力系的平衡静定与超静定的概念
- 格式:ppt
- 大小:1.05 MB
- 文档页数:7
《工程力学Ⅰ》课程教学大纲课程编号:125111 学分: 4 (4学时/周) 总学时:68大纲执笔人:陈洁大纲审核人:王斌耀一、课程性质与目的工程力学(Ⅰ)(包括静力学、材料力学两部分)是土木工程专业的一门重要的技术基础课,它是各门后续课程的基础,并在许多工程技术领域中有着广泛的应用。
本课程的目的是使学生掌握静力学中一般力系的简化与平衡问题的分析介绍方法;掌握材料力学中构件在拉、压、剪切、扭转和弯曲时的强度与刚度问题的分析计算方法,构件在组合变形时的强度与刚度问题的分析计算方法,以及构件在受压时稳定性问题的分析计算方法等;掌握材料的基本力学性能和基本的材料力学实验方法;初步学会应用基本概念、基本理论和基本分析方法去分析问题和解决问题,为学习一系列后继课程打好必要的基础。
同时结合本课程的特点培养学生分析、解决工程实际问题的能力,提高学生的综合素质。
二、课程基本要求1、掌握力的概念、力的投影和力矩的计算;2、掌握力系简化的方法和一般的简化结果;3、掌握刚体静力学的平衡条件和平衡方程;4、对材料力学的基本概念和基本的分析方法有明确的认识。
5、具有将简单受力杆件简化为力学简图的初步能力,具有力学建模的初步概念与能力。
6、能熟练地做出杆件在基本变形下的内力图、计算其应力和位移、并进行强度和刚度计算。
7、对应力状态理论和强度理论有明确的认识,并能将其应用于组合变形下杆件的强度计算。
8、理解掌握简单超静定问题的求解方法。
9、对能量法的有关基本原理有明确认识,并熟练地掌握一种计算位移的能量方法。
10、对压杆的稳定性概念有明确的认识,能熟练计算轴向受压杆的临界载荷与临界应力,并进行稳定性校核等计算。
11、掌握质点系的质心、刚体的转动惯量、惯性积、惯性主轴和惯性积的平行移轴公式;掌握截面的静矩,形心的位置,惯性矩和惯性积及它们的平行移轴公式,转轴公式。
组合截面的惯性矩、惯性积计算,截面的形心主惯性轴和形心主惯性矩的计算11、对于常用材料在常温下的基本力学性能及其测试方法有初步认识。
工程力学名词解释1.静力学中研究的两个问题:(1力系的简化;2.物体在力系作用下的平衡条件。
2.刚体:任何状态下都不变形的物体3.多余约束:如果的体系中增加一个约束,体系的独立运动参数并不减少,此类约束为多余约束4.摩擦角;当摩擦力达到最大值时,全反力与法线间的夹角5.材料的塑性:材料能产生塑性变形的性质6.中性轴:在平面弯曲和斜弯曲情况下,横截面与应力平面的交线上各点的正压力值均为零,这条交线叫中性轴7.超静定:如果所研究的问题中,未知量的数目大于对应的独立平衡方程的数目时,仅仅用平衡方程不能求出全部未知量8.低碳钢的冷作硬化;若材料曾一度受力到达强化阶段,然后卸载,则再重新加载时,比例极限和屈服点将提高,而断裂后的塑性变形将减小9.材料力学中的内力:物体内部某一部分与另一部分的相互作用的力10.应力集中:局部区域应力突然增大的现象11.自锁现象;与力的大小无关而与摩擦角有关的平衡条件称为自锁条件,物体在这种条件下的平衡现象称为自锁现象12应力:分布在单位面积上的内力。
13低碳钢的拉伸曲线四个阶段:(1)弹性阶段(2)屈服阶段(3)强化阶段(4)局部变形14.横力弯曲:剪切面上同时存在弯矩M和剪力Fs。
这种弯曲称为和横力弯曲。
Fs为零而弯矩M为常量,这种弯曲称为纯弯曲15剪切:两力间的横截面发生相对错动的形式。
16挤压应力:由于挤压力而引起的应力。
17单元体:如果以横截面和纵向截面自筒壁上取出一个微小的正六面体。
18纯剪切:在单元体上将只有切应力而无正应力的作用。
19中性轴:中性层与横截面的交线。
20提高梁抗弯强度的措施(1)选用合理的截面(2)采用变截面梁(3)适度布置载荷和支座位置21挠曲线:梁弯曲后的轴线。
22.提高梁刚度和强度的主要措施有:1.合理安排梁的支承2.合理的布置载荷3.选择梁的合理截面23.挠度:梁轴线上的一点在垂直于梁变形前轴方向的线位移24.转角:梁任一截面绕其中性轴转动的角度。
1第三章力系的平衡§3–1 平面力系的平衡方程§3–2 空间力系的平衡方程§3–3 物体系统的平衡方程§3–4 静定与静不定的基本概念§3-1 平面力系的平衡方程由于=0 为力平衡M O =0 为力偶也平衡所以平面任意力系平衡的充要条件为:力系的主矢F R 和主矩M O 都等于零,即:)()(22=+=∑∑Y X F R 0)(==∑i O O F m M 1、平面任意力系的平衡方程R F=∑X 0)(=∑i A F m 0)(=∑i B F m ②二矩式条件:x 轴不AB连线⊥0)(=∑i A F m 0)(=∑i B F m 0)(=∑i C F m ③三矩式条件:A ,B ,C 不在同一直线上上式有三个独立方程,只能求出三个未知数。
=∑X 0=∑Y 0)(=∑i O F m ①一矩式①平面汇交力系=∑xF 0=∑yF2、平面特殊力系的平衡方程②平面力偶系=∑M ③平面平行力系=∑y F 0)(=∑F M O 0)(=∑F MB0)(=∑F M A AB 不x 轴⊥[例] 已知:P , a , 求:A 、B 两点的支座反力?解:①选AB 梁研究②画受力图(以后注明解除约束,可把支反力直接画在整体结构的原图上))(=∑i A F m 由32 ,032PN a N a P B B =∴=⋅+⋅-0=∑X 0=A X 0=∑Y 3,0PY P N Y A B B =∴=-+解除约束,0==∑A X X 由022;0)(=⋅-+⋅⋅+⋅=∑a P m aa q a R F m B A 0=∑Y 0=--+∴P qa R Y B A )kN (122028.01628.02022=⨯+-⨯-=+--=P a m qa R B )kN (24128.02020=-⨯+=-+=B A R qa P Y [例] 已知:P =20kN, m =16kN·m, q =20kN/m, a =0.8m求:A 、B 的支反力。
力的作用点。
(在力的作用下,任意两静力学各知识点总结1. 静力学是研究物体在力系作用下的平衡规律的科学。
2. 力的三要素:(1)力的大小;(2)力的方向;(3)3. 力的效应:(1)外效应——改变物体运动状态的效应4.刚体:在外界任何作用下形状和大小都始终保持不变的物体。
点间的距离保持不变的物体)5.一个物体能否视为刚体,不仅取决于变形的大小,而且和问题本身的要求有关。
6.力:物体间相互的机械作用,这种作用使物体的机械运动状态发生变化。
7.力系:作用在物体上的一群力。
(同一物体)8.如果一个力系作用于物体的效果与另一个力系作用于该物体的效果相同,这两个力系 互为等效力系。
9.不受外力作用的物体可称其为受零力系作用。
一个力系如果与零力系作用等效,则该力系称为平衡力系。
10. 力应以矢量表示。
用 F 表示力矢量,用 F 表示力的大小。
在国际单位制中,力的单位是N 或Kn 。
(2)内效应一一引起物体形变的效应第一章•静力学公理F R = F I +F 2公理1:力的平行四边形法则作用在物体上同一点的两个力,可以合成为一个合力。
合力的作用点也在该点,合力的大小和方向,由这两个力为边构成的平行四边形的对角线确定。
公理2 :二力平衡条件作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力的大小相 等,方向相反,且作用在同一直线上。
公理3 :加减平衡力系原则在已知力系上加上或减去任意的平衡力系,与原力系对刚体的作用等效。
推理1 :作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该推理2 :三力平衡汇交定理作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三力必在同一平面内,且第三个力的作用线通过汇交点。
4.线,5. 柔索类约束:绳索对物体的约束力,作用在接触点, ,沿着同一直线,公理4 :作用力与反作用力总是同时存在,两力的大小相等、方向相反、分别作用在两个相互作用的物体上。
1、静定与超静定结构的概念:无多余约束的几何不变体系是静定结构静定结构:由静力平衡方程可求出所有内力和约束力的体系有多余约束的几何不变体系是超静定结构超静定结构:由静力平衡方程不能求出所有内力和约束力的体系.瞬变体系不能作为结构:瞬变体系的主要特性为:1.可发生微量位移,但不能继续运动2.在变形位置上会产生很大内力3.在原位置上,一般外力不能平衡4.在特定荷载下,可以平衡,会产生静不定力5.可产生初内力.常变体系是一种机构而不是结构2、静定结构的内力分析方法几何特性:无多余联系的几何不变体系静力特征:仅由静力平衡条件可求全部反力内力求解一般原则:从几何组成入手,选择合适的隔离体,使得一个隔离体上未知力的个数不超过三个,如果力系为平面汇交力系,则不应超过两个。
一般按照几何组成的相反顺序分析。
一、单跨梁的内力分析弯矩、剪力、荷载集度之间的微分关系1.无荷载分布段(q=0),Q图为水平线,M图为斜直线。
2.均布荷载段(q=常数),Q图为斜直线,M图为抛物线,且凸向与荷载指向相同。
3.集中力作用处,Q图有突变,且突变量等于力值; M图有尖点,且指向与荷载相同。
4.集中力偶作用处,M图有突变,且突变量等于力偶值; Q图无变化。
内力计算的关键在于:正确区分基本部分和附属部分. 熟练掌握单跨梁的计算.单体刚架(联合结构)的支座反力(约束力)计算方法:切断约束,取一个刚片为隔离体,假定约束力的方向,由隔离体的平衡建立三个平衡方程。
四.刚架弯矩图的绘制做法:拆成单个杆,求出杆两端的弯矩,按与单跨梁相同的方法画弯矩图. 分段定点连线六.由做出的剪力图作轴力图做法: 逐个杆作轴力图,利用结点的平衡条件,由已知的杆端剪力和求杆端轴力,再由杆端轴力画轴力图.注意:轴力图画在杆件那一侧均可,必须注明符号和控制点竖标.。
静定结构和超静定结构优缺点及工程应用一、静定结构和超静定结构概念静定结构与超静定结构都是几何不变体系。
在几何结构方面, 二者不一样在于: 静定结构无多出联络, 而超静定结构则含有多出联络。
有多出约束( n > 0)几何不变体系——超静定结构;无多出约束( n = 0)几何不变体系——静定结构。
静定结构──几何特征为无多出约束几何不变, 是实际结构基础。
因为静定结构撤销约束或不合适更改约束配置能够使其变成可变体系, 而增加约束又能够使其成为有多出约束不变体系(即超静定结构)。
静定结构约束反力或内力均能经过静力平衡方程求解, 也就是说, 其未知约束反力或内力数目等于独立静力平衡方程数目。
静定结构在工程中被广泛应用, 同时是超静定结构分析基础。
超静定结构——几何特征为几何不变但存在多出约束结构体系, 是实际工程常常采取结构体系。
因为多出约束存在, 使得该类结构在部分约束或连接失效后仍能够负担外荷载, 但需要注意是, 此时超静定结构受力状态与以前是大不一样, 假如需要话, 要重新核实。
因为其结构中有不需要多出联络, 所以所受约束反力或内力仅凭静力平衡方程不能全部求解, 也就是未知力数目多于独立静力平衡方程个数。
二、静定结构基础特征及优缺点1、静定结构是几何不变体系, 无多出约束, 全部支座反力和内力只要用静力平衡条件就能确定, 而且解答是唯一。
2、静定结构支座反力和内力与结构所用材料性质、截面大小和形状都没相关系。
3、静定结构在温度改变、支座移动、材料伸缩和制造误差等原因影响下, 都不产温度变化(自由地产生弯曲变形,不产生内力)支座移动(刚体位移,不产生内力)制造误差生制作反力和内力。
即没有荷载作用在静定结构上时, 支座反力均为零, 所以内力也均为零。
4、静定结构局部平衡特征在一组平衡力系作用下, 假如静定结构中某一几何不变部分能够与荷载平衡, 则只会是该部分产生内力, 其它部分支座反力和内力均为零。