难产生自由运动的电子,因此他们都是良好的电绝缘体。
(3)共价键:有方向性和饱和性。
共价键的结合极为牢固,故共价键晶体具有结构稳定、熔点高、质硬脆等特点。
共价结合的材料一般是绝缘体,其导电能力较差。
(4)范德瓦尔斯力:范德瓦尔斯力是借助微弱的、瞬时的电偶极矩的感应作用,将原来稳定的原子结构的原子或分子结合为一体的键合。
它没有方向性和饱和性,其结合不如化学键牢固。
(5)氢键:氢键是一种极性分子键,氢键具有方向性和饱和性,其键能介于化学键和范德瓦耳斯力之间。
2、陶瓷材料中主要结合键是什么?从结合键的角度解释陶瓷材料所具有的特殊性能。
【模拟题一】答:陶瓷材料中主要的结合键是离子键和共价键。
由于离子键和共价键很强,故陶瓷的抗压强度很高、硬度很高。
因为原子以离子键和共价键结合时,外层电子处于稳定的结构状态,不能自由运动,故陶瓷材料的熔点很高,抗氧化性好、耐高温、化学稳定性高。
第二章固体结构1、为什么密排六方结构不能称为一种空间点阵【11年真题】答:空间点阵中每个阵点应该具有完全相同的周围环境。
密排六方晶体结构位于晶胞内的原子具有不同的周围环境。
如将晶胞角上的一个原子与相应的晶胞之内的一个原子共同组成一个阵点,这样得出的密排六方结构应属于简单六方点阵。
材料科学基础常见题型解析及模拟题摘要:一、材料科学基础概述1.材料科学的定义与分类2.材料科学的重要性二、常见题型解析1.选择题2.填空题3.简答题4.计算题5.分析题三、模拟题及答案解析1.选择题2.填空题3.简答题4.计算题5.分析题正文:材料科学基础常见题型解析及模拟题一、材料科学基础概述材料科学是一门研究材料的制备、结构、性能及其应用的学科,它涉及金属材料、无机非金属材料、高分子材料和复合材料等多种类型。
材料科学在现代科技和工程领域具有举足轻重的地位,它的发展推动了人类社会的进步和技术创新。
二、常见题型解析为了更好地帮助大家掌握材料科学基础知识,本文将对以下几种常见题型进行解析:1.选择题选择题主要考察对基本概念、原理和定律的理解。
在解答选择题时,要仔细审题,正确分析题目所给条件,准确把握各个选项的含义,从而作出正确选择。
2.填空题填空题主要考察对基本概念、公式、数据等的记忆。
在解答填空题时,要注意把握题目的关键词,确保填入的内容准确无误。
3.简答题简答题主要考察对原理、方法、现象等的理解和解释能力。
在解答简答题时,要条理清晰、言简意赅地阐述问题,充分展示自己的思维过程。
4.计算题计算题主要考察对公式、方法的运用能力。
在解答计算题时,要注意审题,正确列式,合理估算,确保计算过程的准确性。
5.分析题分析题主要考察对现象、问题、实验等的分析能力。
在解答分析题时,要结合所学知识,运用逻辑思维,进行全面、深入的分析。
三、模拟题及答案解析为了帮助大家更好地检验自己对材料科学基础知识的掌握程度,本文提供了一些模拟题及其答案解析:1.选择题【示例】以下哪个元素具有最高的电负性?A.氧B.氟C.氯D.钠答案:B2.填空题【示例】金属晶体的最基本结构单元是______。
答案:晶胞3.简答题【示例】简述材料的硬度和强度之间的关系。
答案:材料的硬度是指材料抵抗划痕的能力,而强度是指材料抵抗外力破坏的能力。
一般来说,硬度高的材料强度也较高,但硬度并非决定强度的唯一因素。
材料科学基础试题及答案一、选择题1. 材料科学中的“四要素”是指()。
A. 组成、结构、性能、加工B. 组成、结构、性能、应用C. 材料、工艺、设备、产品D. 材料、结构、性能、应用答案:B2. 下列哪种材料属于金属材料?A. 碳纤维B. 聚氯乙烯C. 铝合金D. 陶瓷答案:C3. 材料的屈服强度与抗拉强度之间的关系是()。
A. 屈服强度大于抗拉强度B. 屈服强度等于抗拉强度C. 屈服强度小于抗拉强度D. 无固定关系答案:A4. 非晶态材料的特点之一是()。
A. 高强度B. 各向同性C. 无长程有序D. 高导热性答案:C5. 下列关于纳米材料的描述,正确的是()。
A. 纳米材料仅指尺寸在纳米级别的材料B. 纳米材料具有宏观材料的所有性质C. 纳米材料因其尺寸效应表现出特殊性能D. 纳米材料的应用受到限制答案:C二、填空题1. 材料的______和______是决定其宏观性能的基本因素。
答案:组成、结构2. 金属材料的塑性变形主要是通过______和______来实现的。
答案:滑移、孪晶3. 陶瓷材料的主要特点是______、______和______。
答案:高硬度、高强度、耐磨损4. 复合材料是由两种或两种以上不同______、______和______的材料组合而成。
答案:材料类型、性能、形态5. 形状记忆合金在______作用下能够恢复到原始形状。
答案:温度三、简答题1. 简述材料的疲劳现象及其影响因素。
答:材料的疲劳现象是指在反复的应力作用下,材料逐渐产生并扩展裂纹,最终导致断裂的现象。
影响疲劳的因素包括应力的大小和作用方式、材料的微观结构、表面状态、环境条件等。
2. 说明金属材料的冷加工硬化现象及其应用。
答:冷加工硬化是指金属材料在冷加工过程中,由于晶粒变形和位错密度的增加,导致材料的硬度和强度提高,塑性降低的现象。
该现象在制造高强度、高硬度的零件和工具中具有重要应用。
3. 描述陶瓷材料的断裂机理。
A1(fcc)密排面:(100)密排方向:【110】h+k+l全基或全偶衍射A2(bcc)密排面:(110)密排方向:【111】h+k+l为偶数衍射A3(hcp)密牌面:(001)密排方向:【100】2dsinθ=λ性质、结构成分(研究对象)、合成/制备=效用1.如何理解点缺陷是一种热力学平衡缺陷?随着点缺陷数量增加,熵增加导致自由能下降,但是同时内能增加导致自由能增加,所以有一个平衡浓度,此时有最低的自由能值。
2.何谓位错的应变能。
何谓位错的线张力,其估算值为多少。
位错在晶体中引起畸变,使晶体产生畸变能,称之为位错的应变能或位错的能量。
线张力的定义为:位错线增加一个单位长度时,引起晶体能量的增加。
通常用Gb2/2作为位错线张力的估算值。
请问影响合金相结构的因素主要有哪几个。
原子尺寸、晶体结构、电负性、电子浓度。
3.请简要说明:(1)刃型位错周围的原子处于怎样的应力状态(为切应力还是正应力,为拉应力还是压应力);(2)若有间隙原子存在,则间隙原子更容易存在于位错周围的哪些位置(可以以图示的方式说明)。
(1)刃型位错不仅有正应力同时还有切应力。
所有的应力与沿位错线的方向无关,应力场与半原子面左右对称,包含半原子面的晶体受压应力,不包含半原子面的晶体受拉应力。
(2)对正刃型位错,滑移面上方的晶胞体积小于正常晶胞,吸引比基体原子小的置换式溶质原子或空位;滑移面下方的晶胞体积大于正常晶胞,吸引间隙原子和比基体原子大的置换式溶质原子。
4.铁素体钢在拉伸过程中很易出现屈服现象,请问:(1)产生屈服的原因?(2)如何可以消除屈服平台?由于碳氮间隙原子钉扎位错,在塑性变形开始阶段需使位错脱离钉扎,从而产生屈服延伸现象;当有足够多的可动位错存在时,或者使间隙原子极少,或者经过预变形后在一段时间内再拉伸。
5.如何提高(或降低)材料的弹性?举例说明,并解释。
选择弹性模量小的材料、或者减小材料的截面积、或者提高材料的屈服强度都可以提高弹性。
材料科学基础试题及答案一、选择题1. 材料科学中,下列哪个不是材料的基本性能?A. 力学性能B. 热学性能C. 光学性能D. 化学性能答案:C2. 金属材料的塑性变形主要通过哪种机制进行?A. 位错运动B. 原子扩散C. 相变D. 晶界滑动答案:A3. 陶瓷材料通常具有哪些特性?A. 高韧性B. 高导电性C. 高熔点D. 高塑性答案:C二、填空题1. 材料科学是一门研究材料的________、________、________以及材料与环境相互作用的科学。
答案:组成、结构、性能2. 根据材料的组成和结构,材料可以分为________、________、________和复合材料。
答案:金属材料、无机非金属材料、有机高分子材料三、简答题1. 简述材料科学中的“相”的概念。
答案:在材料科学中,“相”指的是材料中具有相同化学成分和结构的均匀部分。
相可以是固体、液体或气体,并且可以在宏观上观察到。
材料的相可以决定其物理和化学性质。
2. 什么是材料的微观结构?它对材料性能有何影响?答案:材料的微观结构是指材料内部的原子、分子或晶粒的排列方式和分布状态。
微观结构对材料的力学性能、热学性能、电学性能等具有决定性影响,例如晶粒大小、晶界、位错密度等都会显著影响材料的强度、韧性和导电性。
四、计算题1. 已知某金属材料的屈服强度为300 MPa,弹性模量为200 GPa,求其在屈服点的应变。
答案:首先,根据胡克定律,σ = Eε,其中σ是应力,E是弹性模量,ε是应变。
将已知数值代入公式,可得ε = σ/E = 300 MPa / 200 GPa = 0.0015。
2. 若某材料的热膨胀系数为10^-6 K^-1,当温度从20°C升高到100°C时,计算该材料长度的变化百分比。
答案:材料长度的变化量ΔL可以通过公式ΔL = L0αΔT计算,其中L0是原始长度,α是热膨胀系数,ΔT是温度变化。
假设原始长度L0为1m,温度变化ΔT = 100°C - 20°C = 80°C,代入公式得ΔL = 1m * 10^-6 K^-1 * 80 = 8 * 10^-5 m。
上海大学材料科学基础考研真题一、选择题1. 下列元素中,具有最高的密度的是:A. 铁B. 铝C. 铅D. 镁2. 下列关于晶体结构的说法中,错误的是:A. 金属晶体的原子排列是紧密堆积的B. 离子晶体的原子间距离小于共价晶体C. 分子晶体的构成单位是分子D. 非晶态无定形材料的原子排列无规则性3. 下列关于材料的热胀系数的说法中,错误的是:A. 热胀系数与材料的密度无关B. 金属的热胀系数一般较小C. 线热胀系数和体热胀系数的数值大小相同D. 热胀系数为正值表示材料随温度的升高而膨胀4. 对于一般材料的正温度系数应满足下列要求:A. 必须保证材料在正温度系数条件下具有良好的导热性能B. 必须保证材料在正温度系数条件下具有良好的导电性能C. 必须保证材料在正温度系数条件下具有良好的耐腐蚀性能D. 必须保证材料在正温度系数条件下具有良好的热膨胀性能二、填空题1. 高聚物材料通常是由聚合产生的________。
2. 金属的晶体结构一般为________。
3. 水的沸点是在常压下________摄氏度。
4. 绝大多数材料的导热能力都随________而增强。
三、简答题1. 请简述铁、铝、铅、镁这四种金属的特点及应用。
答:铁是一种常见的金属材料,密度较大,强度高,磁性强,广泛应用于建筑、机械制造等领域。
铝是一种轻金属,密度较小,耐腐蚀能力强,导电和导热性能好,广泛应用于航空航天、汽车制造等领域。
铅是一种具有重金属特性的材料,密度极大,延展性好,广泛用于电池制造、防辐射材料等领域。
镁是一种轻金属,密度较小,强度高,具有良好的耐腐蚀性能,广泛应用于航空航天、医疗器械等领域。
2. 请简述金属、离子和分子晶体的特点及应用。
答:金属晶体由金属原子通过金属键紧密堆积而成,具有高导电、高导热、高延展性等特点,广泛应用于电子、建筑、交通等领域。
离子晶体由阳离子和阴离子通过离子键排列而成,具有高熔点、脆性等特点,广泛应用于陶瓷、玻璃等领域。
A1(fcc)密排面:(100)密排方向:【110】h+k+l全基或全偶衍射
A2(bcc)密排面:(110)密排方向:【111】h+k+l为偶数衍射
A3(hcp)密牌面:(001)密排方向:【100】
2dsinθ=λ
性质、结构成分(研究对象)、合成/制备=效用
1.如何理解点缺陷是一种热力学平衡缺陷?
随着点缺陷数量增加,熵增加导致自由能下降,但是同时内能增加导致自由能增加,所以有一个平衡浓度,此时有最低的自由能值。
2.何谓位错的应变能。
何谓位错的线张力,其估算值为多少。
位错在晶体中引起畸变,使晶体产生畸变能,称之为位错的应变能或位错的能量。
线张力的定义为:位错线增加一个单位长度时,引起晶体能量的增加。
通常用Gb2/2作为位错线张力的估算值。
请问影响合金相结构的因素主要有哪几个。
原子尺寸、晶体结构、电负性、电子浓度。
3.请简要说明:(1)刃型位错周围的原子处于怎样的应力状态(为切应力还是正应力,为拉应力还是压应力);(2)若有间隙原子存在,则间隙原子更容易存在于位错周围的哪些位置(可以以图示的方式说明)。
(1)刃型位错不仅有正应力同时还有切应力。
所有的应力与沿位错线的方向无关,应力场与半原子面左右对称,包含半原子面的晶体受压应力,不包含半原子面的晶体受拉应力。
(2)对正刃型位错,滑移面上方的晶胞体积小于正常晶胞,吸引比基体原子小的置换式溶质原子或空位;滑移面下方的晶胞体积大于正常晶胞,吸引间隙原子和比基体原子大的置换式溶质原子。
4.铁素体钢在拉伸过程中很易出现屈服现象,请问:(1)产生屈服的原因?(2)如何可以消除屈服平台?
由于碳氮间隙原子钉扎位错,在塑性变形开始阶段需使位错脱离钉扎,从而产生屈服延伸现象;当有足够多的可动位错存在时,或者使间隙原子极少,或者经过预变形后在一段时间内再拉伸。
5.如何提高(或降低)材料的弹性?举例说明,并解释。
选择弹性模量小的材料、或者减小材料的截面积、或者提高材料的屈服强度都可以提高弹性。
6.何谓加工硬化、固溶强化、第二相强化、细晶强化,说明它们与位错的关系
加工硬化:晶体经过变形后,强度、硬度上升,塑性、韧性下降的现象称为加工硬化。
随着变形的进行,晶体内位错数目增加,位错产生交互作用,使位错可动性下降,强度上升。
固溶强化:由于溶质原子的存在,导致晶体强度、硬度增加,塑性、韧性下降的现象叫固溶强化。
由于溶质原子的存在阻碍或定扎了位错的运动,导致强度的升高。
第二相强化:由于第二相的存在,导致晶体强度、硬度上升,塑性、韧性下降的现象叫第二相强化。
由于第二相的存在,导致位错移动困难,从而使强度上升。
细晶强化:由于晶粒细化导致晶体强度、硬度上升,塑性、韧性不下降的现象叫细晶强化。
由于晶粒细化,使晶界数目增加,导致位错开动或运动容易受阻,使强度上升;又由于晶粒细化,使变形更均匀,使应力集中更小,所以,细晶强化在提高强度的同时,并不降低塑性和韧性。
7.说明金属在塑性变形后,其组织和性能将发生怎样的变化
金属塑性变形后,组织变化包括晶粒和亚结构的变化,其中,晶粒被拉长,形成
纤维组织,晶粒位向趋于一直,形成织构;亚结构细化,缺陷数目大大增加。
另外,畸变能也大大增加。
性能变化包括力学性能和物理化学性能,其中,力学性能变化为强度、硬度上升,塑性、韧性下降,物理化学性能变化为电阻率上升
8.请问,经过冷塑性变形后的金属,在加热过程中,随温度的升高,将发生什么过程,各个过程是如何区分的。
经过冷变形的金属,在加热过程中,随着温度的升高,将发生回复、再结晶和晶粒长大过程。
各个过程以晶粒来区分,在回复阶段,晶粒不变,保持纤维状,在再结晶过程,有新的等轴晶粒产生,当组织中的畸变晶粒都消失时,则再结晶就完成了,以后就是晶粒的长大过程。
9.何谓临界变形量和再结晶晶粒异常长大。
请描述变形量和退火温度对再结晶晶粒大小的影响。
在经过较小的变形量变形后,其再结晶晶粒将非常的大,所对应的变形量称为临界变形量。
在经过大变形量变形后,其再结晶晶粒变得异常的大,称为再结晶晶粒异常长大。
冷变形量很小时,没有影响;2%变形时再结晶晶粒很大,为临界变形量;以后随变形量增加,晶粒细化;当变形量很大时,并且退火温度很高时,再结晶晶粒又会很大。
10.回复、再结晶、晶粒长大过程的驱动力分别是什么。
回复、再结晶的驱动力为畸变能下降,晶粒长大的驱动力为晶界能下降。
11.某工厂用一冷拉钢丝绳将一大型钢件吊入热处理炉内,由于一时的疏忽,未将钢丝绳取出,而是随同工件一起加热至860℃,保温时间到了,打开炉门,要吊出工件时,钢丝绳发生了断裂,试分析原因。
因为钢丝绳发生了再结晶,导致其强度下降,无法再承受这一载荷,导致钢丝绳断裂。
12.何谓结合键;简述离子键、共价键、金属键、分子键和氢键与电子分布的关系;指出形成离子键、共价键、金属键、分子键和氢键时键合作用力的来源。
所谓结合键是指由原子结合成分子或固体的方式和结合力的大小。
离子键:得、失电子形成正负离子,外层电子结构成为稳定的八电子层结构。
正负离子通过静电引力(库仑引力)而结合。
共价键:相邻原子通过共用一对或几对价电子使各原子的外层电子结构都成为稳定的八电子层(或1s2)结构
金属键:各原子都贡献出其价电子而次外层则为“八电子层”,形成金属正离子。
通过自由电子气与正离子实之间的库仑引力而结合。
分子键:由共价键结合而成双原子的分子,外层电子结构成为稳定的八电子层结构。
分子间通过形成瞬时电偶极矩,产生瞬时电场,而结合。
氢键:氢原子核与极性分子间的库仑引力
13.简述波尔理论和波动力学理论分别是如何描述原子核外电子的运动轨道。
波尔理论认为核外电子是在确定的轨道上运动的,符合牛顿定律。
波动力学认为
电子具有波粒二象性,电子有可能出现在核外的各个位置,只是出现在不同位置的几率不同。
14.点缺陷有哪几种?形成点缺陷的驱动力是什么?
点缺陷主要有空位、间隙原子和置换原子。
使原子脱离平衡位置的动力,称为形成点缺陷的驱动力,可以是温度、离子轰击、冷加工等
15.点缺陷的存在,对晶体结构将造成怎样的影响?对晶体的性能将造成怎样的影响?
点缺陷周围,原子间的相互作用力失去平衡,出现弹性畸变区。
导致电阻上升、密度的减小、比热和机械性能的变化
λ=h/mu,λ1=6.62×10-34/[0.02kg×1000]=3.2×10-35m;
左螺旋位错右负刃型位错正混合位错
16.5 碳具有哪些晶体结构?分别具有怎样的性能?(上网查)
石墨、金刚石、碳60、碳纳米管等都是碳元素的单质,它们互为同素异形体。
石墨是元素碳的一种同素异形体,石墨为层状结构,一层中每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,层之间以范德华力结合,构成分子晶体。
由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。
石墨是其中一种最软的矿物。
它的用途包括制造铅笔芯和润滑剂等。
金刚石是自然界中最坚硬的物质。
金刚石的用途非常广泛,例如:工艺品、工业中的切割工具。
碳可以在高温、高压下形成金刚石。
碳原子按四面体成键方式互相连接,组成无限的三维骨架,是典型的原子晶体。
每个碳原子都以SP3杂化轨道与另外4个碳原子形成共价键,构成正四面体。
由于钻石中的C-C键很强,所以所有的价电子都参与了共价键的形成,没有自由电子,所以钻石不仅硬度大,熔点极高,而且不导电。
在工业上,钻石主要用于制造钻探用的探头和磨削工具,形状完整的还用于制造手饰等高档装饰品,其价格十分昂贵。
C60分子是一种由60个碳原子构成的分子,它形似足球,因此又名足球烯。
C60是单纯由碳原子结合形成的稳定分子,它具有60个顶点和32个面,其中12个为正五边形,20个为正六边形。
其相对分子质量约为720。
处于顶点的碳原子与相邻顶点的碳原子各用sp2杂化轨道重叠形成σ键,每个碳原子的三个σ键分别为一个五边形的边和两个六边形的边。
碳原子的三个σ键不是共平面的,键角约为108°或120°,因此整个分子为球状。
每个碳原子用剩下的一个p轨道互相重叠形成一个含60个π电子的闭壳层电子结构,因此在近似球形的笼内和笼外都围绕着π电子云。
分子轨道计算表明,足球烯具有较大的离域能。
C60具有金属光泽,有许多优异性能,如超导、强磁性、耐高压、抗化学腐蚀、在光、电、磁等领域有潜在的应用前景。
碳纳米管是典型的富勒烯,又称巴基管,是一种管状结构的碳原子簇,直径约几纳米,长约几微米。
据理论计算,碳纳米管纤维的强度是钢的100倍,而质量仅为钢的1/7,如果能做成碳纤维,将是理想的轻质高强度材料。
碳纳米管还具有极强的储气能力,可以在燃料电池储氢装置上。