绝对值1
- 格式:pdf
- 大小:690.17 KB
- 文档页数:11
绝对值(1)教学目标(一)教学知识点1.绝对值的概念.2.利用绝对值比较两个负有理数的大小.(二)能力训练要求1.借助数轴,初步理解绝对值的概念,能求一个数的绝对值.2.会利用绝对值比较两个负数的大小.3.通过应用绝对值解决实际问题,体会绝对值的意义和作用.(三)情感与价值观要求通过师生的交流、探求,使学生进一步了解数轴.由上节课知道:任何一个有理数都可以用数轴上的点表示.因此,解决数的问题时,要注意借助数轴思考.有意识地形成“脑中有图,心中有数.”把数和形结合起来,使我们能够生动、直观、简洁地阐明事物的本质.教学重点绝对值的概念及运用绝对值比较数的大小.教学难点绝对值的概念.教学方法启发引导法.整节课的教学活动注意最大限度地发挥学生的主体参与.让学生在教师的引导启发下,轻松愉快地学到新知识.教具准备投影片五张第一张:练习(记作§2.3 A)第二张:引例(记作§2.3 B)第三张:本节例题(记作§2.3 C)第四张:做一做(记作§2.3 D)第五张:试一试(记作§2.3 E)教学过程Ⅰ.通过练习引导,引入新课[师]上节课,咱们一起探讨了数轴,谁能说一说什么是数轴?[生甲]有一条水平直线,在这条直线上取一点为原点,选取某一长度为单位长度.规定直线向右的方向为正方向,这样的一条直线为数轴.[生乙]数轴是规定了原点、正方向、单位长度的直线.原点、正方向、单位长度是它的三要素.[师]这两位同学回答得都正确.前一位同学描述了数轴的特征,后一位同学把特征用一句话概括出来了,并点明了数轴的三要素.很好.现在我们学的数为有理数,有了数轴后,就可以把所有的有理数用数轴上的点表示.这样,我们在研究数时,就可以借助数轴来思考.下面我们来做练习巩固一下上节课的内容(出示投影片§2.3 A)[师]大家做得都很好.画数轴时,都注意了三要素.看自己画的数轴.想:在数轴上表示-1.5的点到原点的距离是多少?表示+6的点到原点的距离是多少?表示0的点呢?[生]-1.5到原点的距离是1.5个单位长度.+6到原点的距离是6个单位长度.表示0的点就是原点,所以它到原点的距离为0.[师]那其他的呢?(还是让学生看自己画的数轴,及表示数的点)[生]表示-6的F点到原点的距离是6个单位长度,表示2的B点到原点的距离是2个单位长度.表示-3的E点和表示3的C点到原点的距离都是3个单位长度.[师]回答得很好.一般来说,两个点的距离是一个数.想一想:表示两点距离的数一定是正数或者是0吗?[生]是.[师]对,表示两点距离的数一定是正数或者是0.一般地,我们把正数和零称为非负数.以后遇到“非负数”三字应想到它是正数或者是0.在数轴上,表示-1.5的点到原点的距离是1.5,(单位长度是这里距离的单位,可以省略)这时,我们说:1.5就是-1.5的绝对值.什么是绝对值呢?这节课我们就来探讨绝对值.Ⅱ.讲授新课在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.(absolute value)或者说,一个数的绝对值就是数轴上表示数的点与原点的距离.如(出示投影片§2.3 B)[生甲]两只小狗距原点都是3个单位长度.一只小狗在原点左边,可用-3表示它所在的位置,另一只小狗在原点右边,可用+3表示它所在的位置.[生乙]那3就是+3与-3的绝对值.[师]好.可记作|+3|=3,|-3|=3,现在我们回头看一看刚才的练习题(出示投影片§2.3 A).当时是让大家画数轴,再把数用数轴上的点表示.现在我们把题变为求下列各数的绝对值.能否口答?[生齐声]能.[生甲]-1.5的绝对值是1.5;0的绝对值是0;-6的绝对值是6;2的绝对值是2,6的绝对值是6;-3的绝对值是3,+3的绝对值是3.[生乙]老师,-6的绝对值是6,6的绝对值是6,而-6和6是互为相反数,同样,3也是互为相反数-3和+3的绝对值.所以就可以说:互为相反数的绝对值相等.行吗?[生丙]肯定行.上节课我们知道:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且到原点的距离相等,所以就可以说:互为相反数的两个数的绝对值相等.[师]同学们回答正确,从结果中能总结一些规律,这种探求精神需继续发扬.现在大家分组讨论一下:除刚才总结出的:“互为相反数的两个数的绝对值相等”外,还有没有其他的特征?[生甲]正数的绝对值是正数,负数的绝对值是正数.[生乙]错了.应该说:正数的绝对值是它本身,负数的绝对值是它的相反数. [生丙]还应该有:零的绝对值是零.[师]一个数可以是正数,可以是负数,也可以是零.由绝对值的意义,可以知道:正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零.学习了绝对值的概念后,我们可以知道:一个有理数,是由符号与绝对值两方面来确定的.如:+3是由符号“+”与绝对值3组成的;-21的符号是“-”,绝对值是“21”. 下面做一个练习巩固一下绝对值的概念.(出示投影片§2.3 C)下面我们再做一做(出示投影片§2.3 D)(学生动手画、表示、比较后,讨论(3)) 解:-5<-3<-1.5<-1 (2)|-1.5|=1.5;|-3|=3; |-1|=1;|-5|=5 1<1.5<3<5(3)由以上知;两个负数比较大小,绝对值大的反而小. [师]你的发现正确吗?请举例说明. [生甲]如:-8与-41;-8与-41利用数轴比较时为:-8<-41而|-8|>|-41|,所以说:两个负数比较大小时,绝对值大的反而小.[生乙]如:-3与-5,-5的绝对值较大,而在数轴上表示的这两个数是-5在-3的左边,因此-5小于-3.[师]同学们举的例子很好.至此我们又得到了比较两个负数大小的另一种方法:利用绝对值.也就是说:如果要比较两个负数的大小时,先比较这两个负数的绝对值.然后通过绝对值的大小而确定这两个负数的大小.下面我们共同看一例题(出示投影片§2.3 C)[师]两个负数比较大小的方法,其根据是表示这两个数的点在数轴上的位置关系.但一旦得出利用绝对值比较负数大小的方法,今后就可以不必通过数轴,直接利用绝对值来比较就可以了.Ⅲ.课堂练习 课本P 42随堂练习1.在数轴上表示下列各数,并求出它们的绝对值: -23,6,-3,45解:绝对值依次为:23,6,3,45. 2.比较下列各组数的大小:(1)-101,-72;(2)-0.5,-32(3)0,|-32|;(4)|-7|,|7|解:(1)-101>-72 (2)-0.5>-32;(3)0<|-32| (4)|-7|=|7|[师]练习题大家做得不错.下面我们来试着做一做下列各题(出示投影片§2.3 E)Ⅳ.课时小结1.通过本节学习,要初步理解绝对值的概念.即:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值;(这是几何定义)正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零.(这是代数定义)2.学习绝对值以后,还可以利用绝对值来比较两个负数的大小.即:两个负数比较大小,绝对值大的反而小.Ⅴ.课后作业 (一)看课本P 41~42 (二)课本P 42习题2.3(三)复习总结§2.1~§2.3所学内容. Ⅵ.活动与探究 已知|x -2|+|y -31|=0,求2x +3y 的值. 过程:通过探讨,交流,进一步理解绝对值的含义.任何一个数的绝对值是一个非负数,两个非负数相加为零,只有这两个数都为零,即可求出x 、y 的值.然后代入式子求值.结果:由题意得:|x -2|=0和|y -31|=0,所以:x -2=0,x =2,y -31=0,y =31,所以:2x +3y =2×2+3×31=4+1=5. ●板书设计。
2.3 《绝对值(1)》练习
一、基础过关
1.-5的绝对值是_______,0.78的绝对值是_______,0=_______.
2.绝对值为2
13的有理数有_______,绝对值为10的负有理数有_______. 3.下列说法中正确的是( )
A.绝对值为7的数是+7; B.绝对值最小的有理数是0; C.任何有理数的绝对值都大于0; D.绝对值是它本身的数是正数.
4.下列式子中成立的是( )
A.8.4-<2.4- B.-3<3- C.-4-=4 D.6-<5
5.绝对值不大于3的所有正整数的和是( )
A.3 B.4 C.5 D.6
6.若a=-3
13,b=-3.14,c=-π,则( ) A.a>b>c B.b>c>a C.c>b>a D.b>a>c
7.下面的说法是否正确?请将错误的改正过来.
(1)有理数的绝对值一定比0大.( )
(2)有理数的相反数一定比0小.( )
(3)如果两个数的绝对值相等,那么这两个数相等.( )
(4)互为相反数的两个数的绝对值相等.( )
8.计算: (1)8--5-; (2)(-3)+3-;
(3)9-×(+5); (4)15÷3-
二、能力提升
9.比较-3.5与-3.7的大小(两种方法)
10.请将下列数分类.
0,-2,+31,-2
1-,-12.3,-(+3),-(-2),+5.5,21,-713,+9.
三、聚沙成塔 已知4-a +8-b =0,求ab b a +的值.。
第一课时〔蒋庆东〕绝对值一、教学目标〔一〕学习目标1理解绝对值的概念及通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;2会求一个数的绝对值;知道一个数的绝对值,会求这个数;3通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.〔二〕学习重点理解绝对值的概念,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法〔三〕学习难点会求一个数的绝对值,知道一个数的绝对值,会求这个数二、教学设计〔一〕课前设计1预习任务(1)一般地,数轴上表示数的点与原点的距离叫做数的绝对值,记作(2)一个正数的绝值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0(3)一个数的绝对值一定是一个非负数(4)2预习自测(1)-2021的绝对值是〔〕A.-2021 C D【知识点】绝对值【解题过程】解:-2021的绝对值是2021【思路点拨】根据负数的绝对值等于它的相反数即可求解【答案】B(2)的相反数是【知识点】绝对值【解题过程】解:的相反数是-2【思路点拨】先化简为2,即求2的相反数【答案】-2(3)以下说法中正确的选项是A.符号相反的数互为相反数;B.一个数的绝对值越大,表示它的点在数轴上越靠右;C.一个数的绝对值越大,表示它的点在数轴上离原点越远;D.当时,【知识点】绝对值【解题过程】解:符号相反的数互为相反数错误,如-1与2,故A说法不正确;一个数的绝对值越大,表示它的点在数轴上离原点越远,故B错误,C正确;当时,,故D错误,故应选C【思路点拨】根据绝对值的意义和性质即可求解【答案】C(4)以下等式不成立的是A B C D【知识点】绝对值【解题过程】解:不成立的是B,因为【思路点拨】根据绝对值的意义和性质即可求解【答案】B〔二〕课堂设计1知识回忆(1)数轴的三要素是什么?(2)什么叫互为相反数?它的几何意义是什么?2问题探究探究一绝对值的定义及其几何意义●活动 :绝对值的概念及其几何意义两辆汽车从同一处O出发,分别向东、西方向行驶10m,到达A、B两处。
1、理解并掌握绝对值的几何意义和代数意义2、掌握绝对值的非负性3、掌握绝对值的化简4、学会利用绝对值比较有理数的大小和分类讨论思想5、体会整体思想● (2019年·成都) 计算(6分).()311630cos 22-0-+-︒-∏1、绝对值的几何意义:数轴上表示数a 的点与原点的距离,叫做数a 的绝对值,记作a . b a -的几何意义:在数轴上,表示数a,b 对应两点间的距离.例如,在数轴上表示+5的点与原点的距离是5,所以55=+;在数轴上表示-6的点与原点的距离是6,所以-6的绝对值是6,记作66=-。
2、绝对值的代数意义(性质):一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.3、求字母a 的绝对值:⎪⎩⎪⎨⎧<-=>=)0()0()0(a a a a a a a ⎩⎨⎧<-≥=)0()0(a a a a a ⎩⎨⎧≤->=)0()0(a a a a a4、利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.5、绝对值具有非负性.(1)对于任意实数a ,总有0≥a .(2)如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0=++c b a ,则0,0,0===c b a .6、绝对值的其它性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a -≥(2)若b =a ,则b a =或b a -=; b a ab ⋅= ; ()0≠=b ba b a ; 222a a a ==● 例1、1、求下列各数的绝对值。
21-= ; 49-= ; ()2---= ; 7.8-= ;21= ; 8()7--= ; (24.2)-+= ; [](1)---= ; 2、若4x -=,则x =_______; 若104x -=,则x =__________; 若34x -=,则x =__________;若,,4b a a =-=则b= ;3、若ab ab <,则下列结论正确的是( )A.0,0<<b aB.0,0<>b aC.0,0><b aD.0<ab1、(1) 6.2-的相反数是 ,倒数是 ;(2)已知 3.7a =,则a = ;若 3.7a -=,则a = ;(3)若a a =,则a 是 ;若a a -=-,则a 是 ;(4)若a 是负数,则a -= ;(5)已知,0,5,2<==xy y x 则y x +的值等于 ;2、(1)当0a >时,6a -= ; (2)当5a >时,5a -= ;(3)当5a <时,5a -= ;3、a ,b 是有理数,若a >b 且|a|<|b|,下列说法正确的是( )A. a 一定是正数B. a 一定是负C. b 一定是正数D. b 一定是负数● 例2、 1、已知022=++-y x 求:(1)x ,y 的值;(2)552x y -的值。