高考数学二轮复习专题三数列与不等式第1讲等差数列与等比数列课件
- 格式:ppt
- 大小:2.50 MB
- 文档页数:39
专题三 数列第1讲 等差数列与等比数列一、选择题1.(2022·云南昆明一中第六次考前强化)已知等差数列{a n }的前n 项和为S n ,若a 3+a 5=8,则S 7=( )A .28B .32C .56D .24 解析:S 7=7×(a 1+a 7)2=7×(a 3+a 5)2=28.故选A.答案:A2.等比数列{a n }的前n 项和为S n ,若2S 4=S 5+S 6,则数列{a n }的公比q 的值为( )A .-2或1B .-1或2C .-2D .1解析:法一:若q =1, 则S 4=4a 1,S 5=5a 1,S 6=6a 1, 明显不满足2S 4=S 5+S 6,故A 、D 错. 若q =-1,则S 4=S 6=0,S 5=a 5≠0, 不满足条件,故B 错,因此选C. 法二:经检验q =1不适合, 则由2S 4=S 5+S 6,得2(1-q 4)=1-q 5+1-q 6,化简得q 2+q -2=0,解得q =1(舍去),q =-2. 答案:C3.(2022·吉林长春质量检测)设等差数列{a n }的前n 项和为S n ,a 1>0且a 6a 5=911,则当S n 取最大值时,n 的值为( )A .9B .10C .11D .12解析:由题意,不妨设a 6=9t ,a 5=11t ,则公差d =-2t ,其中t >0,因此a 10=t ,a 11=-t ,即当n =10时,S n 取得最大值.答案:B4.(2022·安徽六安一中综合训练)在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m 的值为( )(导学号 55460115)A .4B .5C .6D .7解析:由等比数列的性质可知a m +1·a m -1=a 2m =2a m (m ≥2),∴a m =2,即数列{a n }为常数列,a n =2,∴T 2m -1=22m -1=512=29,即2m -1=9,所以m =5. 答案:B5.(2022·辽宁东北育才学校五模)已知等比数列{a n }的各项都是正数,且3a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( )(导学号 55460116) A .6 B .7 C .8 D .9解析:∴3a 1,12a 3,2a 2成等差数列,∴a 3=3a 1+2a 2,∴q 2-2q -3=0,∴q =3或q =-1(舍去). ∴a 8+a 9a 6+a 7=a 1q 7+a 1q 8a 1q 5+a 1q 6=q 2+q 31+q =q 2=32=9. 答案:D 二、填空题6.各项均不为零的等差数列{a n }中,a 1=2,若a 2n -a n -1-a n +1=0(n ∈N *,n≥2),则S 2 016=________.解析:由于a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),即a 2n -2a n =0,∴a n =2,n ≥2,又a 1=2,∴a n =2,n ∈N *,故S 2 016=4 032.答案:4 0327.(2022·浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:∵a n +1=2S n +1,∴S n +1-S n =2S n +1, ∴S n +1=3S n +1,∴S n +1+12=3⎝ ⎛⎭⎪⎫S n +12,∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列, ∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1,∴S 5+12=⎝ ⎛⎭⎪⎫S 1+12×34=32×34=2432,∴S 5=121. 答案:1 1218.(2022·广东3月测试)已知数列{a n }的各项均为正数,S n 为其前n 项和,且对任意n ∈N *,均有a n ,S n ,a 2n 成等差数列,则a n =________.解析:∵a n ,S n ,a 2n 成等差数列,∴2S n =a n +a 2n .当n =1时,2a 1=2S 1=a 1+a 21. 又a 1>0,∴a 1=1.当n ≥2时,2a n =2(S n -S n -1)=a n +a 2n -a n -1-a 2n -1,∴(a 2n -a 2n -1)-(a n +a n -1)=0,∴(a n +a n -1)(a n -a n -1)-(a n +a n -1)=0, 又a n +a n -1>0,∴a n -a n -1=1,∴{a n }是以1为首项,1为公差的等差数列, ∴a n =n (n ∈N *). 答案:n 三、解答题9.已知等差数列{a n }满足a 3=2,前3项和S 3=92.(导学号 55460117) (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得 a 1+2d =2,3a 1+3×22d =92,化简得a 1+2d =2,a 1+d =32,解得a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8.设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2, 故{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n -1.10.(2021·广东卷)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1. (导学号 55460118) (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列; (3)求数列{a n }的通项公式.(1)解:当n =2时,4S 4+5S 2=8S 3+S 1,即4(a 1+a 2+a 3+a 4)+5(a 1+a 2)=8(a 1+a 2+a 3)+a 1, 整理得a 4=4a 3-a 24,又a 2=32,a 3=54,所以a 4=78.(2)证明:当n ≥2时,有4S n +2+5S n =8S n +1+S n -1, 即4S n +2+4S n +S n =4S n +1+4S n +1+S n -1, ∴4(S n +2-S n +1)=4(S n +1-S n )-(S n -S n -1), 即a n +2=a n +1-14a n (n ≥2).经检验,当n =1时,上式成立.∵a n +2-12a n +1a n +1-12a n =⎝ ⎛⎭⎪⎫a n +1-14a n -12a n +1a n +1-12a n =12⎝ ⎛⎭⎪⎫a n +1-12a n a n +1-12a n=12为常数,且a 2-12a 1=1,∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以1为首项,12为公比的等比数列.(3)解:由(2)知,a n +1-12a n =12n -1(n ∈N *),等式两边同乘2n ,得2n a n +1-2n -1a n =2(n ∈N *). 又20a 1=1,∴数列{2n -1a n }是以1为首项,2为公差的等差数列. ∴2n -1a n =2n -1, 即a n =2n -12n -1(n ∈N *).则数列{a n }的通项公式为a n =2n -12n -1(n ∈N *).11.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2(n ∈N *).(导学号 55460119)(1)求证:数列{a n }是等差数列;(2)设b n =1S n ,T n =b 1+b 2+…+b n ,求T n .(1)证明:S n =a n (a n +1)2(n ∈N *),①S n -1=a n -1(a n -1+1)2(n ≥2).②①-②得:a n =a 2n +a n -a 2n -1-a n -12(n ≥2),整理得:(a n +a n -1)(a n -a n -1)=(a n +a n -1)(n ≥2). ∵数列{a n }的各项均为正数, ∴a n +a n -1≠0, ∴a n -a n -1=1(n ≥2). 当n =1时,a 1=1,∴数列{a n }是首项为1,公差为1的等差数列. (2)解:由(1)得S n =n 2+n2,∴b n =2n 2+n =2n (n +1)=2⎝ ⎛⎭⎪⎪⎫1n -1n +1, ∴T n =2⎣⎢⎡⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1.。
等差数列与等比数列课件一、引言数学中的数列是一种特殊的数学对象,通过一定的规则和模式,将一系列的数字按照一定的顺序排列起来。
其中,等差数列和等比数列是最常见、最重要的两种数列。
本次课件将重点讲解等差数列和等比数列的定义、性质以及求解方法,帮助同学们更好地理解和掌握这两种数列。
二、等差数列1. 定义等差数列是指数列中的每一项与其前一项之差相等的数列。
设等差数列的首项为a1,公差为d,数列的通项公式为an=a1+(n-1)d。
其中,n表示数列的项数。
2. 性质(1)公差的性质:等差数列中,任意两项的差值都等于公差d。
(2)前n项和的计算公式:等差数列的前n项和Sn可通过公式Sn=n/2*(a1+an)来计算。
(3)等差数列的乘法形式:如果等差数列的公差d=1,那么该等差数列可以转化成乘法形式的等差数列。
3. 求解方法(1)已知首项和公差:根据等差数列的通项公式an=a1+(n-1)d,可以直接计算出数列的任意项。
(2)已知首项和末项:根据等差数列的性质,可利用an=a1+(n-1)d和an=a1+(n-m)d的关系求解出公差,从而得到数列。
三、等比数列1. 定义等比数列是指数列中的每一项与其前一项的比相等的数列。
设等比数列的首项为a1,公比为r,数列的通项公式为an=a1*r^(n-1)。
其中,n表示数列的项数。
2. 性质(1)公比的性质:等比数列中,任意两项的比值都等于公比r。
(2)前n项和的计算公式:等比数列的前n项和Sn可通过公式Sn=a1*(1-r^n)/(1-r)来计算。
(3)等比数列的加法形式:如果等比数列的公比r=1,那么该等比数列可以转化成加法形式的等比数列。
3. 求解方法(1)已知首项和公比:根据等比数列的通项公式an=a1*r^(n-1),可以直接计算出数列的任意项。
(2)已知首项和末项:根据等比数列的性质,可利用an=a1*r^(n-1)和an=a1*r^(n-m)的关系求解出公比,从而得到数列。