第一章_控制系统导论
- 格式:pdf
- 大小:523.99 KB
- 文档页数:40
自动控制原理简明教材胡寿松图书目录前言第一章控制系统导论1-1 自动控制的基本原理1-2 自动控制系统示例1-3 自动控制系统的分类1-4 自动控制系统的基本要求习题第二章控制系统的数学模型2-1 傅里叶变换与拉普拉斯变换2-2 控制系统的时域数学模型2-3 控制系统的复数域数学模型2-4 控制系统的结构图与信号流图2-5 数学模型的实验测定法习题第三章线性系统的时域分析法3-1 系统的时域性能指标3-2 一阶系统的时域分析3-3 二阶系统的时域分析3-4 高阶系统的时域分析3-5 线性系统的稳定性分析3-6 线性系统的稳态误差计算习题第四章线性系统的根轨迹法4-1 根轨迹法的基本概念4-2 常规根轨迹的绘制法则4-3 广义根轨迹4-4 系统性能的分析习题第五章线性系统的频域分析法5-1 频率特性5-2 典型环节与开环系统频率特性5-3 频域稳定判据5-4 频域稳定裕度5-5 闭环系统的频域性能指标习题第六章线性系统的校正方法6-1 系统的设计与校正问题6-2 常用校正装置及其特性6-3 串联校正6-4 反馈校正习题第七章线性离散系统的分析7-1 离散系统的基本概念7-2 信号的采样与保持7-3 z变换理论7-4 离散系统的数学模型7-5 离散系统的稳定性与稳态误差7-6 离散系统的动态性能分析习题第八章非线性控制系统分析8-1 非线性控制系统概述8-2 常见非线性特性及其对系统运动的影响8-3 描述函数法习题。
第一章飞行控制系统概述1.1飞行器自动控制1.1.1飞行控制系统的功能随着飞行任务的不断复杂化,对飞机性能的要求越来越高,不仅要求飞行距离远(例如运输机),高度高(高空侦察机),而且还要求飞机有良好的机动性(例如战斗机)。
为了减轻驾驶员在长途飞行中的疲劳,或使驾驶员集中精力战斗,希望用自动控制系统代替驾驶员控制飞行,并能改善飞机的飞行性能。
这种系统就是现代飞机上安装的飞行自动控制系统。
飞行控制系统的功能归结起来有两点:1)实现飞机的自动飞行;2)改善飞机的飞行性能。
飞机的自动飞行控制系统在无人参与的情况下,自动操纵飞机按规定的姿态和航迹飞行,通常可实现对飞机的三轴姿态角和飞机三个方向的空间位置的自动控制与稳定。
例如,无人驾驶飞行器(如无人机或导弹等),实现完全的飞行自动控制;对于有人驾驶的飞机(如民用客机或军用飞机),虽然有人参与驾驶,但某些飞行阶段(如巡航段),驾驶员可以不直接参与操纵,而由飞行控制系统实现对飞机飞行的自动控制,但驾驶员应完成对自动飞行指令的设置和监督自动飞行的情况,并可以随时切断自动控制而实现人工驾驶。
采用自动飞行具有以下优点:1)长距离飞行时解除驾驶员的疲劳,减轻驾驶员的工作负担;2)在一些恶劣天气或复杂的环境下,驾驶员难于精确控制飞机的姿态和航迹,自动飞行控制系统可以精确对飞机姿态和航迹的精确控制;3)有一些飞行操纵任务,驾驶员难于精确完成,如进场着陆,采用自动飞行控制则可以较好地完成任务。
一般来说,飞机的性能和飞行品质是由飞机本身气动特性和发动机特性决定的,但随着飞机飞行高度及飞行速度的增加,飞机的自身特性将会变坏。
如飞机在高空飞行时,由于空气稀薄,飞机的阻尼特性变坏,致使飞机角运动产生严重的摆动,靠驾驶员人工操纵将会很困难。
此外,设计飞机时,为了减小质量和阻力,提高有用升力,将飞机设计成静不稳定的。
对于这种静不稳定的飞机,驾驶员是难于操纵的。
在飞机上采用增稳系统或阻尼系统可以很好地解决这些问题。
《自动控制原理》课程教学大纲一、课程的地位、目的和任务本课程地位:自动控制原理是机械设计制造及其自动化专业的专业方向课。
自动控制技术是现代化技术中重要的一个方面,本课程主要讲述现代自动控制技术的基本原理与结构模型,自动控制系统的分析方法与设计方法,使学生具备自动化控制的基础理论知识以及实践能力。
本课程目的:通过本课程的学习,要求学生理解自动控制的基本概念,掌握简单系统的建模方法,掌握对线性定常系统的稳定性、快速性和准确性的基本分析方法以及设计和校正方法,能熟练使用根轨迹法和频率特性法分析与设计控制系统和控制器,对非线性系统也能进行初步的分析.本课程任务:1.掌握自动控制的基本概念、原理,学会对实际物理系统进行数学抽象,并用已学过的数学工具进行系统分析和综合,能灵活应用各种理论知识来解决实际问题的综合设计能力。
2.不仅为后续课程的学习奠定基础,而且直接为解决实际控制系统问题提供理论和方法,养成将来在工程实际中经常进行理性思维的习惯.3。
培养学生在掌握课程知识、概念、原理方法基础上,独立思考、独立解决问题、实验与仿真实现的能力。
二、本课程与其它课程的联系本课程的先修课是高等数学(上、下)、大学物理、电工电子技术(Ⅰ、Ⅱ)。
这些课程的学习,为本课程学习奠定数学基础和分析系统建立数学模型提供必要的电学知识。
本课程学习为后续课程的学习提供所应用的系统分析、设计的基本理论和基本方法,掌握必要的基本技能,为进一步深造打下必要的理论基础.三、教学内容及要求第一章控制系统导论教学要求:通过本章教学,使学生理解自动控制的定义、组成、基本控制方式及特点,对控制系统性能的基本要求,自动控制系统的分类,自动控制系统实例有一定掌握。
使学生对反馈控制的基本理论和方法有一全面、整体的了解。
重点:自动控制的定义、组成、基本控制方式、特点及基本要求难点:自动控制系统实例的分析教学内容:第一节自动控制的基本原理(一)自动控制技术及其应用(二)自动控制理论(三)反馈控制原理(四)反馈控制系统的基本组成(五)自动控制系统基本控制方式第二节自动控制系统示例(一)函数记录仪(二)电阻炉微型计算机温度控制系统(三)锅炉液位控制系统第三节自动控制系统的分类(一)线性连续控制系统(二)线性定常离散控制系统(三)非线性控制系统第四节自动控制系统的基本要求(一)基本要求的提法(二)典型的外作用第二章控制系统的数学模型教学要求:通过本章教学,要求学生掌握拉普拉斯变换的概念、定理及拉普拉斯反变换的数学方法;了解数学模型的概念、表达方式,建模的方法;掌握微分方程的建立、典型元部件及其传递函数、结构图及化简、信号流图和梅森公式,控制系统传递函数的表示方法,学会对一般的机电系统等进行机理建模。
控制系统类的课程设计一、教学目标本课程的教学目标是让学生掌握控制系统的基本概念、原理和方法,培养学生分析和解决控制系统问题的能力。
具体来说,知识目标包括:掌握控制系统的数学模型、稳定性分析、控制器设计等基本理论;技能目标包括:能够运用MATLAB等软件进行控制系统分析和仿真;情感态度价值观目标包括:培养学生对控制工程的兴趣,提高学生的问题意识和创新精神。
二、教学内容根据课程目标,教学内容主要包括控制系统的基本概念、数学模型、稳定性分析、控制器设计等。
具体安排如下:1.第一章:控制系统导论,介绍控制系统的基本概念、发展历程和应用领域。
2.第二章:控制系统的数学模型,学习状态空间表示、系统性质和状态反馈。
3.第三章:稳定性分析,掌握李雅普诺夫方法、劳斯-赫尔维茨准则等。
4.第四章:控制器设计,学习PID控制、状态反馈控制和观测器设计。
5.第五章:控制系统仿真,利用MATLAB进行控制系统分析和仿真。
三、教学方法为了激发学生的学习兴趣和主动性,本课程采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:用于传授基本理论和概念,引导学生掌握控制系统的基本知识。
2.讨论法:学生针对实际案例进行讨论,培养学生的分析问题和解决问题的能力。
3.案例分析法:分析控制系统在实际工程中的应用,帮助学生了解控制系统的应用价值。
4.实验法:利用MATLAB进行控制系统分析和仿真,提高学生的动手能力和实践能力。
四、教学资源为了支持教学内容和教学方法的实施,本课程准备以下教学资源:1.教材:《控制系统导论》、《控制工程基础》等。
2.参考书:《现代控制系统》、《控制理论及其应用》等。
3.多媒体资料:制作课件、教学视频等,以便于学生复习和自学。
4.实验设备:计算机、MATLAB软件、控制系统实验板等,用于实验教学和仿真练习。
五、教学评估本课程的评估方式包括平时表现、作业、考试等。
平时表现主要评估学生的课堂参与度、提问和讨论等,占总成绩的20%;作业主要包括练习题和小论文,占总成绩的30%;考试分为期中考试和期末考试,各占总成绩的30%。
第1章控制系统导论基础练习题下面的系统都可以用框图来表示它们的因果关系和反馈回路(有反馈时)。
试辨识每个方框的功能,指出其中的输入变量、输出变量和待测变量。
必要时请参考图1.3。
E1.1描述能测量下列物理量的典型传感器:(a)线性位置(b)速度(或转速)(c)非重力加速度(d)旋转位置(或角度)(e)旋转速度(f)温度(g)压力(h)液体(或气体)流速(i)扭矩(j)力【解析】(a)位置传感器:用来测量机器人自身位置的传感器。
(b)转速传感器:是将旋转物体的转速转换为电量输出的传感器。
(c)重力加速度传感器:能够感知到加速力的变化的传感器。
(d)角度传感器:用来检测角度的传感器。
(e)转速传感器:是将旋转物体的转速转换为电量输出的传感器。
(f)温度传感器:指能感受温度并转换成可用输出信号的传感器。
(g)压力传感器:是能感受压力信号,并能按照一定的规律将压力信号转换成可用的输出的电信号的传感器。
(h)流量传感器:测定吸入发动机的空气流量的传感器。
液体流量计传感器:用来测量各种导电液体介质的体积流量的传感器。
(i)扭矩传感器:将扭力的物理变化转换成精确的电信号的传感器。
(j)测力传感器:在受到外力作用后,粘贴在弹性体的应变片随之产生形变引起电阻变化,电阻变化使组成的惠斯登电桥失去平衡输出一个与外力成线性正比变化的电量电信号的传感器。
E1.2描述能实现下列转化的典型执行机构:(a)流体能到机械能(b)电能到机械能(c)机械形变到电能(d)化学能到运动能【解析】(a)液压马达、液压缸(b)电动机(c)形变发电装置(d)内燃机E1.3精密的光信号源可以将功率的输出精度控制在1%之内。
激光器由输入电流控制,产生所需要的输出功率。
作用在激光器上的输入电流由一个微处理器控制,微处理器将预期的功率值,与由传感器测量得到的,并与激光器的实际输出功率成比例的信号进行比较。
试辨识指明输出变量、输入变量、待测变量和控制装置,从而完成这个闭环控制系统的如图E1.3所示的框图。
第一章 概论 习题及及解答1-1 试列举几个日常生活中的开环控制和闭环控制系统实例,并说明它们的工作原理。
略1-2. 图1-17是液面自动控制系统的两种原理示意图。
在运行中,希望液面高度0H 维持不变。
1.试说明各系统的工作原理。
2.画出各系统的方框图,并说明被控对象、给定值、被控量和干扰信号是什么?()a 工作原理:出水量2θ与进水量一致,系统处于平衡状态,液位高度保持在0H 。
当出水量大于进水量,液位降低,浮子下沉,通过连杆使阀门1L 开大,使得进水量增大,液位逐渐回升;当出水量小于进水量,液位升高,浮子上升,通过连杆使阀门1关小,液位逐渐降低。
其中被控对象是水槽,给定值是液面高度希望值0H 。
被控量是液面实际高度,干扰量是出水量2θ。
()b 工作原理:出水量与进水量一致系统处于平衡状态,电位器滑动头位于中间位置,液面为给定高度0H 。
当出水量大于(小于)进水量,浮子下沉(上浮)带动电位器滑动头向上(下)移动,电位器输出一正(负)电压,使电动机正(反)转,通过减速器开大(关小)阀门1L ,使进水量增大(减小),液面高度升高(降低),当液面高度为0H 时,电位器滑动头处于中间位置,输出电压为零,电动机不转,系统又处于平衡状态。
其中被控对象是水槽,给定值为液面高度希望值0H ,被控量是液面实际高度,干扰量是出水量2θ。
()a ,()b 系统结构图如下图1-3 什么是负反馈控制?在图1-17(b)系统中是怎样实现负反馈控制的?在什么情况下反馈极性会误接为正,此时对系统工作有何影响?解:负反馈控制就是将输出量反馈到输入端与输入量进行比较产生偏差信号,利用偏差信号对系统进行调节,达到减小或消除偏差的目的。
图1-17()b系统的输出量液面实际高度通过浮子测量反馈到输入端与输入信号(给定液面高度)进行比较,如果二者不一致就会在电位器输出一电压值——偏差信号,偏差信号带动电机转动,通过减速器使阀门1开大或关小,从而进入量改变,当输出量——液面实际高度与给定高度一致偏差信号为0,电机,减速器不动,系统又处于平衡状态。
⾃动控制原理基本概念第⼀章控制系统导论1、⾃动控制系统的组成:控制器、被控对象、反馈环节、给定装置等。
2、⾃动控制系统基本控制⽅式:开环控制、闭环控制和复合控制三种⽅式。
3、反馈是将检测出来的输出量送回到系统的输⼊端,并与输⼊量进⾏⽐较的过程。
反馈有正反馈和负反馈之分,只有负反馈能改善系统性能。
第⼆章控制系统的数学模型1、线性定常系统的传递函数,定义为零初始条件下,系统输出量的拉⽒变换与输⼊量的拉⽒变换之⽐。
2、为传递函数的参数形式,τi(i=1,2,…,m)和 Tj(j=1,2,…,n)为系统中各环节的时间常数, K 为系统的放⼤倍数。
3、为传递函数的零极点形式,zi ( i =1,2,…,m)和pj(j=1,2,…,n)分别称为传递函数的零点和极点,K1称为传递函数的增益(或根轨迹增益)。
4、传递函数的概念适⽤于线性定常系统,传递函数的结构和各项系数包括常数项完全取决于系统本⾝结构;它是系统的动态数学模型,与输⼊信号的具体形式和⼤⼩⽆关,不反映系统的内部信息。
5、传递函数是在零初始条件下定义的。
但是,对输⼊量加于系统之前, 系统处于稳定⼯作状态的情况同样适⽤。
6、传递函数不能(能或不能)反映系统或元件的学科属性和物理性质。
物理性质和学科类别截然不同的系统可能(可能或不可能)具有完全相同的传递函数。
第三章线性系统的时域分析法1、系统的模态(响应形式)由闭环极点确定,闭环零点只影响响应的幅值。
闭环极点的不同取值,动态过程有单调上升,衰减振荡、发散振荡和等幅振荡四种形式。
2、动态过程包含了系统的稳定性、快速性、平稳性等信息。
3、稳态过程是指时间 t 趋近于⽆穷⼤时, 系统输出状态的表现形式。
它表征系统输出量最终复现输⼊量的程度。
稳态过程包含系统的稳态误差等信息。
4、⼀阶系统的典型响应与时间常数T 密切相关。
时间常数越⼩, 响应越快, 跟踪误差越⼩, 输出信号的滞后时间也越短。
)1()1)(1()1()1)(1()(2121++++++=s T s T s T s τs τs τK sG n m )())(()())(()(21211n m p s p s p s z s z s z s K s G ------=5、⼆阶系统的阶跃响应性能定性分析可知,ωn ⼀定,ζ与系统性能的关系:0< ζ<1⽋阻尼,衰减振荡;ζ=1临界阻尼,单调上升;ζ>1过阻尼,单调上升;ζ=0⽆阻尼,等幅振荡。
现代控制系统(十一版)第一章控制系统导论1、实现高效的设计过程的主要途径是参数分析和优化。
参数分析的基础是:(1)辨识关键参数;(2)构建整个系统;(3)评估系统满足需求的程度。
这三步是一个循环迭代的过程。
一旦确定了关键参数,构建了整个系统,设计师就可以在此基础上优化参数。
设计师总是尽力辨识确认有限的关键参数,并加以调整。
2、控制系统设计流程(重要)①确定控制目标和受控变量,并初步定义(确定)系统性能指标设计要求和初步配置结构;②系统定义和建模;③控制系统设计,全系统集成的仿真和分析。
(控制精度要求决定了测量受控变量的传感器选型);④设计规/设计要求规定了闭环系统应该达到的性能,通常包括:(1)抗干扰能力;(2)对指令的响应能力;(3)产生使用执行机构驱动信号的能力;(4)灵敏度;(5)鲁棒性等方面的要求。
⑤首要任务:设计出能够达到预期控制性能的系统机构配置(传感器、受控对象、执行机构和控制器)。
其中执行机构的选择与受控对象和变量有关,控制器通常包含一个求和放大器(框图中的比较器),用于将预期响应与实际响应进行比较,然后将偏差信号送入另一个放大器。
⑥调节系统参数,以便获得所期望的系统性能。
⑦设计完成之后,由于控制器通常以硬件的形态实现,还会出现各硬件之相互干扰的现象。
进行系统集成时,控制系统设计必须考虑的诸多问题,充满了各种挑战。
3、分析研究动态系统的步骤为:①定义系统及其元件;②确定必要的假设条件并推导出数学模型;③列写描述该模型的微分方程;④求解方程(组),得到所求输出变量的解;⑤检查假设条件和多得到的解;⑥有必要,重新分析和设计系统。
4、中英文术语和概念Automation 自动化Closed-loop feedback control system 闭环反馈控制系统Complexity of design 设计的复杂性Control system 控制系统Design 设计Design gap 设计差异Engineering design 工程设计Feedback signal 反馈信号Flyball governor 飞球调节器Hybrid fuel automobile 混合动力汽车Mechatronics 机电一体化系统Multivariable control system 多变量控制系统Negative feedback 负反馈Open-loop control system 开环控制系统Optimization 优化Plant 受控对象Positive feedback 正反馈Process 受控过程Productivity 生产率Risk 风险Robot 机器人Specification 设计规Synthesis 综合System 系统Trade-off 折中处理第二章系统数学模关键词:数学模型微分方程(组)非线性模型区域(点)线性化拉普拉斯变换合理假设相似变量相似模型线性模型线性叠加原理注:线性系统满足叠加性和齐次行。
第一章
控制系统导论
本章提纲
1.1自动控制的基本原理
1.2 自动控制系统的分类 1.3 对控制系统的基本要求 1.4自动控制的发展简史
本章小结
本章提要
本章提要:本章将讨论自动控制的基本概念,自动控制系统的分类,对控制系统的基本要求,自动控制的历史等问题。
1.1自动控制的基本原理
⏹自动控制作为一种技术手段已经广泛地应用于
工业、农业、国防乃至日常生活和社会科学许多领域。
⏹所谓自动控制就是指在脱离人的直接干预,利
用控制装置(简称控制器)使被控对象(如设备生产过程等)的工作状态或简称被控量(如温度、压力、流量、速度、pH值等)按照预定的规律运行。
实现上述控制目的,由相互制约的各部分按一定规律组成的具有特定功能的整体称为自动控制系统。
从物理角度上来看,自动控制理论研究的是特定激励作用下的系统响应变化情况;从数学角度上来看,研究的是输入与输出之间的映射关系;从信息处理的角度来看,研究的是信息的获取、处理、变换、输出等问题。
随着科学技术的进步,自动控制的概念也在扩大,政治、经济、社会等各个领域也越来越多地被认为与自动控制有关。
现在已发展成为一门独立的学科——控制论。
其中包括:工程控制论、生物控制论和经济控制论。
1.1.1 一个实例
直流电动机速度自动控制的原理结构图如图1-1所示。
图中,电位器电压为输入信号。
测速发电机是电动机转速的测量元件,又称为变送元件(变送器)。
图1-1中,代表电动机转速变化的测速发电机电压送到输入端与电位器电压进行比较,两者的差值(又称偏差信号)控制功率放大器(控制器),控制器的输出控制电动机的转速,这就形成了电动机转速自动控制系统。
功率
放大器
+U
电动机
测
速
发
电
机
电位
器 + +图
1-1 直流电动机速度自动控制的原理结构图
当电源变化、负载变化等引起转速变化,称为扰动。
电动机被称为被控对象,转速称为被控量,当电动机受到扰动后,转速(被控量)发生变化,经测量元件(测速发电机)将转速信号(又称为反馈信号)反馈到控制器(功率放大器),使控制器的输出(称为控制量)发生相应的变化,从而可以自动地保持转速不变或使偏差保持在允许的范围内。
1.1.2 控制系统方框图
自动控制系统至少包括测量、变送元件、控制器等组成的自动控制装置和被控对象,它的组成方框图如图1-2所示。
图1-2 自动控制系统的组成框图
1.2 自动控制系统的分类
下面介绍几种常用的自动控制系统分类方法。
1.2.1 按信号的传递路径来分
1.2.2 按系统输入信号的变化规律不同来分 1.2.3 按系统传输信号的性质来分
1.2.4 按描述系统的数学模型不同来分
1.2.5 其它分类方法。