第4讲 等参元和高斯积分
- 格式:ppt
- 大小:552.00 KB
- 文档页数:5
《有限元基础及应用》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:有限元法是求解复杂工程问题进行数值模拟非常有效的方法,是现代数字化科技的一种重要基础性原理。
将它应用于科学研究中,可以成为探究物质客观规律的先进手段;将它应用于工程技术中,可成为工程设计和分析的可靠工具。
有限元法已经成为机械工程、车辆工程、航空航天工程、土木建筑等专业的必修课或选修课,有限元商用软件也是广大工程技术人员从事产品开发、设计、分析,以及生产服务的重要工具。
通过本课程的学习使同学们掌握有限元分析方法的基础知识和原理;掌握大型有限元分析软件(ANSYS)的使用;有限元方法的实际应用:能够针对具有复杂几何形状的变形体完整获取复杂外力作用下它内部准确力学信息,在准确进行力学分析的基础上,可以对所研究对象进行强度、刚度等方面的判断,以便对研究结构进行静态、动态的强度和刚度分析、参数设计以及结构优化设计。
内容由浅入深,通俗易懂,结合实践应用分析,培养学生理论联系实际和解决实际问题的能力。
(二)课程目标:课程目标1:掌握有限元方法的基本原理,分析过程和步骤,形函数的构造方法,以及针对不同维度、不同结构准确选择合适的单元的技巧;课程目标2:掌握有限元分析方法,具有对不同工程问题建立相应力学模型再选取适合的有限元模型离散,最后得到高精度低成本的数值模拟结果;课程目标3:利用有限元原理和应用软件(ANSYS),能够针对车辆结构中具有复杂几何形状的零部件完整获取复杂外力作用下其内部的准确力学信息(位移、应力和应变),并能根据强度、刚度、稳定性及疲劳等进行分析判断结构的安全性,具有分析和解决工程实际问题的能力;课程目标4:掌握大型商用有限元软件(ANSYS)对车辆结构部件的静力学、动力学和多物理场耦合问题进行数值模拟和分析。
能够了解不同单元的适用范围以及有限元方法数值模拟的局限性。
(三)课程目标与毕业要求、课程内容的对应关系本课程支撑专业培养计划中毕业要求1、2、3、5。
高斯积分的计算方法在数学领域内,高斯积分是一类经典的数学积分,它不仅深受广大数学学者的喜爱,更在科学与工程领域内应用广泛。
高斯积分的计算方法在数学的发展史上也有着突出的地位。
高斯积分的概念及应用高斯积分是计算圆柱体体积的重要方法之一,它起源于高斯儿时曾在数学竞赛时受到圆柱体体积的启发,从而产生了求出圆柱体体积的积分方法,这就是高斯积分。
高斯积分包含两种类型,第一类和第二类。
第一类和第二类高斯积分分别用于计算复平面中的任意四边形及半平面上的积分问题,是极其有用的数学工具。
在物理学中,高斯积分也运用得非常广泛,可以用来求解电场、磁场、热力学等问题。
高斯积分的计算一般多使用复数表示,复数的实部和虚部对应于二维空间中的横坐标和纵坐标。
对于复平面上的第一类高斯积分,可以利用复变量的奇偶性质以及圆形映射将圆上的高斯积分转化为实轴上的积分问题,从进而求解高斯积分。
对于第二类高斯积分,通常采用变形的方式将积分式转化为反常积分,然后再利用数值解法或者级数展开法求解反常积分。
具体而言,我们将复平面的积分路径展开为两条道路,设积分函数为f(z),则当选取的路径使得沿路径的积分无穷大时,在道路由初始点z1到终止点z2的方向上分别分割成R和r两段,则有以下套路的计算方式:∫(z1,z2)f(z)dz = ∫R f(z)dz + ∫r f(z)dz其中∫R f(z)dz表示对有限的路径积分进行求解,而∫r f(z)dz则表示计算路径积分的一部分,因此在变形之后我们只需要将∫r f(z)dz 根据变形后的路径进行求解即可。
总结高斯积分作为经典数学积分,在物理、工程以及金融领域都有着广泛的应用。
高斯积分的计算也有着不同的方法,需要根据实际问题的需求不断灵活运用。
不过,绝大多数情况下我们都可以采用圆形映射的方法统一化计算,以及采用变形的方式将积分式转化为反常积分进行求解。
§4-4 高斯积分法及其应用● 由§4-3知,在计算空间等参数单元的载荷列阵及刚度矩阵时,需用到如下形式的定积分:ηξηξd d f ⎰⎰--1111),(; ζηξζηξd d d f ⎰⎰⎰---111111),,(其中被积分函数f(ξ,η,ζ)一般是很复杂的,即使能够得出它的显式,其积分也是很繁的。
因此,一般用数值积分来代替函数的定积分。
● 数值积分:在积分区域内按一定规则选出一些点,称为积分点,算出被积函数f(ξ,η,ζ)在这些积分点处的值,然后再乘以相应的加权系数并求和,作为近似的积分值。
● 数值积分的方法有多种,其中高斯积分法可以用相同的积分点数达到较高的精度,或者说用较少的积分数达到同样的精度。
一、高斯积分法 1.一维积分的高斯公式● 一维积分的高斯公式∑⎰=-=ni i i f H d f 111)()(ξξξ (4-47)其中f(ξi )是被积函数在积分点ξi 处的数值,H i 为加数系数,n 为积分点数目。
● 可以证明, ✧对于n 个积分点,只要选取适当的加数系数及积分点位置,能够使(4-47)式在被积分函数为不超过(2n-1)次多项式时精确成立。
✧由于多数函数可表示成多项式形式,这种积分适应于大多数函数。
● 例如, ✧n=1时)()(1111ξξξf H d f I ==⎰- (a)不论f(ξ)的次数是0还是1,只需取H 1=2,ξ1=0,上式均是精确成立的。
因为ξξ10)(C C f += (b)101()22(0)I f d C f ξξ-===•⎰ (c)✧当n=2时,能保证(4-47)式精确成立所允许的多项式的最高次数是3,此时,f(ξ)的通式为332210)(ξξξξC C C C f +++= (d)其精确积分为2011322)(C C d f I +==⎰-ξξ (e)数值积分为)()()()()(323222102313212101221121ξξξξξξξξξC C C C H C C C C H f H f H f H I i i i +++++++=+==∑= (f)为了在C 0~C 3取任意值(包括取零值在内)时公式(f)是精确的,显然应有221=+H H , 02211=+ξξH H32222211=+ξξH H , 0322311=+ξξH H 所以,应取2,269,350,577.03121-=-=-=ξξ0,000,000,000.121==H H✧同样,对于不超过五次的多项式,只要取n=3130.577,350,269,2ξξ=-==- 0,000,000,000.02=ξ6,555,555,555.09521===H H 9,888,888,888.0983==H即可保证得到精确的积分值。
高斯积分与积分换元法高斯积分和积分换元法是数学中常用的两种方法,用于求解复杂的积分问题。
它们的应用广泛,能够在很多领域中解决各种复杂的问题。
在此文章中,我将介绍高斯积分和积分换元法的基本概念和原理,并通过数学公式和实例进行说明。
首先,让我们来了解高斯积分。
高斯积分是一类特殊的形式,也被称为高斯型积分或高斯-鲁莽积分。
它的一般形式表示为:∫e^(-x^2)dx其中,e为自然对数的底数,x为积分的变量。
高斯积分在统计学、概率论、量子力学等领域有着重要的应用。
高斯积分没有一个确定的解析表达式,但可以通过一系列数值方法进行逼近计算。
高斯积分可以通过泰勒级数展开、数值积分方法等方式来计算。
在高斯积分的应用中,常见的一个重要特性就是它在负无穷到正无穷的区间上是对称的。
这使得高斯积分计算过程中可以进行变量替换,从而简化积分过程。
这就引出了我们接下来要讨论的积分换元法。
积分换元法是一种用于简化积分的方法,通过变量替换将原积分转化成更容易计算的形式。
积分换元法的基本原理是希望将原积分的被积函数替换成新的变量关于新的因变量的表达式。
这样,在新的变量下积分可以更简单地计算出来。
积分换元法可以通过一系列的步骤来进行。
首先,选择合适的变换,将原积分中的变量替换成新的变量。
然后,计算出新的被积函数以及对应的微分。
接着,将原积分变为新的积分,并将新的变量的取值范围与原积分变量的取值范围进行匹配。
最后,计算新的积分即可得到结果。
在使用积分换元法的过程中,我们需要根据具体问题选择合适的变量替换。
通过选择适当的变量替换,我们可以将复杂的积分问题转化为简单的形式。
常见的变量替换包括三角函数的替换、指数函数的替换、倒数的替换等等。
不同的问题需要选择不同的变量替换,并根据问题的特点灵活运用。
举个例子来说明积分换元法的使用。
考虑以下积分问题:∫(3x+2)^5dx我们可以通过积分换元法来简化计算。
首先,令 u = 3x+2,然后计算出 du/dx = 3。