曲线积分与曲面积分习题及答案
- 格式:doc
- 大小:1.81 MB
- 文档页数:35
曲线积分与曲面积分习题详解习题9-11 计算下列对弧长的曲线积分:(1)I s=⎰,其中C是抛物线2y x=上点(0,0)O到(1,1)A之间的一段弧;解: 由于C由方程2y x=(01x≤≤)给出,因此1I s x x===⎰⎰⎰123211(14)1)1212x⎡⎤=+=⎢⎥⎣⎦.(2)dCI x s=⎰,其中C是圆221x y+=中(0,1)A到B之间的一段劣弧;解:C AB=的参数方程为:cos,sinx yθθ==()42ππθ-≤≤,于是24cosIππθ-=⎰24cos1dππθθ-==⎰.(3)(1)dCx y s++⎰,其中C是顶点为(0,0),(1,0)O A及(0,1)B的三角形的边界;解: L是分段光滑的闭曲线,如图9-2所示,根据积分的可加性,则有(1)Cx y ds++⎰(1)OAx y ds=++⎰(1)ABx y ds+++⎰(1)BOx y ds+++⎰,由于OA:0y=,01x≤≤,于是ds dx===,故13(1)(01)2x y ds x dx++=++=⎰⎰OA,而:AB1y x=-,01x≤≤,于是ds==.xyoABC10(1)[(1)ABx y ds x x ++=+-+=⎰⎰同理可知:BO 0x =(01y ≤≤),0ds =,则13(1)[01]2BOx y ds y dy ++=++=⎰⎰. 综上所述33(1)322Cx y ds -+=+=+⎰. (4)22Cx y ds +⎰,其中C 为圆周22x y x +=;解 直接化为定积分.1C 的参数方程为11cos 22x θ=+,1sin 2y θ=(02θπ≤≤), 且12ds d θθ=.于是22201cos222Cx y ds d πθθ+=⋅=⎰⎰.(5)2 ds x yz Γ⎰,其中Γ为折线段ABCD ,这里A ,B ,C ,D 的坐标依次为(0,0,0), (0,0,2),(1,0,2),(1,2,3);解 如图所示, 2222ABBCCDx yzds x yzds x yzds x yzds Γ=++⎰⎰⎰⎰.线段AB 的参数方程为 0,0,2(01)x y z t t ===≤≤,则ds =2dt =,故02200 12=⋅⋅⋅=⎰⎰dt t yzds x AB.线段BC 的参数方程为,0,2(01)x t y z t ===≤≤,则,ds dt ==122 0020BCx yzds t dt =⋅⋅⋅=⎰⎰,线段CD 的参数方程为1,2,2x y t z t===+)10(≤≤t ,则ds ==,故1122012(2))CDx yzds t t t t dt =⋅⋅+=+=⎰⎰ 2 (2所以2222A BB CC Dx y z d s x y z d sx y z d sd s Γ=++⎰⎰⎰⎰(6)2ds y Γ⎰,其中Γ为空间曲线2222,(0),x y z a a x z a ⎧++=>⎨+=⎩. 解: Γ在,x y 平面的投影为:2222()x y a x a ++-=,即22220x y ax +-=,从而2221222a x y a ⎛⎫-+= ⎪⎝⎭.利用椭圆的参数方程得Γ的参数方程为11cos ,22:, 02.11cos ,22x a a y z a x a a θθθπθ⎧=+⎪⎪⎪Γ=≤≤⎨⎪⎪=-=+⎪⎩由于d s θθθ==. 则332π2π2222 01ds sin d sin d 222y a θθθθΓ===⎰⎰2 设一段曲线ln (0)y x a x b =<≤≤上任一点处的线密度的大小等于该点横坐标的平方,求其质量.解 依题意曲线的线密度为2x ρ=,故所求质量为2CM x ds =⎰,其中:ln (0)C y x a x b =<≤≤.则C 的参数方程为ln x xy x =⎧⎨=⎩(0)a x b <≤≤, 故ds ==,所以3221[(1)]3b a aM x ==+⎰3322221[(1)(1)]3b a =+-+.3 求八分之一球面2221(0,0,0)x y z x y z ++=≥≥≥的边界曲线的重心,设曲线的密度1ρ=。
第十一章 曲线积分与曲面积分第三节 Green 公式及其应用1.利用Green 公式,计算下列曲线积分: (1)⎰-Lydx x dy xy 22,其中L 为正向圆周922=+y x ; 解:由Green 公式,得232222381()22LDxy dy x ydx x y dxdy d r dr ππθ-=+==⎰⎰⎰⎰⎰Ñ, 其中D 为229x y +≤。
(2)⎰-++Ly ydy y xe dx y e)2()(,其中L 为以)2,1(),0,0(A O 及)0,1(B 为顶点的三角形负向边界;解:由Green 公式,得()(2)(1)1y y y y LDDe y dx xe y dy e e dxdy dxdy ++-=---==⎰⎰⎰⎰⎰Ñ。
*(3)⎰+-Ldy xy ydx x22,其中L 为x y x 622=+的上半圆周从点)0,6(A 到点)0,0(O 及x y x 322=+的上半圆周从点)0,0(O 到点)0,3(B 连成的弧AOB ;解:连直线段AB ,使L 与BA u u u r围成的区域为D ,由Green 公式,得6cos 2222223203cos 444620()01515353cos 334442264LDBAx ydx xy dy y x dxdy x ydx xy dy d r dr d πθθπθπθθπ-+=+--+=-==⨯⨯⨯=⨯⨯⎰⎰⎰⎰⎰⎰⎰u u u r*(4)⎰+-Lyx xdy ydx 22,其中L 为正向圆周4)1(22=++y x . 解:因为22222()x y P Q y x x y -∂∂==∂∂+,(,)(0,0)x y ≠。
作足够小的圆周l :222x y r +=,取逆时针方向,记L 与l 围成的闭区域为D ,由Green 公式,得220L lydx xdyx y +-=+⎰Ñ,故 22222222222sin cos 2L l l ydx xdy ydx xdy ydx xdyx y x y r r r d rπθθθπ---+=-=++--==-⎰⎰⎰⎰蜒?2.计算下列对坐标的曲线积分:⎰+-Lx xydy e dx y esin 2)cos 21(,其中L 为曲线x y sin =上由点)0,(πA 到点)0,0(O 的一段弧;解:(12cos ),2sin x xP e y Q e y =-=,2sin x P Q e y y x∂∂==∂∂, 故积分与路径无关,取)0,(πA 经x 轴到点)0,0(O 的一条路径, 从而 原式=(12cos )2sin 1x x x AOe y dx e ydy e dx e ππ-+=-=-⎰⎰。
第十章 曲线积分与曲面积分答案一、选择题 1.曲线积分()sin ()cos xL f x e ydx f x ydy ⎡⎤--⎣⎦⎰与路径无关,其中()f x 有一阶连续偏导数,且(0)0f =,则()f x = BA.1()2x x e e -- B. 1()2x x e e -- C. 1()2x x e e -+ D.0 2.闭曲线C 为1x y +=的正向,则Cydx xdyx y -+=+⎰Ñ C A.0 B.2 C.4 D.6 3.闭曲线C 为2241x y +=的正向,则224Cydx xdyx y -+=+⎰Ñ D A.2π- B. 2π C.0 D. π 4.∑为YOZ 平面上221y z +≤,则222()xy z ds ∑++=⎰⎰ DA.0B. πC.14π D. 12π 5.设222:C x y a +=,则22()Cx y ds +=⎰Ñ CA.22a πB. 2a πC. 32a πD. 34a π 6. 设∑为球面2221x y z ++=,则曲面积分∑[ B ]A.4πB.2πC.πD.12π7. 设L 是从O(0,0)到B(1,1)的直线段,则曲线积分⎰=Lyds [ C ]A. 21B. 21- C. 22 D. 22-8. 设I=⎰Lds y 其中L 是抛物线2x y =上点(0, 0)与点(1, 1)之间的一段弧,则I=[D ]A.655 B.1255 C.6155- D. 12155- 9. 如果简单闭曲线 l 所围区域的面积为 σ,那么 σ 是( D ) A.⎰-l ydy xdx 21; B. ⎰-l xdx ydy 21;C.⎰-l xdy ydx 21; D. ⎰-lydx xdy 21。
10.设2222:(0)S x y z R z ++=≥,1S 为S 在第一卦限中部分,则有 CA.14SS xds xds =⎰⎰⎰⎰ B.14SS yds yds =⎰⎰⎰⎰C.14SS zds zds =⎰⎰⎰⎰ D.14SS xyzds xyzds =⎰⎰⎰⎰二、填空题1. 设L 是以(0, 0), (1, 0), (1, 1), (0, 1)为顶点的正方形边界正向一周,则曲线积分⎰=+-L y dy x eydx )(2-22.S 为球面2222a z y x =++的外侧,则⎰⎰=-+-+-sdxdy y x dzdx x z dydz z y )()()(03.⎰=++-12222y x yx xdyydx =π2-4.曲线积分22()Cx y ds +⎰Ñ,其中C 是圆心在原点,半径为a 的圆周,则积分值为32a π 5.设∑为上半球面)0z z =≥,则曲面积分()222ds y x z ∑++⎰⎰= 32π6. 设曲线C 为圆周221x y +=,则曲线积分()223d Cxy x s +-⎰Ñ 2π .7. 设C 是以O(0,0),A(1,0),B(0,1)为顶点的三角形边界,则曲线积分⎰=+C ds )yx (8. 设∑为上半球面z=,则曲面积分∑的值为 83π。
大学高数下册试题及答案第9章第九章曲线积分与曲面积分作业13对弧长的曲线积分1.计算,其中为直线及抛物线所围成的区域的整个边界.解:可以分解为及2.,其中为星形线在第一象限内的弧.解:为原式3.计算,其中折线ABC,这里A,B,C依次为点.解:4.,其中为螺线上相应于从变到的一段弧.解:为5.计算,其中L:.解:将L参数化,6.计算,其中L为圆周,直线及轴在第一象限内所围成的扇形的整个边界.解:边界曲线需要分段表达,从而需要分段积分从而作业14对坐标的曲线积分1.计算下列第二型曲线积分:(1),其中为按逆时针方向绕椭圆一周;解:为原式(2),其中是从点到点的一段直线;解:是原式(3),其中是圆柱螺线从到的一段弧;解:是原式(4)计算曲线积分,其中为由点A(-1,1)沿抛物线到点O(0,0),再沿某轴到点B(2,0)的弧段.解:由于积分曲线是分段表达的,需要分段积分;原式2.设力的大小等于作用点的横坐标的平方,而方向依轴的负方向,求质量为的质点沿抛物线从点移动到点时,力所作的功.解:3.把对坐标的曲线积分化成对弧长的曲线积分,其中为:(1)在平面内沿直线从点到点;(2)沿抛物线从点到点.解:(1)(2)作业15格林公式及其应用1.填空题(1)设是三顶点(0,0),(3,0),(3,2)的三角形正向边界,12.(2)设曲线是以为顶点的正方形边界,不能直接用格林公式的理由是_所围区域内部有不可道的点_.(3)相应于曲线积分的第一型的曲线积分是.其中为从点(1,1,1)到点(1,2,3)的直线段.2.计算,其中L是沿半圆周从点到点的弧.解:L加上构成区域边界的负向3.计算,其中为椭圆正向一周.解:原式4.计算曲线积分其中为连续函数,是沿圆周按逆时针方向由点到点的一段弧.解:令则,原式5.计算,其中为(1)圆周(按反时针方向);解:,而且原点不在该圆域内部,从而由格林公式,原式(2)闭曲线(按反时针方向).解:,但所围区域内部的原点且仅有该点不满足格林公式条件,从而可作一很小的圆周(也按反时针方向),在圆环域上用格林公式得,原式6.证明下列曲线积分在平面内与路径无关,并计算积分值:(1);解:由于在全平面连续,从而该曲线积分在平面内与路径无关,沿折线积分即可,原式(2);解:由于在全平面连续,从而该曲线积分在平面内与路径无关,沿直线积分也可,原式(3).解:由于在全平面连续,从而该曲线积分在平面内与路径无关,沿折线积分即可,原式7.设在上具有连续导数,计算,其中L为从点到点的直线段.解:由于在右半平面连续,从而该曲线积分右半平面内与路径无关,沿曲线积分即可,原式8.验证下列在整个平面内是某一函数的全微分,并求出它的一个原函数:(1);解:由于在全平面连续,从而该曲线积分在平面内是某一函数的全微分,设这个函数为,则从而,(2);解:由于在全平面连续,从而该曲线积分在平面内是某一函数的全微分,设这个函数为,则原式可取(3)解:可取折线作曲线积分9.设有一变力在坐标轴上的投影为,这变力确定了一个力场,证明质点在此场内移动时,场力所作的功与路径无关.证:,质点在此场内任意曲线移动时,场力所作的功为由于在全平面连续,从而质点在此场内移动时,场力所作的功与路径无关.作业16对面积的曲面积分1.计算下列对面积的曲面积分:(1),其中为锥面被柱面所截得的有限部分;解:为,原式(2),其中为球面.解:为两块,原式2.计算,是平面被圆柱面截出的有限部分.解:为两块,,原式(或由,而积分微元反号推出)3.求球面含在圆柱面内部的那部分面积.解:为两块,原式4.设圆锥面,其质量均匀分布,求它的重心位置.解:设密度为单位1,由对称性可设重点坐标为,故重点坐标为5.求抛物面壳的质量,此壳的密度按规律而变更.解:作业17对坐标的曲面积分1.,其中是柱面被平面及所截得的在第一卦限内的部分前侧.解:原式=2.计算曲面积分,其中为旋转抛物面下侧介于平面及之间的部分.解:原式=3.计算其中是平面所围成的空间区域的整个边界曲面的外侧.解:分片积分。
第十一章 曲线积分与曲面积分试题一.填空题(规范分值3分)11.1.1.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧对x 轴的转动惯量I x =。
ds y x y L),(2μ⎰11.1.2.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧的质心坐标x =;y =。
x =⎰⎰LLds y x ds y x x ),(),(μμ;y =⎰⎰LLdsy x ds y x y ),(),(μμ 11.1.3.1在力),,(z y x F F =的作用下,物体沿曲线L 运动。
用曲线积分表示力对物体所做的功=W 。
d z y x L⋅⎰),,(11.1.4.2 有向曲线L 的方程为⎩⎨⎧≤≤==βαt t y y t x x )()(,其中函数)(),(t y t x 在[]βα,上一阶导数连续,且[][]0)()(22≠'+'t y t x ,又),(),,(y x Q y x P 在曲线L 上连续,则有:[]ds y x Q y x P dy y x Q dx y x P LL⎰⎰+=+βαcos ),(cos ),(),(),(,那么αcos =;βcos =。
αcos =[][]22)()()(t y t x t x '+''βcos =[][]22)()()(t y t x t y '+''11.1.5.1 设L 为xoy 平面内直线a x =上的一段,则曲线积分⎰Ldx y x P ),(=。
011.1.6.2 设L 为xoy 平面内,从点(c,a )到点(c,b )的一线段,则曲线积分⎰+Ldy y x Q dx y x P ),(),(可以化简成定积分:。
dy y Q ba),0(⎰11.1.7.2 第一类曲线积分ds y x L⎰+)(22的积分值为。
曲线积分与曲面积分习题详解1计算下列对弧长的曲线积分: (1)/ = J c 7ydy. 是抛物线y = x 2±.点0(0,0)到 A(l,l)之间的一段弧:解:由于C 由方程y = x 2 (0<x<l )给出,因此/ =+=卜』+ 4耳」1>心2[詁(5俣])•解:C = AB 的参数方程为:其中C 是圆X + y 2 = 1中A(0J)到“5"0-討誇),于是[\ cos & J(-sin &),+ cos ,(3) 切.Cr + y + l)d.其中C 是顶点为0(0,0)/(1・0)及B(0J)的三角形的边界:解:厶是分段光滑的闭曲线,如图9一2所示,根据积分的可加性, 则有(^(x + y + \)c/s=L (x + y + \)ds + J# (x + y + \)cls +1。
(x + y + V)ds ,由于 OA: y = 0 0<x< 1,于是ds = J(—)2+(—)2dx = W+0认=dx , V dxdxL (x + y + l)tZy = £(x + 0 + \)dx =寸,而AB: y = l-x, OSSI,于是 + (-厅dx = dlx ・之间的一段劣弧;ds =[^(x + y + l)cls= [ [x + (\-x) + \]y/2dx = 2y/2 »同理可知BO:x = 0(0<y<l), ds = 1(—)2 + (—)2 Jv = Vo2 + l2c/y = Jv > 则Y ay dyL(x+y + l)〃$= (JO+y + lk/y = [・综上所述df r(x-y + l)J5 = - + 2V2 + - = 3 + 2>/2 ・( 2 2(4)y/x2 + y2ds ,其中C 为圆周x2 + y2 = x :解直接化为左积分.C』勺参数方程为JC =1+J>COS&, y = -sin& ( Q<0<2TT ),2 2 - 2且ds =加⑹ F +[y(e)F〃e=”& •于是(5)[r x\yzds,英中T为折线段ABCD.这里A,3・C\D的坐标依次为(0,0.0), (0,0,2), (1,0,2), (1,2,3):解如图所示,^x2yzcls = \_x2yzds+ \_x2yzJs+ [_・线段殛的参数方程为x = 0,.y = 0,z = 2r(0<r<l),则T份+%+(少= V0:+02 +22Jr = 2r/r,= J 0 • 0 • 2/ • 2clt = 0线段BC 的参数方程为x = /,y = 0,z = 2(0<r<l),则ds = jF+O'+oTud?,故f _Fyzd$ = f ・0・2d/ = 0, J RC - J o线段丽的参数方程为x = l,y = 2/,z = 2 + r (0<r<l),则 ds = Jo, +2, + Fdf = yj5dt , 故J-x 2yzds = f 'l 2-2t (2 + t)-甌=2x/5j ;⑵ +12= |点所以L 疋 gds = |*_x 2 yzcls + [—yzds + J 而yzjds = ->j5 .2 2 2 2(6)f rds,其中「为空间曲线广+ G/>o ).JrX + z =",»解:F 在x,y 平而的投影为:x 2+y 2+(a-x)2=a 2 ,即 2x 2 + y 2-2t/x = 0 ,从而利用椭圆的苓奴方程得F 的参数二x = —a + — acos 0. 2 22设一段曲线y = lnx (0<a<x<b)上任一点处的线密度的大小等于该点横坐标的 平方,求其质量.解 依题意曲线的线密度为p = x 2,故所求质疑为M=\(X 2ds,英中0 <(9 < 2^.由于则ds = y]x ,2 + y t2 +z t2d0 =d&.sin 2 ede = ^=.2V2/ c 2nC :y = \nx (Q<a<x<b)・则C 的参数方程为片=片(0 < < x < b) > y = In x所以M = £—V1 + A -\Z Y = [*(1 + d = *[(1 +戻);一(1 + “2)訂3求八分之一球面x 2 + r + z 2=l(x>0,y>0.z>0)的边界曲线的重心,设曲线的密 度 ° =解 设曲线在xOy^yOz^Ox 坐标平而的弧段分别为厶、L 「厶,曲线的重心坐标为2「xdx _ 2 _ 4 =A/JoTf-x 2=A/=3^'故所求重心坐标为[二.二、学.\37T 3龙 3〃 丿4. 径为川 中心角为加的圆弧C 对于它的对称轴的转动惯応/ (设线密度解:如右图建立坐标系,则I = J c y 2^ •为了便于计算,利用c 的参数方程C :x = Rcost,y = Rsint (-a <t <a).于是I = Jc y 2(^s =「R‘ sin 2 tyj(-Rsinty +(/?cos/)2dr =R 、[a sin 2 tdt = /?'(a-sintzcostz).J-ajv=HS Jv=(订习lx — — \l\ + x 2dx , X由对称性可得重心坐标则曲线的质量为出=j ds诂卩严+o+J 严卜為严习题9・21设L为xOy直线y = b (b为常数),证明J g, y)dy=o。
《曲线积分与曲面积分》测试题一、选择题(共15分,每小题3分)1.设L 为抛物线21y x =-上介于0x =与1x =之间的一段弧,则L xds =⎰( )( A)33112-;(B) 55112- ; (C) 3316- ; (D)5516-2.均匀曲面222z a x y =--的形心坐标为( )( A)1(0,0,)2a ;(B) 1(0,0,)3a ; (C) 1(0,0,)4a ; (D)10,0,5a ⎛⎫ ⎪⎝⎭3.星形线:33cos ,sin (0,02)x a t y a t a t π==>≤≤所围平面图形的面积为( )( A)235a π;(B) 253a π ; (C) 238a π ; (D)283a π 4.设[()]sin ()cos x Lf x e ydx f x ydy --⎰与路径无关,且()f x 有一阶连续导数,(0)0f =,则()f x =( )( A)2x x e e -- ; (B) 2x x e e -- ;(C) 12x x e e -+- ; (D)12x xe e -+- . 5. 设∑为球面222x y z R ++=的内侧,则曲面积分 333x dydz y dzdx z dxdy ∑++=⎰⎰( )( A)54R π-;(B) 54R π ; (C) 5125R π ; (D)5125R π- 二、填空题(共15分,每小题3分)1.设L 为椭圆22143x y +=,其周长为a ,则22(234)L xy x y ds ++=⎰ .2. 设Γ为曲线0cos sin (0)x t t y t t t t z t =⎧⎪=≤≤⎨⎪=⎩,则zds Γ=⎰ .3.设L 为一条不过原点的光滑闭曲线,且原点位于L 内部,其走向为逆时针方向,则曲线积分222L xdy ydx x y -=+⎰__________________. 4.设∑为平面1x y z ++=位于球面2221x y z ++=内的上侧,则曲面积分()()()x y dydz y z dzdx z x dxdy ∑-+-+-=⎰⎰ .5.全微分方程2201xdx ydy xdy ydx x y +++=++的解为 .三、计算积分222dS x y z ∑++⎰⎰,其中∑为界于0z =与(0)z H H =>之间的柱面:222x y R +=。
第十章 曲线积分与曲面积分一.曲线积分的计算 (1)基本计算1.第一类:对弧长线积分的计算(,)Lf x y ds ⎰关键是用曲线L:(),(),x t y t ϕψ=⎧⎨=⎩()t αβ≤≤做变量替换(被积函数,积分变元,积分范围)(,)[(),(,()Lf x y ds f t t βαϕψαβ=<⎰⎰例 L 为圆周221,x y +=则22xy Le ds +=⎰2e π 参数方程,曲线代入解 cos :(02)sin x L y θθπθ=⎧≤≤⎨=⎩ds d θθ==22x y Leds +=⎰202ed e πθπ=⎰例 计算2⎰L x ds ,其中2222:(0)0⎧++=>⎨-=⎩x y z a L a x y . (8分)解 由于 22222222::00⎧⎧++=+=⇒⎨⎨-=-=⎩⎩x y z a x z a L L x y x y 所以L 的参数方程可表示为:(02)sin θθπθ⎧=⎪⎪⎪=≤≤⎨⎪⎪=⎪⎩x L y t z a (3分)θθ==ds ad (2分) 故23222cos 22ππθθ==⎰⎰La a x ds ad(3分) 【例10.22】求⎰,式中L 为圆周22(0)x y ax a +=>解 L 的极坐标方程为:,(),cos 22L ds ad r a θθππθθθθ=⎧-≤≤==⎨=⎩则222cos 2a ad a ππθθ-=⋅=⎰⎰第二类:对坐标的线积分的计算 关键是用曲线L:(),(),x t y t ϕψ=⎧⎨=⎩(:)t αβ→做变量替换(被积函数,积分变元,积分范围)''(,)(,){[(),()]()[(),()]()}LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ+=+⎰⎰例 设L 为抛物线2y x =从点()0,0到()2,4一段弧,则()22Lx y dx -=⎰5615-注意微元,及参数方程的形式【例10.17】 求2L ydx xdy x +⎰,其中L 是曲线ln y x =上从点(1,0)到点(,1)e 的一段弧. 解 由ln y x =得1,ydx dy x e x==,故原式=1121002()|y y ydy e dy y e e +=+=⎰⎰⑵ 基本技巧① 利用对称性简化计算;对弧长的线积分,对称性同二重积分 例 计算3222(),Lx y ds L x y R 其中:++=⎰解:33()LLLx y ds xds y ds =+=0+⎰⎰⎰ 第一个L 关于y 对称,第二个L 关于x 对称【例10.15】 求yL xe ds ⎰,其中L 是由cos (0)sin x a ta y a t =⎧>⎨=⎩所表示的曲线上相应于233t ππ≤≤的一段弧.解 (法一)ds adt ==,故 原式=22sin sin 3333cos |0a ta ta t e adt aeππππ⋅⋅==⎰.(法二)容易看出积分弧段关于y 轴对称,而被积函数是关于变量x 的奇函数,故0y Lxe ds =⎰【例10.18】 求2()Lx y ds +⎰,其中L 为圆周222x y a +=.解 由对称性得0Lxyds =⎰,故22222()(2)()2LLLLx y ds x xy y ds x y ds xyds +=++=++⎰⎰⎰⎰2223022LLa ds a ds a a a ππ=+==⋅=⎰⎰对坐标的线积分,对称性为,当平面曲线L 是分段光滑的,关于x 对称,L 在上半平面与下半平面部分的走向相反时,若P 对y 为偶函数,则,0LPdx =⎰奇函数,则12LL Pdx Pdx =⎰⎰。
曲线积分与曲面积分 例1计算曲线积分⎰ABxydl ,弧AB 为圆周222R y x =+在第二象限的部分。
解:法1取x 为积分变量,积分路径弧AB 是圆周22x R y -=,)0(≤≤-x R ,于是得dx xR R dx y dl 2221-='+=,故232222R xdx R dx xR Rx R x xydl R R AB -==-⋅-=⎰⎰⎰--。
法2 取y 为积分变量,积分路径弧AB 是圆周22y R x --=, )0(R y ≤≤,于是dy yR R dy x dl 2221-='+=,故2)(32222R ydy R dy yR R y R y xydl RRAB-=-=-⋅--=⎰⎰⎰。
法3 将弧AB 化为参数方程 )2(sin cos πθπθθ≤≤ ⎩⎨⎧==R y R x ,θRd dy dx dl =+=22)()(,⎰⎰⎰⎰-===ππππππθθθθθθθθ23232cos cos sin cos sin cos d R d R Rd R R xydl AB2]2cos [3223R R -=-=ππθ。
例2计算⎰Ldl xy ||,L 是圆周222R y x=+的闭路。
解:由对称性,设1L 是第一象限的部分,则32032sin cos 44||1R tdt t R xydl dl xy L L===⎰⎰⎰π例3设L :cos ,=sin ,02=≤≤x a t y a t t π,则第一型曲线积分2L=2⎰ds aπ例4计算⎰++ABCDA y x dydx ||||,ABCDA 是以A(1,0),B(0,1),C(-1,0),D(0,-1)为顶点的正方形。
(1|||:|=+y x ABCDA )解:在弧AB 上,y=1—x,x 从1变到0;在弧BC 上,y=1+x,x 从0变到 —1;在弧CD 上,y=—1—x,x 从—1变到0;在弧DA 上,y=—1+x,x 从0变到1; 于是22)]1([2)]1([)1(2)1(11010011001=+=+--++---+--+++-+-+-=+++=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰---dx dx x x dx x x dx dx x x dxx x dx dx DA CD BC AB ABCDA例5计算⎰+--+Lyx dyy x dx y x 22)()(,其中L 是原点为中心的单位圆,沿逆时针方向。
第十章曲线积分曲面积分练习题A 组一.填空题1. 设L 是 122=+y x 上从)0,1(A 经)1,0(E 到)0,1(-B 的曲线段,则⎰Lydy e 2=2.设⋂MN 是从M(1,3) 沿圆 2)2()2(22=-+-y x 至点 )1,3(N 的半圆,则积分⎰⋂+MNxdy ydx =3. L 是从)6,1(A 沿6=xy 至点)2,3(B 的曲线段,则⎰++Ly x xdy ydx e )( =4. 设L 是从)0,1(A 沿1222=+y x 至点2,0(B )的曲线段,则⎰+Ly x y x dy ye dx xe 222 =5. 设L 是 2x y = 及 1=y 所围成的区域D 的正向边界,则⎰+Ldx y x xy )(33 + dy y x x )(242+ = 6. 设L 是任意简单闭曲线,b a ,为常数,则⎰++L bdy adx )( =7. 设L 是xoy 平面上沿逆时针方向绕行的简单闭曲线,且9)34()2(=++-⎰dy y x dx y x L,则L 所围成的平面区域D 的面积等于8. 常数 k = 时, 曲线积分⎰+Ldy x kxydx 2与路径无关。
9.设是球面 1222=++z y x ,则对面积的曲面积分⎰⎰∑++ds z y x 222 =10.设L 为)0,0(o , )0,1(A 和)1,0(B 为顶点的三角形围成的线, 则对弧长的曲线积分⎰Lds =11. 设L 是从点)1,1(到)3,2(的一条线,则⎰-++Ldy y x dx y x )()(=12. 设L 是圆周 t a x cos =, t a y sin = )20(π≤≤t ,则⎰+LdS y x 322)(=13. 设为曲面2222a z y x =++, 则⎰⎰∑dS z y x 222=二、选择题1.设→→+=j y x Q i y x P A ),(),(,D y x ∈),(且P,Q 在域D 内具有一阶连续偏导数,又L :⋂AB 是D 内任一曲线,则以下四个命题中,错误的是( )A .若⎰+LQdy Pdx 与路径无关,则在D 内必有yPx Q ∂∂≡∂∂ B .若⎰⋅Lds A 与路径无关,则在D 内必有单值函数),(y x u ,使得dy y x Q dx y x P y x du ),(),(),(+=C .若在D 内yPx Q ∂∂≡∂∂,则必有⎰L ds A ·与路径无关。
曲线积分与曲面积分单元练习题一、填空题:1设L为x'+y2=1上点(1,0)到(_1,0)的上半弧段,贝U ]2ds = 2兀;x = 2 cost2.f_ ds = —兀2,其中C是曲线《y = 2sint介于t = 0到t =兀一段;C X + y 8--------- z = t3.L为逆时针方向的圆周:(x -2)2• (y • 3)2=4 ,贝y J ydx_ xdy= _8兀;L4.设C是由x轴、y轴与直线x + y =1围成的区域的正向边界,贝U :,ydx_ xdy =C5.第一类曲面积分dS^的面积;6.设曲面为:x2y2z^a2,则11 (x2y2z2)dS 二4 a4;Z7•设 3 :x2y2z2= a2.则■j':i z2dS = - ~ a4;i J—&格林(Green)公式指出了下列两类积分:「平面上第二类曲线积分和二重积分之间关系。
高斯(Gauss)公式指出了下列两类积分:空间上的第二类曲面积分与三重积分—之间关系。
二、计算题:1.计算.yds,其中L是抛物线y =x2上自点(0, 0)到(1, 1)的一段弧。
L1 2 1 2 于 1 5 5「1解x 1 4 x dx (1 4x )2|0=012 122.计算.xyds,其中L为从(0, 0)到(2, 0)的上半圆弧:x2• y2二2x( y 一0)。
L解jxyds= ((1 +cost)sintdt = 2L 33 .已知平面曲线弧段L是圆x2y^4上从点2,0到0,2的有向弧段,试计算I = L xydx解 I 22cost2sintd 2cost = -8 ^costsin 2tdt =4•计算|二j (x 2 2xy)dx (x 2 y 4)dy ,其中L 为由点0(0,0)到点A(1,1)的曲线JIy = sin — x .2I = j (x 22xy)dx (x 2y 4)dy1 1 二 0x 2dx0(1 y4)dy解法二:根据第二类曲线积分计算。
十 曲线积分与曲面积分习题(一) 对弧长的曲线积分1. 计算ds y x L⎰+)(22,其中L 为圆周t a y t a x sin ,cos == )20(π≤≤t .解32032222202222222cos sin )sin cos ()(a dt a dt t a t a t a t a ds y x Lπππ==++=+⎰⎰⎰.2. 计算ds x L⎰,其中L 为由直线x y =及抛物线2x y =所围成的区域的整个边界.解 )12655(1214121210-+=++=⎰⎰⎰dx x x dx x ds x L. 3.计算⎰Lyds ,其中L 是抛物线x y 42=上从)0,0(O 到)2,1(A 的一段弧.解⎰L y d s =dy y y dy y y ⎰⎰+=+202202421)2(1 )122(34)4(4412202-=++=⎰y d y . 4.计算⎰+Lds y x )(,其中L 为从点)0,0(O 到)1,1(A 的直线段.解⎰+L ds y x )(=23211)(10=++⎰x x . 5.计算⎰L xyzds ,其中L 是曲线2321,232,t z t y t x ===)10(≤≤t 的一段. 解 ⎰Lx y z d s =⎰⎰+=++13102223)1(232)2(121232dt t t t dt t t t t t =143216.6.计算L⎰ ,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限所围成的扇形的整个边界.解L⎰ =⎰1L +⎰2L +⎰3L=dx e dt t a t a edx eax aa x⎰⎰⎰+++++024022222201)sin ()cos (11π=(2)14ae a π+-7.设在xoy 面内有一分布着质量的曲线L ,在点(),x y 处它的线密度为(),x y μ,试用对弧长的曲线积分分别表达(1)这条曲线弧对x 轴,y 轴的转动惯量,x y I I ; (2) 这条曲线弧的质心坐标,x y . 解 (1)⎰=Lx dS yI 2μ ⎰=Ly dS x I 2μ(2)⎰⎰=L L dSy x dS y x x x ),(),(μμ ⎰⎰=LL dSy x dS y x y y ),(),(μμ (二) 对坐标的曲线积分1.计算⎰+Lxdy ydx ,其中L 为圆周t R y t R x sin ,cos ==上对应t 从0到2π的一段弧. 解⎰+Lx d y y d x =0]cos cos )sin (sin [20=+-⎰dt t tR R t R t R π2.计算⎰+Lydx xdy ,其中L 分别为(1)沿抛物线22x y =从)0,0(O 到)2,1(B 的一段; (2)沿从)0,0(O 到)2,1(B 的直线段.; (3)沿封闭曲线OABO ,其中)0,1(A ,)2,1(B .解 (1)⎰=+=122)24(dx x x x I .(2)2)22(1=+=⎰dx x x I .(3)⎰+Lydx xdy =⎰⎰⎰++BOABOA=210(22)0dy x x dx +++=⎰⎰.3.计算⎰-+++Ldz y x zdy xdx )1(,其中Γ是从点)1,1,1(到点)4,3,2(的一段直线.解 直线方程为312111-=-=-z y x ,其参数方程为13,12,1+=+=+=t z t y t x ,t 从0变到1.13])13(3)12(2)1[(1=+++++=⎰dt t t t I .4.计算2()Lxydx x y dy x dz +-+⎰,其中L 是螺旋线bt z t a y t a x ===,sin ,cos 从0=t 到π=t 上的一段.解 dt t b a t a t a t a t a t a t a I ⎰+-+-∙=π22]cos cos )sin cos ()sin (sin cos [)(222b a a +=π.5.设Γ为曲线23,,x t y t z t ===上相应于t 从0变到1的曲线弧.把对坐标的曲线积分Pdx Qdy Rdz Γ++⎰化成对弧长的曲线积分.解 由于)3,2,1()3,2,1(),,(2y x t t dt dz dt dy dt dx ==,故229411c o s y x ++=α,229412cos yx x ++=β,229413cos yx y ++=γ.(cos cos cos )Pdx Qdy Rdz P Q R dS αβγΓΓ++=++⎰⎰=dS yx yR xQ P ⎰Γ++++2294132.(三) 格林公式及应用1.计算⎰-L ydy x dx xy 22,其中L 为圆周222a y x =+,取逆时针方向. 解⎰-Lydy x dx xy22=0)22(=--⎰⎰Ddxdy xy xy2.计算⎰+--Ldy y x dx y x )sin ()(22,其中L 是在圆周22x x y -=上由点)0,0(到点)1,1( 的一段弧.解 y x P -=2,)sin (2y x Q +-= ()122017sin sin 246I x x x x dx =---=-⎰ 3. 计算(1)()xxL ye dx x e dy +++⎰,其中L 为椭圆22221x y a b +=的上半周由点(,0)A a 到(,0)B a -的弧段.解 x ye P +=1,x e x Q +=⎰⎰-=+11L L L I =2aD adxdy dx ab a π--=-⎰⎰⎰4. 计算3222(2cos )(12sin 3)Lxy y x dx y x x y dy -+-+⎰,其中L 为在抛物线22x y π=上由点(0,0)到,12π⎛⎫⎪⎝⎭的一段弧. 解 322cos P xy y x =-,2212sin 3Q y x x y =-+ ⎰⎰⎰--=+211L L L L I =0)4321(00122-+--⎰⎰⎰y y dxdy D π=42π5. 计算⎰+-L y x xdy ydx )(222,其中L 为圆周2)1(22=+-y x ,L 的方向为逆时针方向. 解 )(222y x y P +=,)(222y x x Q +-=,当022≠+y x 时, yPy x y x x Q ∂∂=+-=∂∂)(22222 L 所围区域为D ,由于D ∈)0,0(,故不能直接用格林公式.选适当小的0>r ,作位于D 内的小圆周222:r y x l =+.记L 与l 所围区域为1D ,在1D 上应用格林公式,得⎰+-L y x xdyydx )(222-⎰+-l y x xdy ydx )(222=0其中l 取逆时针方向.所以⎰+-L y x xdyydx )(222=⎰+-l y x xdy ydx )(222=πθθπ=--⎰20222222cos sin r r r . 6. 计算星形线t a y t a x 33sin ,cos ==,)20(π≤≤t 所围成区域的面积.解 ⎰-=L ydx xdy A 21=2024224283)cos sin 3sin cos 3(a dt t t a t t a ππ=+⎰7. 证明曲线积分(2,1)423(1,0)(2)(4)xy y dx x xy dy -+-⎰在整个xoy 面内与路径无关,并计算积分值.解 (1)42y xy P -=,324xy x Q -=xQy x y P ∂∂=-=∂∂342在整个xoy 面上成立 故曲线积分(2,1)423(1,0)(2)(4)xy y dx x xy dy -+-⎰在整个xoy 面内与路径无关.(2)⎰⎰+=21L L I =8.验证dy x xydx 22+在整个xoy 平面内是某一函数),(y x u 的全微分,并求这样的一个),(y x u .解 (1)验证略;(2)y x dy x y x u yABOA2020),(=+=+=⎰⎰⎰9.试用曲线积分求dy y x dx y x )cos ()sin 2(++的原函数. 解 y x P sin 2+=,y x Q cos =,xQ y y P ∂∂==∂∂cos 在整个xoy 面上成立 所以 ⎰++=),()0,0()cos ()sin 2(),(y x dy y x dx y x y x u=y x x ydy x xdx yxsin cos 220+=+⎰⎰+C.(四) 对面积的曲面积分1.计算⎰⎰∑+dS y x)(22,其中∑是锥面22y x z +=及平面1=z 所围成的区域的整个边界曲面. 解⎰⎰∑+dS y x)(22=⎰⎰⎰⎰∑∑+21=⎰⎰⎰⎰+++++xyxyD D y x dxdy y x dxdy z z y x )(1)(222222 ⎰⎰++=xyD dxdy y x )()12(22=π212+. 2. 计算⎰⎰∑++dS zy x )223(,其中∑为平面1432=++z y x 在第一卦限的部分.解 d x d y y x y x I xyD ⎰⎰-+-+--++=22)34()2(1))321(223(, =⎰⎰⎰⎰-+=+x D dy y dx dxdy y xy 23302)265(361)265(361 =614)42741549(361202=+-⎰dx x x . (x y x D xy 2330,20:-<<<<) 3.计算⎰⎰∑dS z 2,其中∑为球面2222a z y x =++. 解⎰⎰∑dS z 2=⎰⎰⎰⎰--=++--xyxyD D y x dxdy y x a a dxdy z z y x a2222222221)(2=42022342a d a d a aπρρρθπ=-⎰⎰4.计算⎰⎰∑++dS z y x )(,∑是球面0,222≥=++z a z y x .有问题 解 ⎰⎰----++=xyD dxdy y x a y x a y x I 222222)(=⎰⎰⎰⎰--+--+xyxyD D dxdy y x a dxdy y x a y x )()(222222 =πρρρθπ2)(002220=-+⎰⎰ad a d 5.求抛物面壳221()(01)2z x y z =+≤≤的质量,此壳的面密度为z μ=. 解 ⎰⎰∑=zdS M =dxdy y x y x xyD 22221)(21+++⎰⎰=2012d d πρ⎰(五) 对坐标的曲面积分1.计算⎰⎰∑zdxdy y x22,其中∑是球面2222R z y x =++的下半部分的下侧.解⎰⎰∑zdxdy y x22=dxdy y x R y x xyD ⎰⎰--2222=24220cos sin Rd πθρθρ⎰⎰ =72105R π2.计算⎰⎰∑++yzdzdx xydydzxzdxdy ,其中∑是平面1,0,0,0=++===z y x z y x 所围成的空间区域的整个边界曲面的外侧. 解 4321∑+∑+∑+∑=∑0321===⎰⎰⎰⎰⎰⎰∑∑∑⎰⎰⎰⎰--=++∑xyD dxdy y x x yzdzdx xydydz xzdxdy )1(34=dy xy x x dx x⎰⎰---10102)(3=85. 3.计算⎰⎰∑++=dxdy z h dxdz y g dydz x f I )()()(,其中h g f ,,为已知连续函数,∑为平行六面体c z b y a x ≤≤≤≤≤≤Ω0,0,0:表面的外侧. 解 654321∑+∑+∑+∑+∑+∑=∑⎰⎰⎰⎰⎰⎰+-==∑yzyzD D dydz a f dydz f dydz x f I )()0()(1=bc f a f )]0()([-⎰⎰⎰⎰⎰⎰+-==∑yzyzD D dxdz b g dxdz g dxdz y g I )()0()(2=ac g b g )]0()([-ab h c h I )]0()([3-=所以321I I I I ++==ab h c h ac g b g bc f a f )]0()([)]0()([)]0()([-+-+-. 4.计算⎰⎰∑++dxdy z dzdx y dydz x 222,其中∑为半球面222y x a z --=的上侧.解⎰⎰⎰⎰⎰⎰∑∑∑+=21222dydz x dydz x dydz x=0)()(222222=-----⎰⎰⎰⎰dydz z y a dydz z y a yzyzD D 同理:02=⎰⎰∑dzdx y 4202222222)()(a d a d dxdy y x a dxdy z aD xyπρρρθπ=-=--=⎰⎰⎰⎰⎰⎰∑故⎰⎰∑++dxdy z dzdx y dydz x 222=42a π. 5.计算⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是柱面122=+y x 被0=z 及3=z 所截得的在第一卦限内的部分的前侧. 解⎰⎰∑=0zdxdy⎰⎰⎰⎰⎰⎰-=-=∑1032211dz y dy dydz y xdydz yzDπθθθθππ43)2cos 1(23cos 320202=+==⎰⎰d d同理:π43=⎰⎰∑ydzdx 故⎰⎰∑++zdxdy ydzdx xdydz =π23. 6.设∑为平面x z a +=在柱面222x y a +=内那一部分的上侧,下面两个积分的解法是否正确?如果不对,给出正确解法. (1)3()()x z dS a dS a a ∑∑+==⨯∑=⎰⎰⎰⎰的面积; (2)3()()x z dxdy a dxdy a a ∑∑+==⨯∑=⎰⎰⎰⎰的面积. 解 (1)正确;(2)错误.正确解法是:()x z dxdy a dxdy ∑∑+=⎰⎰⎰⎰=3adxdy a xyD π=⎰⎰.(六) 高斯公式利用高斯公式计算: 1.计算⎰⎰∑++dxdy z dzdx y dydz x 333,其中∑为球面2222a z y x=++的内侧.解 2223()I x y z dv Ω=-++⎰⎰⎰2403sin Rd d r dr ππθϕϕ=-⎰⎰⎰5125R π=- 2.计算⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是曲面22y x z +=在第一卦限中10≤≤z 部分的下侧.解 补充曲面:)0,0,1(,1:221≥≥≤+=∑y x y x z ,取上侧; )1,10(,0:22≤≤≤≤=∑z x x y ,取左侧;)1,10(,0:23≤≤≤≤=∑z y y x ,取后侧.∑,1∑,2∑和3∑构成闭曲面,所围的空间闭区域记为Ω,由高斯公式,得⎰⎰∑++zdxdy ydzdx xdydz =⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑+∑+∑+∑---++321zdxdy ydzdx xdydz=003+++⎰⎰⎰⎰⎰⎰⎰ΩzxxyD D dzdx dxdy dv=ππρρθρπ=+⎰⎰⎰43110202dz d d .3.计算⎰⎰∑+++-dxdy xz y dzdx x dydz z x y )()(22,∑为正方体Ω的表面并取外侧,其中 {(,,)|0,0,0}x y z x a y a z a Ω=≤≤≤≤≤≤.解 ()I y x dv Ω=+⎰⎰⎰=400)(a dz y x dy dx aaa=+⎰⎰⎰ 4.计算⎰⎰∑++dS z y x )cos cos cos (222γβα,其中∑是由222z y x =+及)0(>=h h z 所围成的闭曲面的外侧,γβαcos ,cos ,cos 是此曲面的外法线的方向余弦. 解 2()2()2I x y z d x d y d z x y d x d y d z z d x d y d zΩΩΩ=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰=2220()xyxyh D D dxdy zdz h x y dxdy +=--⎰⎰⎰⎰=412h π.(七) 斯托克斯公式1.计算⎰-+-++Ldz z y dy z x dx z y )()()2(,其中L 为平面1=++z y x 与各坐标面的交线,取逆时针方向为正向. 解 由斯托克斯公式,得⎰-+-++Ldz z y dy z x dx z y )()()2(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =⎰⎰∑-+dxdy dzdx dydz 2=⎰⎰⎰⎰⎰⎰-+=xyzxyzD D D dxdy dzdx dydz 2=1. 2.计算⎰-+-+-Ldz x y dy z x dx y z )()()(,其中L 是从)0,0,(a 经)0,,0(a 和),0,0(a 回到)0,0,(a 的三角形.解 由斯托克斯公式,得⎰-+-+-Ldz x y dy z x dx y z )()()(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =2242222a dxdy dxdy dydz dxdy dydz xyxyyzD D D ==+=+⎰⎰⎰⎰⎰⎰⎰⎰∑. (八) 曲线积分与曲面积分自测题1.计算曲线积分 (1)ds y x L⎰+22,其中L 为圆周ax y x =+22;解 :cos (-)22L r a ππθθ=≤≤)d s d d a θθθ==cos r a θ==ds y x L⎰+22=222cos 2a ad a ππθθ-=⎰ .(2)⎰Lzds ,其中Γ为曲线)0(,sin ,cos 0t t t z t t y t t x ≤≤===;解d s t d t=⎰Lz d s=0322(2)3t t +-=⎰ (3)⎰+-Lxdy dx y a )2(,其中L 为摆线)cos 1(),sin (t a y t t a x -=-=上对应t 从0到π2的一段弧;解⎰+-Lx d y dx y a )2(=20{[(2(1cos ))](1cos )(sin )sin }a a t a t a t t a t dt π---+-⎰=2220sin 2at tdt a ππ=-⎰. (4)⎰Γ-+-dz x yzdy dx z y 2222)(,其中Γ是曲线32,,t z t y t x ===上由01=t 到12=t 的一段弧;解⎰Γ-+-dz x yzdy dx z y2222)(=14623220[()1223]t t t t t t t dt -+-⎰=16401(3)35t t dt -=⎰(5)⎰-+-Lx x dyy e dx y y e )2cos ()2sin (,其中L为上半圆周0,)(222≥=+-y a y a x 沿逆时针方向;解 补充积分路径1:0L y =,x 从0到2a. sin 2,cos 2xxP e y y Q e yy =-=-11(s i n 2)(c o s 2)xx LL L L ey y dx e y dy +-+-=-⎰⎰⎰=220()(sin 020)0ax D Q Pdxdy e dx a x y π∂∂---+=∂∂⎰⎰⎰2.计算曲面积分 (1)⎰⎰∑++222z y x dS ,其中∑是介于平面0=z 及H z =之间的圆柱面222R y x =+; 解x =,dS ==⎰⎰∑++222z y x dS=12∑∑+⎰⎰⎰⎰=yzD+yzD=221yzD R z =+⎰⎰=2arctanHR π. (2) ⎰⎰∑-+-+-dxdy y x dzdx x z dydz z y )()()(222,其中∑为锥面)0(22h z y x z ≤≤+=的外侧;解 11I ∑+∑∑=-⎰⎰⎰⎰=()P Q Rdxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰2()xyD x y dxdy --⎰⎰ =44044h h ππ-=-.(3)⎰⎰∑++zdxdy ydzdx xdydz ,其中∑为半球面22y x R z --=的上侧;解11I ∑+∑∑=-⎰⎰⎰⎰=()P Q R dxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰0xyD dxdy -⎰⎰ =3302dv R πΩ-=⎰⎰⎰.(4)⎰⎰∑++++3222)(z y x zdxdyydzdx xdydz ,其中∑为曲面)0(9)1(16)2(5122≥-+-=-z y x z 的上侧;解 0I = (利用高斯公式) (5) ⎰⎰∑xyzdxdy ,其中∑为球面)0,0(1222≥≥=++y x z y x 外侧. 解⎰⎰∑xyzdxdy =12xyzdxdy xyzdxdy ∑∑+⎰⎰⎰⎰=12022cos sin xyD d r r πθθθ=⎰⎰⎰⎰=215. 3.证明:22yx ydyxdx ++在整个xoy 平面除去y 的负半轴及原点的区域G 内是某个二元函数的全微分,并求出一个这样的二元函数.解 在整个xoy 平面除去y 的负半轴及原点的区域G 是单连通域.在G 内,222()Q xy Px x y y ∂-∂==∂+∂, 所以存在(,)u x y ,使22xdx ydydu x y+=+. 取积分路径:(1,0)(,0)(,)x x y →→(,)22222(1,0)10(,)x y yx xdx ydy x y u x y dx dy x y x x y +==+++⎰⎰⎰=221ln()2x y +. 4.计算⎰Γ-+-++dz x y dy z x dx z y )()()2(,其中Γ为平面1=++z y x 与各坐标面的交线,从z 轴正向看取逆时针方向. 解 由斯托克斯公式,得⎰-+-++Ldz z y dy z x dx z y )()()2(=()()()R Q P R Q Pdydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =⎰⎰∑-+dxdy dzdx dydz 2=⎰⎰⎰⎰⎰⎰-+=xyzxyzD D D dxdy dzdx dydz 2=1.5.求均匀曲面222y x a z --=的质心的坐标.解 设面密度为ρ,重心(,,)x y z 由对称性:0x y ==2200xyaD M dS πρρ∑===⎰⎰⎰=22a πρ2112xyD z zdS Ma ρπ∑==⎰⎰=2a 故重心的坐标为(0,0,)2a .。
第十章 曲线积分与曲面积分(A)1.计算()⎰+Ldx y x ,其中L 为连接()0,1及()1,0两点的连直线段。
2.计算⎰+Lds y x 22,其中L 为圆周ax y x =+22。
3.计算()⎰+Lds y x 22,其中L 为曲线()t t t a x sin cos +=,()t t t a y cos sin -=,()π20≤≤t 。
4.计算⎰+Ly x ds e22,其中L 为圆周222a y x =+,直线x y =及x 轴在第一角限内所围成的扇形的整个边界。
5.计算⎰⎪⎪⎭⎫ ⎝⎛+L ds y x 3434,其中L 为内摆线t a x 3cos =,t a y 3sin =⎪⎭⎫ ⎝⎛≤≤20πt 在第一象限内的一段弧。
6.计算⎰+Lds yx z 222,其中L 为螺线t a x cos =,t a y sin =,at z =()π20≤≤t 。
7.计算⎰Lxydx ,其中L 为抛物线x y =2上从点()1,1-A 到点()1,1B 的一段弧。
8.计算⎰-+Lydz x dy zy dx x 2233,其中L 是从点()1,2,3A 到点()0,0,0B 的直线段AB 。
9.计算()⎰-+++Ldz y x ydy xdx 1,其中L 是从点()1,1,1到点()4,3,2的一段直线。
10.计算()()⎰---Ldy y a dx y a 2,其中L 为摆线()t t a x sin -=,()t a y cos 1-=的一拱(对应于由t 从0变到π2的一段弧):11.计算()()⎰-++Ldy x y dx y x ,其中L 是:1)抛物线x y =2上从点()1,1到点()2,4的一段弧;2)曲线122++=t t x ,12+=t y 从点()1,1到()2,4的一段弧。
12.把对坐标的曲线积分()()⎰+Ldy y x Q dx y x P ,,化成对弧和的曲经积分,其中L 为:1)在xoy 平面内沿直线从点()0,0到()4,3; 2)沿抛物线2x y =从点()0,0到点()2,4; 3)沿上半圆周x y x 22=+2从点()0,0到点()1,1。
13.计算()()⎰-+-Lx xdy mx y e dx my y ecos sin 其中L 为()t t a x sin -=,()t a y cos 1-=,π≤≤t 0,且t 从大的方向为积分路径的方向。
14.确定λ的值,使曲线积分()()⎰-++-βαλλdy y y x dx xy x4214564与积分路径无关,并求()0,0A ,()2,1B 时的积分值。
15.计算积分()()⎰++-Ldy y x dx x xy 222,其中L 是由抛物线2x y =和xy =2所围成区域的正向边界曲线,并验证格林公式的正确性。
16.利用曲线积分求星形线t a x 3cos =,t a y 3sin =所围成的图形的面积。
17.证明曲线积分()()()()⎰-+-4,32,12232366dx xy y x dx y xy在整个xoy 平面内与路径无关,并计算积分值。
18.利用格林公式计算曲线积分()()⎰-+-+Lx x dy ye x x dx e y x xy x xy2sin sin 2cos 222,其中L 为正向星形线323232ay x =+()0>a 。
19.利用格林公式,计算曲线积分()()⎰-+++-Ldy x y dx y x 63542,其中L 为三顶点分别为()0,0、()0,3和()2,3的三角形正向边界。
20.验证下列()()dy y x Q dx y x P ,,+在整个xoy 平面内是某函数()y x u ,的全微分,并求这样的一个()y x u ,,()()dy ye y x x dx xy y x y 128832322++++。
21.计算曲面积分()⎰⎰∑+dx y x 22,其中∑为抛物面()222y x z +-=在xoy 平面上方的部分。
22.计算面面积分()⎰⎰∑+--ds z x x xy 222,其中∑为平面和三坐标闰面所围立体的整个表面。
24.求抛物面壳()2221y x z +=()10≤≤z 的质量,壳的度为z t =。
25.求平面x z =介于平面1=+y x ,0=y 和0=x 之间部分的重心坐标。
26.当∑为xoy 平面内的一个闭区域时,曲面积分()⎰⎰∑dxdy z y x R ,,与二重积分有什么关系?27.计算曲面积分⎰⎰∑++ydzdx xdydz zdxdy 其中∑为柱面122=+y x 被平面0=z 及3=z 所截的在第一卦限部分的前侧。
28.计算⎰⎰∑++dxdy z dxdz y dydz x 222式中∑为球壳()()22b y a x -+-()22R c z =-+的外表面。
29.反对坐标的曲面积分化成对面积的曲面积()()()⎰⎰∑++dxdy z y x R dzdx z y x Q dydz z y x P ,,,,,,化成对面积的曲面积分,其中∑是平面63223=++z y x 在第一卦限的部分的上侧。
30.利用高斯公式计算曲面积:1)⎰⎰∑++dxdy z dzdx y dydz x 222,其中∑为平面0=x ,0=y ,0=z ,a x =,a y =,a z =所围成的立体的表面和外侧。
2)()()⎰⎰∑-+-xdydz z y dxdy y x ,其中∑为柱面122=+y x 与平面0=z ,3=z 所围立体的外表面。
31.计算向理α穿过曲面∑流向指定侧的通量:1)()k xz j y x i z x222-+-=α,∑为立体a x ≤≤0,a y ≤≤0,a z ≤≤0,流向外侧;2)()()()k y x z j x z y i z y x-+-++-++-=α,∑为椭球面1222222=++c z b y a x ,流向外侧。
32.求向理场()()k xz j xy i a xy2cos cos ++=α的散度。
33.利用斯托克斯公式计算曲经积分⎰Γ++xdz zdy ydx 其中Γ为圆周,2222a z y x =++,0=++z y x ,若从x 轴正向看去,这圆周取逆时针方向。
34.证明⎰Γ=++02xzdz xydy dx y ,其中Γ为圆柱面y y x 222=+与z y =的交线。
35.求向量场()()()k xy j yz x i y x a 233-++-=,其中Γ为圆周222y x z +-=,0=z 。
36.求向量场()()j y x z i y zcos sin --+=α的旋度。
37.计算()()()⎰Γ-+-+-dz y x dy x z dx z y222222,其中Γ为用平面23=++z y x 切立方体a x ≤≤0,a y ≤≤0,a x ≤≤0的表面所得切痕,若从ox 轴的下向看去与逆时针方向。
(B)1.计算⎰Lyds ,其中L 为抛物线px y 22=由()0,0到()00,y x 的一段。
2.计算⎰Lds y 2,其中L 为摆线()t t a x sin -=,()t r a y cos -=一拱()π20≤≤t 。
3.求半径为a ,中心角为24的均匀圆弧(线心度1=ρ)的重心。
4.计算⎰Lzds ,其中L 为螺线t t x cos =,t t y sin =,t z =()π20≤≤t 。
5.计算⎰++Lds zy x 2221,其中L 为空间曲线t x t cos ρ=,t y tsin ρ=,t z ρ=上相应于t 从0变到2的这段弧。
6.设螺旋线弹簧一圈的方程为t a x cos =,t a y sin =,kt z =()π20≤≤t ,它的线心度为()222,,z y x yz y x ++=ρ,求:1)它关于z 轴的转动惯量z I ; 2)它的垂心。
7.设L 为曲线t x =,2t y =,3t z =上相应于t 从0变到1的曲线弧,把对坐标的曲线积分⎰++LRdz Qdy Pdx 化成对弧长的曲线积分。
8.计算()()⎰+--+Ly x dy y x dx y x 22,其中L 为圆周222a y x =+(按逆时针方向绕行)。
9.计算⎰++Lxdz zdy ydx ,其中L 为曲线t a x cos =,t a y sin =,bt z =,从0=t 到π2=t 的一段。
10.计算()()⎰-++Ldy y x dx y x 2222,其中L 为||1x y -=()20≤≤x 方向为x增大的方向。
11.验证曲线积分()()()()⎰-++-1,20,1222dy y x e x dx y xey y与路径无关并计算积分值。
12.证明当路径不过原点时,曲线积分()()⎰++2,21,122yx ydyxdx 与路径无并,并计算积分值。
13.利用曲线积分求椭圆12222=+by a x 的面积。
14.利用格林公式计算曲线积分()()⎰+--Ldy y x dx y x 22sin ,其中L 是圆周22x x y -=上由点()0,0到点()1,1的一段弧。
15.利用曲线积分,求笛卡尔叶形线axy y x 333=+()0>a 的面积。
16.计算曲线积分()⎰+-L y x xdy ydx 222,其中L 圆周()2122=+-y x ,L 的方向为逆时针方向。
17.计算曲面积分⎰⎰∑zds 3,其中∑为抛物面()222y x z +-=在xoy 平面上的部分。
18.计算()⎰⎰∑++ds zx yz xy ,其中∑是锥面22y x z +=被柱面axy x 222=+所截得的有限部分。
19.求面心度为0ρ的均匀半球壳2222a z y x =++()0≥z 对于z 轴的转动惯量。
20.求均匀的曲面22y x z +=被曲面ax y x =+22所割下部分的重心的坐标。
21.计算曲面积分()⎰⎰=++=2222,,a z y x ds z y x f I ,其中()⎪⎩⎪⎨⎧+<+≥+=222222,0,,,yx z yx z y x z y x f 。
22.计算⎰⎰∑++yzdzdx xydydz xzdxdy ,其中∑是平面0=x ,0=y ,0=z ,1=++z y x 所围成的空间区域的整个边界边界曲面的外例。
23.计算dxdy z dxdz y dydz x 111++⎰⎰∑,其中∑为椭球面1222222=++c z b y a x 。
24.计算()()()⎰⎰∑-+-+-dxdyy x dxdy x z dydz z y ,式中∑为圆锥面2=+z y x 22()h z ≤≤0的外表面。