GPS静态测量及数据处理
- 格式:ppt
- 大小:5.44 MB
- 文档页数:55
GPS实例静态测量及数据处理主要论述GPS基本原理及静态测量应用。
标签:GPS静态0 引言随着我国经济的繁荣;促进了交通事业的发展;公路建设速度和规模也迅猛提高;通车里程及干线公路比重也在逐年加大。
虽然近几年公路建设的标准和质量在提高;但不可否认的是测绘水平还比较落后。
主要表现在测绘方式单一;不能根据道路的不同环境选择合理的测绘方法。
此外;测绘技术含量不高;测绘效率低下;不能满足大规模测绘工作的需要;而且测绘方法通常不被重视;忽视长期的、可持续发展的社会效益。
因此;提高道路测绘管理水平;采取科学有效的方法对道路进行及时测绘;为经济发展提供安全、舒适、畅通的公路基础设施;就显得迫在眉睫。
近年来;全球定位系统(Global Positioning System-GPS)作为新一代的卫星导航定位系统;经过二十多年的发展;已发展成为一种被广泛采用的系统;它的应用领域和应用前景已远远超出了该系统设计者当初的设想;目前;它在航空、航天、军事、交通、运输、资源勘探、通信、气象等几乎所有领域中;都被作为一项非常重要的技术手段和方法;用来进行导航、定时、定位、地球物理参数测定和大气物理参数测定等。
特别在交通和地形测量方面尤为突出。
GPS地区虽然开始应用;但在很多技术环节方面还很不成熟;处在摸索阶段。
本文将结合我地区实际;通过试验和研究应用全面系统地GPS测量基层技术;主要研究内容包括以下几个方面:GPS定位原理;GPS静态定位在测量中的应用;布设GPS网;GPS静态的内业处理;GPS注意事项;GPS营口地区点的分布。
1 GPS定位原理GPS(Global Positioning System)主要根据空中卫星发射的信号;确定空间卫星的轨道参数;计算出锁定的卫星在空间的瞬时坐标;然后将卫星看作为分布于空间的已知点;利用GPS地面接收机;接收从某几颗(5颗或5颗以上)中国领土上一般全天候有5-6颗)卫星在空间运行轨道上同一瞬时发出的超高频无线电信号;再经过系统的处理;获得地面点至这几颗卫星的空间距离;用空间后方距离交会的方法;求得地面点的空间位置。
GPS静态数据检算各参数定义1.GPS观测数据获取GPS观测数据是通过GPS接收机来获取的,GPS接收机接收到来自卫星的信号后,在内部进行处理并输出观测数据。
GPS观测数据包括卫星的位置、卫星的伪距观测值、接收机时钟误差等。
2.数据处理方法GPS静态数据检算的数据处理方法主要包括数据预处理、观测值平差和参数计算等。
数据预处理的目的是通过消除一些误差项,提高数据的准确性。
观测值平差主要是根据最小二乘原理,对观测值进行加权平均,减小误差的影响。
参数计算则是根据预处理和平差后的数据,利用相应的模型和算法计算所需的参数。
3.计算参数定义在GPS静态数据检算中,常用的参数包括:(1)卫星的位置卫星的位置是指卫星在地球空间中的坐标,通常使用地心地固坐标系表示。
GPS静态数据检算中,通过观测数据,利用卫星轨道模型和算法计算得到。
(2)接收机的位置接收机的位置是指接收机在地球上的坐标,通常也使用地心地固坐标系表示。
GPS静态数据检算中,通过观测数据,利用卫星位置和伪距观测值,利用几何测量原理和算法计算得到。
(3)接收机的时钟误差接收机时钟误差是指接收机内部时钟和卫星时间的差异。
GPS静态数据检算中,通过观测数据,利用伪距观测值和卫星位置,利用时钟校准等方法计算得到。
(4)接收机的高度接收机的高度是指接收机所在的海拔高度,通常以海平面为基准。
GPS静态数据检算中,通过观测数据,利用大地水准面模型和算法计算得到。
(5)大气延迟大气延迟是指GPS信号在穿过大气层时受到的延迟现象。
GPS静态数据检算中,通过观测数据,利用大气延迟模型和算法计算得到。
(6)多路径效应多路径效应是指GPS信号在传播过程中,经过反射、散射等现象导致的信号多次到达接收机。
GPS静态数据检算中,通过观测数据,利用多路径模型和算法计算得到。
4.总结GPS静态数据检算是利用GPS观测数据进行数据处理,计算出各种参数的方法和定义。
通过获取GPS观测数据,进行数据预处理、观测值平差和参数计算等步骤,可以得到卫星位置、接收机位置、接收机时钟误差、接收机高度、大气延迟、多路径效应等参数。
实验报告GPS静态测量试验四GPS静态测量一、试验目的试验的目的是使同学了解采纳GPS定位技术建立工程控制网的过程,使所学理论学问与实践相结合,巩固和加深对新学问的理解,增加同学的动手能力,培养同学解决问题、分析问题的能力。
通过学习,应达到如下要求:1、娴熟把握GPS接收机的使用办法,外业观测的记录要求。
选点、埋石的要求。
2、合理分配时段、把握星历预告对时段的要求。
PDOP值的大小对观测精度的影响,图形结构的设计及外业工作。
外业观测时手机或对讲机的合理应用。
3、把握GPS控制测量数据处理处理的流程,能自立完成基线解算及网平差二、试验地点:城市学院校区内,试验学时:4小时三、试验前的预备工作1、试验内容介绍:对试验的任务和意义作好充分了解。
2、使用的仪器及物品:GPS接收机(含电池)、基座、脚架若干台,作业调度表,外业观测手簿,小钢尺,铅笔,安装有传输软件和数据处理软件的计算机,数据传输线若干根,便携式存储器。
3、搜集资料①广泛收集测区及其附近已有的控制测量成绩和地形图资料a.控制测量资料包括成绩表、点之记、展点图、路线图、计算说明和技术总结等。
收集资料时要查明施测年月、作业单位、依据规范、坐标系统和高程基准、施测等级和成绩的精度评定。
b.收集的地形图资料包括测区范围内及周边地区各种比例尺地形图和专业用图,主要查明地图的比例尺、施测年月、作业单位、依据规范、坐标系统、高程系统和成图质量等。
c.假如收集到的控制资料的坐标系统、高程系统不全都,则应收集、收拾这些不同系统间的换算关系。
(注:本试验采纳地科系2022年5月建立的校内控制网资料)①收集有关GPS测量定位的技术要求通过参考测量规范,收集有关的测量技术要求。
GPS测量规范包括:a.《全球定位系统GPS测量规范》GB/T 18314-2022b.《工程测量规范》GB 50026-2022四、GPS控制网的布设1、GPS网图形设计原则①GPS网应按照测区实际需要和交通情况,作业时的卫星情况,预期达到的精度,成绩的牢靠性以及工作效率,根据优化设计原则举行。
GPS做静态控制测量流程,值得收藏展开全文测量每天不厌其烦的发招聘信息,图文教程给你导读GPS静态测量,是使用测量型GNSS接收机进行控制测量的一种,主要用于建立各种级别的坐标控制网。
整个静态测量过程中,GNSS接收机是静止不动的,数据处理时,将接收机天线的位置作为一个不随时间的改变而改变的量,通过卫星信号与位置数据的变化参量来解算待定点的坐标。
一、选点和埋石、制定观测计划1、选点:GPS测量并不要求测站之间相互通视,网的图形选择比较灵活,只要均匀布置于整个测区即可。
但如果施工阶段会有全站仪加入,就要考虑通视的因素了。
2、埋石:GPS等级测量网点一般应设置具有中心标志的标石,标志点标石类型可参照《全球定位系统(GPS)测量规范》。
3、施测前制定观测计划,根据设计的GPS控制网布设方案、精度技术要求、GPS接收机数量,后勤交通、通信保障条件等制定测量计划,包括:确定工作量、选择观测时段、及人员设备车辆调度等。
二、野外观测1、架站:对中、整平(提前将仪器设置为静态测量存储模式、采样间隔通常为1s~5s,卫星高度角15~25)2、量取仪器高,(斜高或垂直高,不同厂家、不同型号的仪器要参考说明书进行测量)3、开机(锁星正常一分钟后开始记录)4、测量员记录测站信息(测站号、仪器号、仪器高、起始时间及结束时间)重点笔记:静态观测记录信息内容仪器号: 机身序列号开机与关机时间: 北京时间(GPS时 8h)测站点名: 字母数字组合,三四个字符(如:G03)仪器高 : 单位米,精确到1mm三、数据传输用USB线连接GPS机头与电脑,电脑会显示有一个U盘,打开并进行文件复制,粘贴到电脑中四、HGO软件处理流程下面通过一个实例,重点讲解中海达静态后处理软件HGO解算静态数据的过程。
1、新建工程打开HGO数据处理软件新建项目“文件”→“新建项目” 进入工程设置窗口。
输入“项目名称”,也可同时指定项目存放的文件夹,按“确定”完成创建新项目的工作。
GPS静态测量技术方案一、引言随着全球导航卫星系统(GNSS)技术的不断发展,高精度、高效率的测量方法在各个领域中得到了广泛应用。
其中,GPS静态测量技术以其高精度、高稳定性和可靠性,在大地测量、工程测量、形变监测等领域发挥着重要作用。
本文将对GPS静态测量技术的原理、方法、实施步骤以及数据处理等方面进行详细阐述,以期为相关领域的研究和应用提供参考。
二、GPS静态测量技术原理GPS静态测量技术是通过接收GPS卫星发射的信号,利用接收机对信号进行处理和解析,从而获得地面测站的三维坐标信息。
其基本原理包括以下几个方面:1.卫星信号接收与处理:接收机接收GPS卫星发射的微波信号,通过解码和处理获取卫星的轨道信息和钟差信息。
2.伪距测量:接收机利用卫星信号的传播时间和光速计算得到测站到卫星的伪距。
由于信号传播受到大气层折射、多路径效应等因素的影响,伪距存在一定的误差。
3.载波相位测量:与伪距测量相比,载波相位测量具有更高的精度。
通过观测载波信号的相位变化,可以得到测站到卫星的精确距离。
4.差分定位技术:为了提高定位精度,通常采用差分定位技术。
通过在已知坐标的基准站和流动站之间建立差分关系,消除公共误差源(如大气层折射、卫星钟差等),从而提高流动站的定位精度。
三、GPS静态测量技术方法根据观测方式和数据处理方法的不同,GPS静态测量技术可分为以下几种方法:1.静态相对定位:在两个或多个测站上同时安置接收机进行长时间观测,通过对观测数据进行后处理,得到测站之间的相对位置关系。
该方法精度高、稳定性好,适用于高精度大地测量和形变监测等领域。
2.快速静态定位:在较短的时间内(如几分钟)对测站进行静态观测,通过快速数据处理方法获得测站的近似坐标。
该方法适用于工程测量等需要快速获取结果的场合。
3.实时动态定位(RTK):利用载波相位差分技术,在基准站和流动站之间实时传输观测数据和差分改正信息,实现流动站的实时高精度定位。
GPS静态测量,是利用测量型GPS接收机进行定位测量的一种。
主要用于建立各种级别的控制网。
进行GPS静态测量时,认为GPS接收机的天线在整个观测过程中的位置是静止,在数据处理时,将接收机天线的位置作为一个不随时间的改变而改变的量,通过接收到的卫星数据的变化来求得待定点的坐标。
在测量中,GPS静态测量的具体观测模式是多台(3台以上)接收机在不同的测站上进行静止同步观测,时间由40分钟到十几小时不等。
使用GPS进行静态测量前,先要进行点位的选择,其基本要求有以下几点:1、周围应便于安置接收设备和操作,视野开阔,市场内障碍物的高度角不宜超过15度;2、远离大功率无线电发射源(如电视台、电台、微波站等),其距离不小于200米;远离高压输电线和微波无线电信号传送通道,其距离不小于50米;3、附近不应有强烈反射卫星信号的物件(如大型建筑物、大面积水域等);4、地面基础稳定,易于点的保存;5、充分利用符合要求的旧有控制点。
GPS点位选好后,就可以架站进行静态数据采集了。
在采集静态数据时,一定要对中整平,在采集的过程中需要做好记录,包括每台GPS各自所对应的点位、不同时间段的静态数据对应的点位、采集静态数据时GPS的天线高(S86量测高片高,S82量斜高)。
用GPS采集完静态数据后,就要对所采集的静态数据进行处理,得出各个点的坐标。
下面以为临城建设局做的GPS静态测量为例,介绍静态数据处理的过程。
打开GPS数据处理软件,在文件里面要先新建一个项目,需要填写项目名称、施工单位、负责人,并设置坐标系统和控制网等级,基线的剔除方式。
在这里由于利用的旧有控制点所属的坐标系统是1954北京坐标系3度带,因此坐标系统设置成1954北京坐标系3度带。
控制网等级设置为E级,基线剔除方式选着自动。
在数据录入里面增加观测数据文件,若有已解算好的基线文件,则可以选择导入基线解算数据。
增加观测数据文件后,会在王图显示窗口中显示网图,还需要在观测数据文件中修改量取的天线高和量取方式(S86选择测高片,S82选择天线斜高)。
GPS静态控制测量报告GPS静态控制测量是使用全球定位系统(GPS)进行高精度测量的一种方法。
该方法通过在地面上安装GPS接收器,并获得一定时间范围内的GPS观测数据,以确定测量点的空间坐标。
本报告旨在对GPS静态控制测量进行详细说明,并分析测量结果。
一、测量目的和背景本次测量的目的是确定目标测量点的精确坐标,以便在地理信息系统或工程项目中使用。
通过GPS静态控制测量,可以获得高精度的空间坐标,提供准确的测量结果。
二、测量原理和方法1.GPS系统原理:GPS系统是由一组卫星、地面控制站和接收器组成。
卫星发射信号,接收器接收信号并计算出接收器与卫星之间的距离。
通过同时接收多颗卫星的信号,并使用三角定位原理,可以确定测量点的三维坐标。
2.测量方法:测量前需选择合适的测量基准点,并在测量区域内布设控制点。
接收器安装于控制点上,定时记录卫星信号,以获得足够的观测数据。
观测时间可根据测量要求而定,一般需要数小时至数天。
收集到的观测数据通过专门的处理软件进行计算和分析,得出测量点的坐标。
三、测量器材和工具1.GPS接收器:高精度的GPS接收器,包括天线和数据记录器。
接收器应具备双频测量能力,以提高测量精度。
2.三脚架或测量支架:用于安装GPS接收器,保持接收器的稳定。
3.电源和数据传输设备:为接收器供电和数据传输,可以使用电池或外部电源。
四、测量过程和数据处理1.安装接收器:根据测区的实际情况,选择合适的控制点布设接收器,确保接收器安装稳固。
2.数据采集:启动接收器,开始数据采集。
采集时间应该足够长,以获得稳定的测量结果。
同时,还需记录气象条件、接收器状态等相关信息。
3.数据传输和处理:将采集到的数据传输至数据处理软件进行计算和分析。
处理软件会根据测量原理和数据质量对数据进行修正和筛选,得出最终的测量结果。
五、测量结果和精度分析通过GPS静态控制测量得到的结果是测量点的三维空间坐标。
根据测量要求和测量条件的不同,精度可以达到亚米级甚至亚亚米级。
第一部分GPS静态测量第一章GPS静态测量基础一、GPS静态测量基础在GPS测量中,最常用的静态定位模式是相待定位。
所谓静态定位指的是:在进行GPS定位时,认为在整个观测过程中,接收机天线的位置相对于地球保持不变;而在数据处理时,则将接收机天线的位置作为一个不随时间变化的量。
而相对定位则指的是在进行GPS定位时,多台接收机进行同步观测,采集同步观测数据;在数据处理时,则利用这些同步观测数据,计算出向步观测站之间的相对位置(坐标差/基线向量)。
其具体观测模式为多台接收机在不同的测站上进行静止同步观测,时间从几分钟到长年不间断不等。
接收机测定在观测期间到卫星的伪距和载波相位等观测值,并记录在相应的存储器中。
观测结束后,将观测值下载到计算机中进行处理。
数据处理过程一胶包括基线处理、网平差、坐标转换和高程转换,最终求出高精度的网点坐标。
在GPS测量中,静态定位一般用于高精度的测量定位,如各种等级的大地网、工程控制网、变形监侧网等。
二、GPS接收机分类GPS测量型接收机一般可以根据其能够跟踪、处理的GPS卫星信号频率的数量分为单频和双频两大类。
1.单频GPS测量型接收机接收信号:GPS导航电文、C/A码、Ll载波。
接收机特点:(1)一体化接收机:包含带有显示灯的GPS接收机、天线、内置电源。
(2)分体设计:包含天线、GPS接收机、电源分体设计的配置。
可以配置手持计算机设置或阅读参数信息。
2.双频GPS测量型接收机(双频GPS脚量仪)接收信号:GPS肥导航电文、C/A码伪距、P码伪距、L1载波相位、L2载波相位。
接收机特点:(1)一体化:包含带有显示灯的GPS接收机、天线、内置电源。
可以配置手持计算机设置或阅读参数信息。
(2)分体设计:天线、GPS接收机(内置电源、带有显示灯或显示器)分体设计。
第二章GPS静态测量工作的流程一项GPS静态测量工作分为三个阶段.即测前准备、外业实施和数据处理第一节测前准备在这一阶段所进行的主要工作包括项目立项、技术设计、实地踏勘、设备检定、资料收集整理、人员组织等。
GPS静态数据处理说明书7GPS静态数据处理说明书一、概述GPS(全球定位系统)是一种通过卫星定位技术来确定地理位置的系统。
在GPS测量中,静态数据处理是指对采集到的GPS观测数据进行处理和分析,以获取精确的位置和测量结果。
本说明书将详细介绍GPS静态数据处理的步骤和方法。
二、数据采集1. 设备准备:确保GPS设备处于正常工作状态,电量充足,并且能够接收到足够的卫星信号。
2. 数据采集设置:根据实际需求设置GPS设备的采样间隔、观测时长等参数,并确保设备能够记录下所有必要的观测数据。
三、数据处理步骤1. 数据导入:将采集到的GPS观测数据导入到处理软件中。
常用的处理软件有XX软件、XX软件等,根据实际情况选择合适的软件。
2. 数据预处理:对导入的原始数据进行预处理,包括数据格式转换、数据筛选等。
确保数据的准确性和完整性。
3. 数据编辑:根据实际需求,对数据进行编辑和筛选,去除不必要的数据点和异常值,以提高数据的质量和精度。
4. 数据平差:利用平差方法对编辑后的数据进行处理,计算出每个观测点的坐标和测量结果。
常用的平差方法有最小二乘法、卡尔曼滤波等。
5. 结果分析:对处理得到的数据结果进行分析和评估,包括精度评定、误差分析等。
根据实际需求,可以生成相应的报告和图表。
6. 结果输出:将处理结果输出为标准格式的文件,以便于后续的使用和分享。
常见的输出格式有TXT、CSV等。
四、数据处理方法1. 单基线法:适用于只有一个已知坐标的基准站点的场景。
通过与基准站点的差分处理,计算其他观测点的坐标和测量结果。
2. 多基线法:适用于有多个已知坐标的基准站点的场景。
通过与多个基准站点的差分处理,提高数据的精度和可靠性。
3. 网络平差法:适用于大范围、复杂地形的测量场景。
通过建立网络模型,利用所有观测点的观测数据进行平差计算,得到最终的测量结果。
五、数据处理注意事项1. 数据质量:在数据采集过程中,要注意选择合适的观测点和观测时间,以确保数据的质量和可靠性。
GPS静态测量数据处理定义一、基线解算的类型1、单基线解(1)定义:当有台GPS接收机进行了一个时段的同步观测后,每两台接收机之间就可以形成一条基线向量,共有条同步观测基线,其中最多可以选出相互独立的条同步观测基线,至于这条独立基线如何选取,只要保证所选的条独立基线不构成闭和环就可以了。
这也是说,凡是构成了闭和环的同步基线是函数相关的,同步观测所获得的独立基线虽然不具有函数相关的特性,但它们却是误差相关的,实际上所有的同步观测基线间都是误差相关的。
所谓单基线解算,就是在基线解算时不顾及同步观测基线间误差相关性,对每条基线单独进行解算。
(2)特点:单基线解算的算法简单,但由于其解算结果无法反映同步基线间的误差相关的特性,不利于后面的网平差处理,一般只用在普通等级GPS网的测设中。
2、多基线解(1)定义:与单基线解算不同的是,多基线解算顾及了同步观测基线间的误差相关性,在基线解算时对所有同步观测的独立基线一并解算。
(2)特点:多基线解由于在基线解算时顾及了同步观测基线间的误差相关特性,因此,在理论上是严密的。
(3)多站整体解(绝对坐标).z.(4)单基线解算的过程(5)利用基线解算软件解算基线向量的过程二、基线解算结果的质量评定指标1、单位权方差因子(1)定义:(2)实质:反映观测值的质量,又称为参考方差因子。
越小越好。
2、RMS-均方根误差定义:(2)实质:表明了观测值的质量,观测值质量越好,越小,反之,观测值质量越差,则越大,它不受观测条件(观测期间卫星分布图形)的好坏的影响。
3、数据删除率(1)定义:在基线解算时,如果观测值的改正数大于*一个阈值时,则认为该观测值含有粗差,则需要将其删除。
被删除观测值的数量与观测值的总数的比值,就是所谓的数据删除率。
(2)实质:数据删除率从*—方面反映岀了GPS原始观测值的质量。
数据删除率越高,说明观测值的质量越差。
4、RATIO(1)定义:RATIO值为在采用搜索算法确定整周未知数参数的整数值时,产生次最小的单位权方差与最小的单位权方差的比值。
静态GPS数据处理流程1、工程项目管理1)运行Pinnacle软件后,在出现的对话框中(见图1)图 12)在出现的界面中(见图2)2图 23)在出现的界面中(见图3),输入项目名称,如:示例,建议使用项目名称进行管理,图34)在出现的对话框中(见图4)图 42、坐标系统编辑(此过程仅需编辑一次即可)1)在工具条上选择(坐标系统编辑器)图标。
(见图5)图 52框中(见图6),输入新建椭球名称:北京54,北京54椭球相关的参数:a=6378245 ,1/f=298.3,图63)选择基准面版,在出现的界面中(见图7)输入基准名称:北京54,并选择椭球名称为北京54图74图8)输入新建的平图85)在出现的界面中(见图9和图10)输入中央子午线的名称,如:111,基准名称选择建立好的北京54基准,投影方式选择即:TMERCTransverse mercator<simple zone>)图9图106)进入投影编辑界面(见图11),输入起始中央子午线:111,尺度比:1,E偏移值:500000图117)选择大地水准面面版,导入大地水准面模型:EGM963、原始数据的输入1)点击工具条上的(见图12)图122(见图13)图133)在出现的界面中(见图14),选择工具条上的图144)在出现的界面中(见图15),选择下载数据的路径,如:示例\NO1,按ctrl+A可以图155)在出现的界面中(见图16),选择工具条上的图166)导入数据后,将提示观测时段成功过滤、导入完成(见图17)令快捷键,关闭该对话框。
图17同样的方法将其他时段数据导入进来。
4、原始数据属性修改1)在原始数据栏中点击每个新任务前的“+”号,可以看到输入的原始数据,该原始(见图18)图182)在出现的界面中(见图19),参考外业手簿上的记录,进行观测数据属性设置,在名称一栏中:输入与真实点名相同的文件名称,如G4图193)在出现的界面中(见图20),名称栏输入实际点名如:G4个界面。
GPS静态测量内业数据处理流程1. 数据下载详见文档《静态GPS测量数据下载流程ver0.2.docx》。
2. T01格式数据转换成Rinex格式1)安装两个软件、;2)双击运行;3)选择File------Open打开需要转换的T01格式文件;4)选择File------Convert Files转换已打开的T01格式文件,并观察程序界面下方的运行提示;5)转换成功,并退出程序,已转换的Rinex格式数据将存放在T01格式数据的文件夹。
3. 华测(Compass)静态处理专业版处理所有得到的DAT和Rinex格式数据1)安装华测(Compass)静态处理专业版软件;2)打开安装好的华测(Compass)静态处理专业版软件;3)选择文件------新建项目,创建一个新项目;4)选择文件------导入,在分别导入RINEX格式的观测数据和Trimble DA T格式观测数据;5)逐一修改图中右侧观测数据的点名,并检核天线高(右键------属性);6)点击,处理全部基线,待处理完成所有基线退出基线处理界面;7)选择检查------自动搜索基线闭合差查看基线解算的结果和精度,根据所使用的GPS 设备的标称精度来判定该重复观测基线和闭合环的结果是否符合精度要求;8)如果不符合则分析产生该结果的原因,然后进行适当的观测数据调整并重新解算,如此往复,直到满足要求为止;9)选择工具------坐标系管理点击,然后设置XM92坐标系的名称、常用椭球体、投影方式中央子午线(118.30);10)选择网平差------进行网平差;11)选择成果------成果报告查看打开的网页浏览器观测如果出现红色的“失败”,则复制参考因子的数值,并更新网平差------网平差设置的自由网平差的协方差比例系数的数值,然后点击确定;12)选择网平差------进行网平差,然后再查看成果报告,一般不会出现红色的“失败”字样;13)重新回到界面选择观测站点下面的KJ04、KJ05,点击右键------属性,会出现如下界面在固定坐标中输入KJ04的xyH坐标值,并勾选约束,确定即可;14)同13)的步骤输入KJ05的坐标,KJ04、KJ05的坐标如下表所示点名x y HKJ04 2724859.1882 457491.5073 15.8128KJ05 2724603.1848 457538.8199 11.184715)选择网平差------网平差设置如下图分别勾选三维平差、二维平差和水准高程拟合,然后确定;16)选择网平差------进行网平差;17)选择成果------成果报告,查看平差结果,并分析各误差的大小,并记录KJ06、KJ07、KJ08、KJ09的平面坐标结果;18)至此,内业处理结束,保存并退出程序。
GPS静态测量数据处理精度控制指标分析
一基本精度指标
各级GPS网测量精度用相邻点弦长标准差σ表示,固定误差与比例误差见表1,其中公式为:
σ=
式中σ为标准差,mm
a为与接收设备有关的固定误差,mm
b为比例误差,ppm或10-6
d为相邻点间距离,km (GPS网中相邻点间距离见表1)
注:当边长小于200m时,边长中误差应小于20mm
二基线解算质量控制指标
1 基线本身限制
表2 基线测量限差表
(1)同一时段观测值的数据剔除率应小于10%。
(2)复测基线的长度较差,其值应符合下式:s d≤
(3)同步时段中,一切可能的三边环的坐标分量相对闭合差和全长相对闭合差
10-):
不宜超过表3的规定(1×6
表3 坐标分量闭合差规定表
X Y Z S W W W W ⎫
≤⎪
≤⎪
⎬
≤⎪
⎪
≤⎭
式中n 为闭合环边数,σ为相应级别规定的精度(按实际平均边长计算)。
表4 闭合环或符合路线边数的规定
三 网平差质量控制指标
(1)无约束平差中,基线分量的改正数(V △x ,V △y ,V △z )绝对值满足下式:
333x y z V V V σσσ∆∆∆⎫
≤⎪
≤⎬
⎪
≤⎭
(2)约束平差中,基线向量的改正数与经过粗剔除后的无约束平差结果的同名
基线相应改正数的较差的绝对值应满足要求(2x dV σ∆≤,2y dV σ∆≤,2z dV σ
∆≤); (3)最弱边相对中误差精度满足表1中相应要求。