立体几何表面积、体积 PPT课件
- 格式:ppt
- 大小:5.45 MB
- 文档页数:4
第8讲立体几何计算(几何体的表面积与体积)一.基础知识回顾1.多面体的表面积:(1)设直棱柱高为h ,底面多边形的周长为c ,则S 直棱柱侧=______.(2)设正n 棱锥底面边长为a ,底面周长为c ,斜高为h ′,则S 正棱锥侧=____________(3)设正n 棱台下底面边长为a ,周长为c ,上底面边长为a ′,周长为c ′,斜高为h ′,则 S 正棱台侧=__________(4)设圆柱的母线长为l ,底面圆的半径为r,则S 圆柱侧= (5)设圆锥的母线长为l ,底面圆的半径为r,则S 圆锥侧= (6)设圆台的母线长为l ,上底面圆的半径为r 1, 下底面圆半径为r 2 则S 圆台侧=(4)设球的半径为R ,则S 球=____________.2.几何体的体积公式(1)柱体的体积V 柱体=______(其中S 为柱体的底面面积,h 为高). 特别地,底面半径是r ,高是h 的圆柱体的体积V 圆柱=πr 2h.(2)锥体的体积V 锥体=________(其中S 为锥体的底面面积,h 为高).特别地,底面半径是r ,高是h 的圆锥的体积V 圆锥=13πr 2h. (3)台体的体积V 台体=______________(其中S ′,S 分别是台体上、下底面的面积,h 为高).特别地,上、下底面的半径分别是r ′、r ,高是h 的圆台的体积V 圆台=13πh(r 2+rr ′+r ′2). (4)球的体积V 球=__________(其中R 为球的半径).二.典例精析探究点一:空间中的平行与体积计算例1:如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.变式迁移1:如图四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心,A 1O ⊥底面ABCD ,AB =AA 1= 2.(1)证明:平面A 1BD ∥平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.探究点二:空间中的垂直与体积计算例2:如图四棱锥P -ABCD 的底面ABCD 是边长为2的菱形,∠BAD =60°,已知PB =PD =2,PA = 6.(1)证明:PC ⊥BD ;(2)若E 为PA 的中点,求三棱锥P -BCE 的体积.变式迁移2:如图所示,四棱锥P -ABCD 中,PA ⊥底面ABCD ,PA =2 3,BC =CD =2,∠ACB =∠ACD =π3. (1)求证:BD ⊥平面PAC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积.探究点三:空间几何体证明计算其他问题例3:如图所示,直四棱柱ABCD -A 1B 1C 1D 1中,AB ∥CD ,AD ⊥AB ,AB =2,AD =2,AA1=3,E 为CD 上一点,DE =1,EC =3.(1)证明:BE ⊥平面BB 1C 1C ;(2)求点B 1到平面EA 1C 1的距离.变式迁移3:如图所示,四棱锥P —ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△PAB 和△PAD 都是边长为2的等边三角形.(1)证明:PB ⊥CD ;(2)求点A 到平面PCD 的距离.三.课后作业练习1.长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( )A.72πB. 56πC. 14πD.64π2.已知两平行平面α,β间的距离为3,P∈α,边长为1的正三角形ABC 在平面β内,则三棱锥P —ABC 的体积为( )A .14B .12C .36D .343.从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥A —BCD ,则它的表面积与正方体表面积的比为( ) A .3∶3 B .2∶2 C .3∶6 D .6∶64.若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:165.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) A .9π B .10π C .11π D .12π6.某几何体的三视图如下,则它的体积是( )A .8-2π3B .8-π3C .8-2πD .2π37.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥A -DED 1的体积为________.9.一个立方体的棱长为a ,则该立方体的外接球表面积为 ,内切球体积为 。