曲面积分的计算
- 格式:ppt
- 大小:311.00 KB
- 文档页数:9
对面积的曲面积分公式1. 对面积的曲面积分的概念。
- 设曲面∑是光滑的,函数f(x,y,z)在∑上有界。
把∑任意分成n小块Δ S_i(Δ S_i同时也表示第i小块曲面的面积),设(ξ_i,eta_i,ζ_i)是Δ S_i上任意取定的一点,作乘积f(ξ_i,eta_i,ζ_i)Δ S_i,并作和∑_i = 1^nf(ξ_i,eta_i,ζ_i)Δ S_i。
- 如果当各小块曲面的直径的最大值λto0时,这和式的极限存在,则称此极限为函数f(x,y,z)在曲面∑上对面积的曲面积分或第一类曲面积分,记作∬_∑f(x,y,z)dS=limlimits_λto0∑_i = 1^nf(ξ_i,eta_i,ζ_i)Δ S_i。
2. 对面积的曲面积分的计算方法。
- 一、利用曲面的方程化为二重积分计算。
- 设曲面∑的方程为z = z(x,y),∑在xOy面上的投影区域为D_xy,函数z(x,y)在D_xy上具有连续偏导数,被积函数f(x,y,z)在∑上连续,则∬_∑f(x,y,z)dS=∬_D_{xy}f[x,y,z(x,y)]√(1 + z_x)^2+z_{y^2}dxdy。
- 类似地,如果曲面∑的方程为x = x(y,z),∑在yOz面上的投影区域为D_yz,则∬_∑f(x,y,z)dS=∬_D_{yz}f[x(y,z),y,z]√(1 + x_y)^2+x_{z^2}dydz。
- 如果曲面∑的方程为y = y(z,x),∑在zOx面上的投影区域为D_zx,则∬_∑f(x,y,z)dS=∬_D_{zx}f[x,y(z,x),z]√(1 + y_z)^2+y_{x^2}dzdx。
- 二、利用曲面的参数方程计算(略高于一般要求)- 设曲面∑的参数方程为<=ft{begin{array}{l}x = x(u,v) y = y(u,v) z =z(u,v)end{array}right.,(u,v)∈ D,且x(u,v),y(u,v),z(u,v)在D上具有连续偏导数,(∂(x,y))/(∂(u,v)),(∂(y,z))/(∂(u,v)),(∂(z,x))/(∂(u,v))不全为零,则dS=√(EG - F^2)dudv,其中E=x_u^2+y_u^2+z_u^2,F = x_ux_v+y_uy_v+z_uz_v,G=x_v^2+y_v^2+z_v^2。
第21章 曲线积分和曲面积分的计算 教学目的: 教学重点和难点:§1 第一类曲线积分的计算设函数(),,f x y z 在滑腻曲线l 上有概念且持续,l 的方程为()()()()0x x t y y t t t T z z t =⎧⎪=≤≤⎨⎪=⎩则()()()(),,,,Tlt f x y z ds f x t y t z t =⎡⎣⎰⎰。
特别地,若是曲线l 为一条滑腻的平面曲线,它的方程为()y x ϕ=,()a x b≤≤,那么有((,) , ()blaf x y ds f x x ϕ=⎰⎰。
例:设l 是半圆周t a y t a x sin , cos ==, π≤≤t 0。
求22()l x y ds +⎰。
例:设l 是曲线x y 42=上从点) 0 , 0 (O 到点) 2 , 1 (A 的一段,计算第一类曲线积分lyds ⎰。
例:计算积分2lx ds ⎰,其中l 是球面2222a z y x =++被平面0=++z y x 截得的圆周。
例:求()lI x y ds =+⎰,此处l 为连接三点()0,0O ,()1,0A ,()1,1B 的直线段。
§2 第一类曲面积分的计算一 曲面的面积(1)设有一曲面块S ,它的方程为 (),z f x y =。
(),f x y 具有对x 和y 的持续偏导数,即此曲面是滑腻的,且其在XY 平面上的投影xy σ为可求面积的。
则该曲面块的面积为xyS σ=。
(2)若曲面的方程为 ()()(),,,x x u v y y u v z z u v =⎧⎪=⎨⎪=⎩, 令222u u u E x y z =++,u v u v u v F x x y y z z =++,222v v v G x y z =++,则该曲面块的面积为S ∑=。
例:求球面2222x y z a ++=含在柱面()220x y ax a +=>内部的面积。
例:求球面2222x y z a ++=含在柱面()220x y ax a +=>内部的面积。
闭合曲面和非闭合曲面的求积分公式==================================在数学和物理学中,曲面上的积分问题是一个重要的研究领域。
曲面上的积分可以帮助我们计算曲面的重心、质心以及对流体力学和电磁学等领域中的一些问题进行求解。
本文将介绍闭合曲面和非闭合曲面的求积分公式,并探讨它们在实际问题中的应用。
闭合曲面的求积分公式---------------------1. 对于向量场的曲面积分对于向量场F(x, y, z)和曲面S,闭合曲面积分的公式为∬_S F*dS = ∬∬_D F(r(u, v))·(ru×rv)dA其中,D为曲面S在参数域中的投影,r(u, v)为曲面S的参数方程,ru和rv分别为参数u和v的偏导向量,dA为面积微元。
2. 对于标量场的曲面积分对于标量场f(x, y, z)和曲面S,闭合曲面积分的公式为∬_S f*dS = ∬∬_D f(r(u, v))·|ru×rv|dA其中,D为曲面S在参数域中的投影,r(u, v)为曲面S的参数方程,ru和rv分别为参数u和v的偏导向量,|r u×rv|为面积元素的模长。
非闭合曲面的求积分公式-----------------------1. 对于向量场的曲面积分对于向量场F(x, y, z)和曲面S,非闭合曲面积分的公式为∬_S F*dS = ∬∬_D F(r(u, v))·(ru×rv)dA其中,D为曲面S在参数域中的投影,r(u, v)为曲面S的参数方程,ru和rv分别为参数u和v的偏导向量,dA为面积微元。
2. 对于标量场的曲面积分对于标量场f(x, y, z)和曲面S,非闭合曲面积分的公式为∬_S f*dS = ∬∬_D f(r(u, v))·|ru×rv|dA其中,D为曲面S在参数域中的投影,r(u, v)为曲面S的参数方程,ru和rv分别为参数u和v的偏导向量,|ru×rv|为面积元素的模长。
第5讲 曲面积分一.第一型曲面积分的计算1(,,)lim (,,)niiiid i Sf x y z dS f Sξηζ→==∆∑⎰⎰1.曲面的面积设曲面S 的方程为:(,)z f x y = (,)xy x y D ∈.xyD S =⎰⎰若曲面方程为(,)x x y z =,将曲面投影到yOz 面上(投影域为yz D )yzD S =⎰⎰若曲面方程为(,)y y z x =,将曲面投影到zOx 面上(投影域为zx D )zxD S =例1 求球面2222x y z R ++=(0z ≥)介于平面(0)z h h R =<<和平面0z =之间部分的面积.2. 第一型曲面积分的计算设S 的方程为:(,)z z x y = (,)xy x y D ∈.(,,)(,,(,xySD f x y z dS f x y z x y =⎰⎰⎰⎰若曲面方程为(,)x x y z =(,,)((,),,yzSD f x y z dS f x y z y z =⎰⎰⎰⎰若曲面方程为(,)y y z x =(,,)(,(,),zxSD f x y z dS f x y z x z =⎰⎰⎰⎰例1 计算SxzdS ⎰⎰,其中S 是锥面z =被圆柱面222(0)x y ax a +=>所截下部分.例2 计算SzdS ⎰⎰,其中S 是由圆柱面222x y R +=,平面0z =和z x R -=所围立体的表面.二、向量值函数在有向曲面上的积分 1、曲面的侧空间曲面方程:(,)(,)(,)(,,)0(,)(,)(,)(,)(,)(,)z z x y x y D x y F x y z y y z x z x D z x x x y z y z D y z =∈⎧⎪=⇔=∈⎨⎪=∈⎩任一点处的法向量(,,)x y z n F F F =在光滑曲面S 上取一定点0M ,则曲面S 在点0M 处的单位法向量有两个方向,选取其中的一个方向作为曲面S 在点0M 处的单位法向量,记为0n .双侧曲面:S 上的动点M 从点0M 出发,在曲面S 上连续移动而不超过S 的边界回到0M 时,其单位法向量与出发前的0n 相同。